
The Study of Load Balancing Algorithm for h a k h e d

Distributed Processing Systems

Thesis for the Degree of

Doctor of Philosophy

bY

v Miron Limy

Submitted to the

Sicientific Council of the

Weizmann Institute of Science

Rehovot, Israel

August, 1983

ACKNOWLEDGEMENT

I would l i ke t o express my warm grat i tude t o Mike Melman for the

t i m e and e f f o r t he has devoted to m e and t o my work.

I also thank the system operators f o r their dedicated assistance,

and a l l the students who w e r e wi l l ing t o be the guinea pigs i n the use

of the DISS language.

constructive comments were invaluable t o the process of its formulation.

Their re len t less a id in debugging it and t h e i r

Finally, I am grateful t o my w i f e , Efra t , who has enabled m e t o

make t i m e and space for this research and has been my guide i n the maze

of the English language.

T Contents
i m3.e

Chapter 1 . Introduction
1.1 Motivation . 1-1
1.2 Distributed Systems . 1-2
1.3 Load Balancing Algorithms .
1.4 Previous Work . 1-5
1.5 Organization of Dissertation . 1-6

1-1

1 4 -

Chapter 2 . The m*(M/M/l) Distributed System . 2-1
2.1 Definition of an m*(M/M/l) Syshm .

2.1.1 The Probability of a WI State
2.1.2 Balancing Distance .
2.1.3 Processing Overheads .

2.2 M/G/1 and M/M/m Queueing Systems .
2.2.1 Rate of Transfers in an M/M/rn-Lige.Sy&em

2.2.1.1 Two policies for an M/M/Zlike system
2.3 UnbalanceFactor .

2.3.1 Last-rnhute transfers .
2.3.2 Anticipatory Transfers .

. 2-2. ! 2 4
2-6
27
2-8
2-9.

2-12
.!&13
2-16
2-16

Chapter 3 . TheBTSQSS System . 3-1
3.1 Introduction . 3-1
3.2 TheBTSQSS System . 3-2
3. 3 The AT algorithm . 3 4
3.4 The Model . 3-5

3.4.1 The NS-BTSQSS Model . 3-8
3.4.2 The S-BTSQSS Model . 3-7

3.5 Price and Benefit of a Transfer . -3-8
3.5.1 The Price of a Transfer . 3-11
3.5.2 The Success Factor of a Transfer . 3-12
3.5.3 Casestudy . 3-13

3.6 Steady-State Behaviour 3-17
3.6.1 The Iterative Solution Method . .3-1 8.

3.7 Performance study . 3-19
3.7.1 ChannelUtilization . 3-20
3.7.2 The Migration Criterion . 3-22

Chapter 4 . Broadcast Distributed Systems . . i . 4-1
4.1 Introduction . 4-1
4.2 The Broadcast Model . 4-1

4.2.1 ETHERNET PROTOCOL . &3
4.3 Load Balancing Algorithms for Broadcast Sy&ems 4-3

4.3.1 BSTAlgorithm . 4-4
4.3.2 The BID Algorithm . 4-6
4.3.3 ThePIDAlgorithm . 4-7

4.4 Simulation Study . 4 4
4.4.1 Algorithmic Parameters . 48

4.4.3 Processing Overhead . 6 1 3 4.4.2 Number of Nodes . 440

i

Chapter 5 . Store and Forward Systems . 5-1
5.1 Introduction . 5-1

5.1.1 The Store and Forward Model . 5-2
5.2 Load Balancing Algorithms . 53

5.2.1 The H01 Algorithm . 5 4
55

5.4 Simulation Study . 5-6
5.3 Effect of Interconnection Scheme .

Chapter 6 . DISS . 6-1
6.1 Introduction . 3-1

6.1.1 Motivation . 6-2.
6.1.2 The WoddView of DISS . 6-3
6.1.3 Simulation Languages . 66

6.2 Modeling with DISS . : . . . 6-7
6.2.1 Nodal Interconnection . 6-8
6.2.2 TheNode . 6-8

6.3 Simulating With DISS . 6-9
6.3.1 The Kecutive Manager . Sll
6.3.2 Wait Until Event 3 4 2
6.3.3 Allocation of Nodal Dat&kmctnzes . -6-13
6.3.4 Tracing and Debugging . 6.15

Chapter 7 . Conclusions and Directions for Further Research ?-I
7.1 Conclusions . 7-1
7.2 Directions for h r t h e r Research . 7-3

AppendixA . A-1
A.1 TR for Look Ahead policy .
A.2 TR for ‘Trouble Shooting’ Policy .
A.3 TDFi. j for S-BTSQSS systems .
A.4 TDFi. j for NS-BTSQSS Systems .
A.5 SFij for S-BTSQSS system .

A-1
A-1
A 3
A 4
A 4

Appendix B-DEVS Specification . 134
B.l DEVS specification . B-1

Appendix C-Example . C-1
C.l Model Definition . C-1

C.l.l Structural Abstraction . C-1
C.l.l.l Mapping to a Directed Graph . C-2
C . 1.1.2 Arc definition . C- 2.

C.1.2 Bebavioural Abstraction . C-3
C.1.2.1 The host . C-3

C.2 The Simulator . C-3
C.2.1 The Preamble . C-3
C.2.2TheHost . C-4
C.2.3 The CP . c-8
C.2.4 The Executive Manager . C-9
C.2.5 Example of Output . C-9
C.2.6 Example of Tracing Report . C-10

..
aa

%P

Figure 2.2. vs . p for an m*(M/M/l) system with no task migration 2-6
Table 2.1. Nprm . Expected Waiting Time *q for Different Distributions
Figure 2.3. W, vs . p for an M/M/m system . 2-10
Figure 2.4 . l%5 vs . p for an M/M/m-like system
Figure 2.5. Transfer Rate vs . p for M/M/Zli&e system 2-14
Figure 3.1. The BTSQSS system .

Figure 3.4. state-transition-rate diagram (S-BTSQSS)

Table1.1. 1-3
Figure 2.1. An m*(M/M/l) System . 2-3

2-8

. 2-12

3-3
Figure 3.2. state-transition-rate diagram for (i, j , 0) (NS-BTSQSS) 3-7
Figure 3.3. state-transition-rate diagram for (i , j , 1) (NS-BTSQSS) 3-8

3-9
Figure 3.5. Pwi(i, j , t) for a BTSQSS system with no migration (X = .8) 3-10
Figure 3.6. PWi(2,O,tt, t) for an NS-BTSQSS system (X = .8) 3-11
Figure 3.7. TDFj. i and SFj. j for (i, i) = (2,O) . 3-14
Figure 3.8. TDFi. j and SFs. j for (i, j) = (3,5) . 3-15
Figure 3.9. TDF.. j and SFi. i for (i, j) = (5,k) . 3-16
Table 3.1. The iteration step for an S-BTSQSS model 3-19
Table 3.2. Attributes of the iterative method . 3-19
Figure 3.10. I%, ua . p for a S-BTSQSS sytem (8 = O,A, =Lp = 0) 3-20
Figure 3.11. I?, v t . p for an NS-BTSQSS sytem (6 = 10, A, = Lp = 1) 3-21

Figure 3.13. I%q us . Algorithm Parameters (til. a = 1, p = -9) 3-23
Figure 3.14. *q ut . Mgdrithm Parameters (dl . 3 = 1, p = . 8) -3-23
Figure 3.15. I%, 09 . Algorithm Parameters (d1. 3 = 1, p = . 6) -3-24
Figure 3.16. p, us . Algorithm Parameters (d ~ . 2 = 2, p = . 8) 3-24

Table 3.3. of S-BTSQSS system (S = 0,BDl. 2 = 1.,Lp = 0) 3-21
Figure 3.12. Channel utilization v t p for S-BTSQSS system (S = 0, Lp = 0, BDl.3 = 1) . . 3-22

Figure 3.17. W, ua . Algorithm Parameters (4. 2 = .5, p = . 8) 3-24
Figure 4.1. The Broadcast m*(M/M/l) model . 4-2
Table 4.1. Simulation parameters for study of broadcast m*(M/M/l) systems 48
Figure 4.2. The Directed Multigraph Presentation of the Model 4-9

Figure 4.4. $kq and q vs . R for PID (p = .8) p-11
Figure 4.3. $k, and q vs . BT for BST (p = .8). 4 3 0
Figure 4.5. $kq and q vs . m (BDi. j = .2, p = .8) . 4-11
Figure 4.6. I@, and q vs. m (BDz. j = .l, p = .8) . 44.2
Figure 4.7. I@, and q vs . m (BDi. j = .05,p =.8) . 4-12
Figure 4.8. %q and q vs . m (BDt. = .025, p = .8). P13
Table 4.2. $kq for Different arrival rates (FEi = 0, m = 16,BDt. j = . 05) 4-14
Table 4.3. for Different arrival rates (FEj = 1, m = l6,BDt. j = . 05) 4-14
Figure 5.1. A node of the store-and-forward m*fM/M/l) system 5-3
Figure 5.2. The toplogies and their distancetrees . 5-7
Table 5.1. RLi(n) for the different toplogies (m=24) 5-8
Table 5.2. Wq for Rings of different sizes (A = . 9) . 5-8
Table 5.3. lkq for toplogies with 4 m links (A = .9). 5-9
Table 5.4. &p and I?, (1) for toplogies with 4 m links (XI = 3.2, X i = . 8 1 < i 5 m) . . 5-10
Table 5.5. I?, and %, (1) for different numbers of links (XI = 3.2,Xi = .8, 1 < i 5 m). . 5-10
Figure 6.1. Structure of Executive Manager Process . 6-12
Figure 6.2. Typical Process Structure . 6-14
Figure C.l. The Distributed System . C-1

..
2%

L-1
Absts act

The multiplicity and autonomy of resources in f d y distrihted procesSing system make task
migration an attractive method for enhancing the response time of these systems, how eve^,
the communication delays and processing overheads associated with the migration of a task
raises doubts as to the capabilitg of load balancing methods to improve the performance of
distributed systems.

This thesis investigates the problem of load balancing in distributed systems. A
comparative performance study of several load balancing algorithms is presented. The
methodology used in this study is based on the idea that the load balancing prrrblem,.like
many other problems related to distributed systems, is a two dimensional one. The fimt
dimension captures parameters that d e h e the algorithm itself, while the second represents
the characteristics of the distributed system. An understanding of the interdependence
between the algorithm performance and the system’s attributes is essential for acquiring an
insight into the load balancing process. A number of new load balancing algorithms for both
broadcast and point-to-point systems are presented and analyzed. Performance models of
the various algorithms and systems are deiined and solved. It is demonstrated that even
when the communication delays and processing overheads are non-trivial, load b h c i n g can

significantly improve the response time of the system.
Different approaches are used for defining and solving the performance models of

the algorithms. Depending on the complexity of the model and the level of detail required,
analysis or discrete and continuous simulation are used. A method for modeling and simnlat-

ing distributed systems is presented and used for deriving performance measures. The models
and simulation programs built according to this methodologg reflect the loose coupling and
autonomy of the elements of the system. Consequently the models are endowed with the
modularity of the distributed system

0-1

f 1 1 Motivation

What would have been your reaction if while j d i the end of a seemingly exdess be-of
customers at the banks soothsayer would have wispered in your ear: ‘Be omwe of the idle
tellera at the brunch on the ned block I ”? Would yon have decided to run across the block
hoping that you are the ody one that heard the wisper, or would y o u h v e used some kind
of reasoning to justify a decision to stay. Whatever your decision would have been it might
have saved you time. By becoming a m e of the state of the other branch you were faced
with the problem of load balancing in a multi-reaource system. As a user of su& a system
you have realized that while you were waiting for a resource at one location a resource which
belongs to the same system but is located at a different place was available. By selectingthe
‘right’ resource to wait for (you can later change your mind) the amount of time that you
would have to wait could have been reduced considerably. However, due to the stochastic
properties of most users and systems it seems that one has to be a soothsayer in order to
know who i s the ‘right’ server.

Various goals may motivate the construction of mnlti-resource systems. One of
the main motivations for such systems is the need for rewurce ahuring. This need has
always existed as far as processing systems were concerned. The great progress m the field
of computer networks in the last decade made multi-resource processing a reality. The

primary goal of the projects in which the first computer networks were designed was to
developed means by which a large and widely spread community can share hardware and

software resources flawr7OJ. The computer to computer interconnections and communication
protocols that were developed gave the user the ability to access resources that they could
not use before since these resources were not part of the users’ local environment. By doing
so these networks gave an answer to the permanent resource availability problem. However
users of processing systems face an instantaneous resource avadabi2ity problem whenever a
local resource is not accessible at a given instance due to resource contention. In such a case
the user may be willing to use any non-local resource although a resource with similar or
even superior properties is part of his Iocd system. The need for resource sharing under such
circumstances is motivated by the desire to obtain a better response time.

When a given resource is permanently not available at the local system the selection
of the non-local resource to be used can be carried out by the user. But in the case
where resources are selected according to their instantaneous availability the assignment of
resources has to be executed by the system. Due to the frequent changes in. the state of the
resources and the system load distribution, the binding between users and resources has to
be a dynamic process. By migrating tasks from one location to the other according to the
instantaneous system load the assignment algorithm may reduce the response time of the
multi-resource system. The realization of the potentiality of the task migration process to
enhance the perforlhance of such systems motivated this study of load balancing algorithms
for Distributed Piocessing Systems (DPSs). This study attempts to answer the questions of

how under what conditions and t o what eztent the expected queueing time of a user of such
a system can be reduced by means of load balancing.

*

5 1.2 Distributed Systems

The extensive experience that has been accumulated in the operation, maintenance and
upgrading of centralized computer systems revealed the disadvantage of this type of com-
puter organizations. An analysis of these drawbacks led to the development of the ideas
that by distributing the resources and control of a processing system some of them may be
eliminated. A great many advantages are claimed for distributed systems [Ens178], some of
which are listed in Table 1.1. The attractivity of distributed systems brought many scientists
and vendors to add the title “distribufed’ to any system with more than one processor. As a
result of this the term “Distn’buted processing“ was left devoid of any substantive meaning.

1-2

I High Availability and Reliability
High System Performance
Ease of Modular and Incremental Growth
Automatic Load and Resource Sharing
Good Response to Temporary Overloads
Easy Expansion in Capacity and/or Function

Table 1.1.
I Claimes for “benefits” provided by Distributed Processing systems

ii.

iii.

iv.

v.

Only few attempts have been made to establish a set of definitional criteria for a

Distributed Procesing System ~ml78],[Jens78] and [Ensl81]. The DPSs that were analyzed
in this study posessed the five criteria of a Fully Distributed Processing System as defined by
Enslow in [EnsM]. According to this dehition a processing system has to meet the following
criteria in order to be considered as fully distributed:

i. Multiplicity of resources: The system should provide a number of assignable resources
for any type of service demand. The greater the degree of replication of resources, the
better the ability of the system to maintain high reliability and performance.

Component interconnection: A Distributed System should include a communication
subnet which interconnects the elements of the system. The transfer of information via
the subnet should be controlled by a two-party, cooperative protocol (loose coupling).

7

Unity of control: All the components of the system should be unified in their desire
to achieve a common goal. This goal will determine the rules according to which each
of these elements will be controlled.

System transpsrencyt From the users point of view the set of resources that con-
stitutes the DPS acts like a ‘single virtual system’. When requesting a service the user
should not be required to be aware of the physical location or the instantaneous load of
the various resources.

Component autonomy: The components of the system, both the logical and physical,
should be autonomoue and are thus afforded the ability to refuse a request for service
made by another element. However in order to achieve the system’s goals they have to
interact in a cooperative manner and thus adhere to a common set of policies. These
policies should be carried out by the control schemes of each element.

The salient characteristics of DPSs is the multiplicity and autonomy of its resources. Most

1-3

r
of the advantages which DPSs provide depend on these two properties. E m r dTte f;o

multiplicity and autonomy of its resources a DPS may be in a W d :while idle cwr) state

which is a state in which a task is waiting for service while a resource that is capableof
serving it is idleing. Any system which aims at achieving minimal response time Gll consider
a WI state as undesired and thus attempt to minimize its duration. The WI state is a
fundamental phenomenon associated with distributed systems and may occur even when a
number of tasks are waiting for a single res0urce.l.h such a case the distributianof the access
control scheme is the cause for the WI state.

$1.3 Load Balancing Algorithms

A Load Balancing (LB) algorithm for a DPS is a distributed decision process that contmls
the assignment of the system resources. The algorithm is motivated by the desire to achiew
better overall performance relative to some selected metric. The algorithm utilizes a tnak
migration mechanism in order to place the tasks at the ‘right’ resources. This study focuses
on LB algorithms whose goal is to minimize the expected turnaround time of a task.

The nature of a DPS adds another dimension of complexity to the development of
decision processes. I Because of the existence of more than one decision maker (controller)
in the system and the absence of information on the current system state at the paint: the
process takes place, the control problem of such systems,is nonclassical [Scho78]. In such
control problems the selection and collection of information for the decision process - the
information rule - is almost as important as the decision rule - the conttol Iota.

The control law of a distributed LB algorithm determines when, from;where and
to whom to transfer a waiting task. The decision is made according to the cmrent a-le
information on the system’s load. It is the function of the information policy to collect the
data concerning the instantaneous load of the various resources. Each of these two element
has to reside at every resource and the communication system is used by both of them in
order to carry out their functions. The control element sends dutu m.essages that describe
tasks and the information element sends statua messages that contain data concerningthe
resource load.

Since the operation of the algorithm relies on an efficient exchange of information,
the balancing process faces a transmission dilemmu because of the two opposing effects.the

‘In an ETHERNET netspork a number of stations may be in a ’backoff’ state while the channel is free

1-4

transmission of a message may have. On the one hand, the t r d s i o n of a rnessqphnpmves
the ability of the algorithm to level out the instantaneous system load and to mabskain

an updated picture of the system load at different locations. On the other h d , it raises
the expected queueing time of a message due to the increase in channel utilization. Long
transmission delays lower the ability of the LB algorithm to achieve its g o d

51.4 Previous Work

The problem of resource allocation in an environment of cooperating autonomaw resotmes
and its relationship to system performance is a major issue associated with the design of
distributed systems [Echh78]. A number of studies of this issue have beemeported. H o m r ,
most of these studies deal with processing systems that utilize central elements, such as a job
dispatcher, a shared memory or a main processor. In all these studies processing overhead
due to the balancing process are not included m the performance models.

Stone in [Ston771 presents a centralized resource allocation algorithm for mdti-
processor systems. The algorithm assumes that the cost (including communication costs) of
each assigment is given. Under this assumption the optimal assignment problem is transferred
to the problem of findilig the minimum cutset of a graph.

A homogeneous two-server system with a central job dispatcher has been studid
by Chow and Kohler [Chow77]. A load balancing algorithm that aspires ta miTlimize the
difference between the queue length of the two servers has been presented. The system
has been modeled as a two-dimensional Markov process and has been solved by means of a
recursive method.

The complexity of the load leveling problem has been analyzed by Kratzer asd
Hammerstrom [Krat80]. In their study they have shown that the CPU load levdingproblemis
NP complete. A stable decentralized algorithm has been defined €or a unifornrally structnred
network.

Bryant and Finkel [Brya81] have presented a preemptive stable load balancing
algorithm for homogeneous distributed systems. The service discipline of the processors, is:
assumed to be processor sharing and they are interconnected in a point-to-point fashion. The
preformance of the algorithm for a given topology and different operating conditions has been
investigated through simulation.

A number of load balancing strategies for a class of local area networks have been
defined by Ni and Abani in [Ni 811. In their performance models they have assumed that

1-5

the communication delays due to job routing are very small compared with the jobaecukion
time. Both analysis and discrete event simulation have been employed for abt-g the
desired performance measures.

$1.5 Organization of Dissertation

This thesis takes a tree structure approach in describing the study of load bz- Ago-
rithms for DPSs. Chapter 2 is the root of the structure and chapters 3 to 5 are the leaves.
In each of the later chapters interaction between the load balancing process and a different
type of distributed system is analized. These three chapters describe t h e e p d e l investiga-
tions of different aspects of the task migration phenomenon. The factors that nnifs these
investig2Tons are discussed in the-'root' chapter.

In chapter 2 the m*(M/M/l) family of distributed system models is. d&ed and a
taxonomy of load balancing is proposed. Some of the properties of multi-remume systems

and the balancing process are demonstrated by means of simple analytical models.

__ -

Load balancing in a two-server distributed system is the subject of the, third chapter.
A LB algorithm with a parameterized and state dependent threshold is presented. Boththe
steady-state and the transient behaviour of the algorithm are analyzed and guidelines €or the
design of LB algorithms are concluded.

1

Chapter 4 focuses on broadcast distributed systems. Three lo& bahciug &go-
rithms which utilize the advantages of a broadcast communication media are presentedand
their performance analyzed. The performance models of the broadcast systems include a
detailed description of the ETHERNET communication protocol.

In Chapter 5 a LB algorithm for store-and-forward distributed systems is defined.
The chapter focuses on the interdependency between the topology of the system and the load
balancing phenomenon. Performance models of DPSs with various topologies me simu&ed
and their performance analyzed.

Performance predication is a cohesive element of an investigation of the load b h -
ing phenomenon. Due to the characteristics of distributed processing systems performance
prediction of such a system almost always entails a simulation study. A novel approach
for modeling and simulating distributed processing systems is presented and discussed in
Chapter 6. An example of a model and a simulator which were developed according to this
methodology are included in Appendix C.

1.-6

The problem of load bh&gin.DPSs, like other problemxdated to t h e p e r f o m c e of this
type of systems, is a two dimensional one. The first dimension represents the characteristics
of the distributed system, while the second captures parameters that defhe the LB algcxrithm
itself. There is a great variew in both the structure and the intended. usage of DPSs. Various
communication systems as well as processing elements are used for building DPSs and di.f€erent
approaches are employed when. designing them to .meet3 the needs of various users. Because
of this variety a quantitative analysis of the interdependence between the performance of
LB algorithms and the characteristics of the DPS is essential for acquiring an insight of
the task migration.phe5omenon. A sensitivity analysis performed along the first dime&im,

the system axis, will provide means for determining which of the system's attributes are
detrimental and which are advvantageou-9 to the load balancing process. A similar analysis
along the second dimension, the algorithm axis, will point at ways in which the taskmigration
process can take advantage of certain properties of the system, and how obstacles caused by
other attributes can be overcome.

I

' In order to carry out the above analysis, various performance models of DPSs which
are controlled by merent LB algorithms must be defined and solved. The performance
.measures obtained from the solution will give a quantitative description of the relation
between the algorithms and the systems. The family of DPSs models selected for this analysis
has a major impact on the scope and nature of the study of the LB problem. On the one hand,
the conclusions drawn from a study based on complex and detailed models will be applicable
t o a particular implementation but, in most cases, will have a limited significance as far as the
basic characteristics of the phenomenon are concerned. On the other hand, results obtained

from solving simple and abstract models reflect the basic characteristics of the problem but
in the model itself some important characteristics of DPSs may be overlooked. The stochastic
properties and complexity of the models determine which methods can be employed for solving
them and thus they define the nature of the study. When the model meets the assumptions
of the numerical methods which have been developed for solving performance models the
study will be ‘analytical’. However, the investigation will turn into a ‘simulation study’ when
these methods fail to solve the model.

92.1 Definition of an rn*(M/M/l) System

The family of distributed system models selected for this study are the rn*(M/M/i) systems.
An m*(M/M/1) system consists of m processing elemats that are interconnected by a
communication subnet (Fig 2.1). The family is characterized by the structure of its processors
and the profle of the workload. The specification of the family does not impose any
restriction upon the structure or the protocol of the communication subnet. Every node
of an m*(M/M/l) system can serve it’s own users autonomously and therefore the operation
of the system does not rely on communication. The processing elements were integrated
into one system in order to provide their users with a better response time. The system is
controlled by a load balancing algorithm which tends to reduce the expected queueing time
of a task by means of task migration. This algorithm is the sole user of the communication
system.
The specification of the m*(M/M/l) is the following:

1. Processors- Each of the m processing elements consists of a processor, Pi , and an
infmite queue. The queueing discipline is First Come First Serve (FCFS) and all the
processors provide the same functional capabilities.

2. WoPk-Load Profile. Tasks arrive independently at each node and join the queue. The
inter-arrival time has a negative exponential distribution and thus the task arrival process
of the entire system consists of m independent Poisaon processes. The service d e m d
of the tasks is exponentially distributed and the structure of the nodes and tasks is such
that every processor can serve any task. When a task has not been served by the node
at which it had arrived, that is its entrance site, the results of its execution have to be
transferred from the node at which it has been executed, back to the entrance node. The
node which has served the task is called the execution site of the task.

2-2

ARRIVAL

3

G
DEPARTURE

--.I-)-

NOOE #2

COMMlJNNCATION S U B N E T
+

NODE # m

Figure 2.1. An m*(M/M/l) System

The operating conditions of the processing elements and the workload of an
m*(M/M/l) system are defined by the structure

0 =< (P I , . . .yP~)y(~ly...,~~),(~l~...,~~)~~(7~~.--~~)~(71 0 r * * - ~ 7 m) 0 >

where

1.1; - is the service rate of processor i given in Execution Unitts (eu) per Time Unit

(W.
X;

a;

7;

7:’

- is the rate at which tasks arrive at processor i.
- is the expected execution demand, in em, of the tasks that arrive at node i.
- is the expected number of Data Umih (des) a processor needs in order to identify

and serve a task that has arrived at node i.
- is the expected number of dsls required to describe the results of a task that

has arrived at node i.

As indicated by the above specifications the m*(M/M/l) systems, are in a way, the simplest
models of a distributed systems. They have simple processing elements, their tasks have
nice - memoryfess - stochastic behaviour and they do not perform any distributed processing
except for the LB process. Nevertheless, despite their simplicity, these models capture the
main properties of a distributed system. They have resource multiplicity, their resources are

loosely coupled and autonomous, and all the processing elements cooperate in the achievement
of a common goal.

In this study only models with homogeneow processors and tasks will be considered.
The processing elements of an m*(M/M/l) system will be dehed as homogeneous processors
if p ; = p €or every 0 < i 5 on. The tasks will be dehed as homogeneous if a; = a, 7; -
and 7 y = for 0 < i 5 m. The egective service rate of a system with homogenous
processors and users will be deked by the ratio j.i= a. The system will be homogeneously
loaded if both the processors and tasks are homogeneous and X i = X for 0 < i 5 m.

I -

A P

2.1.1 The Probability of a W State

The load balancing process aspires to improve the response time of the distributed system
by mlnimia&g the probability that the system will be in a WI state. The value of that
probability for a system in which no task migration takes place, will point at the potential
capability of the load balancing process to enhance the performance of the system. The
extent to which this probability can be reduced by means of task migration and the net
impact of the balancing process on the expected response time of the system, depend on the
characteristics of both the system and the algorithm.

Assume a homogeneously loaded m*(M/M/l) system in which no task migration
takes place and let P,i(n) be debed as1

?wi(n) = P[at least n tasks are waiting and at least n processors idle] (1)

.. then from the uniformity and the independency of the nodes it follows that

lThe notation P[E] denotes the ‘probability of event E’.

2-4

where
(TI is the number of Merent ways a set of i processors can be selected from the m
processors of the system.
1,. = (1 - p)' is the probability that a given set of i processors will be idle.
Wj(n) is the probability that a given set of j processors will be busy and at least n
tasks will be waiting for service in their queues.
p = is the utilization of the processors.

Because each of the nodes is an independent M/M/l queueing system it follows that

P[k tasks in a given distribution wait for service
pi j+k o p in a given set of j busy processors] =

where Po = (I - p) is the probability that an M/M/l system is empty. From (3) it foIIows
that

where
p i is the probability that j processors are busy.
p-i+k) is the number of ways in which k tasks can be distributed among j queues.

From (2) , (3) and (4) it follows

When the system is a WI state, at least one task. is waiting and at least m e processor is
idle. Therefore the probability that a homogeneously loaded m*(M/M/l) will be observed in
a WI state if no task migration takes place, Pw;, is given by Pwi(l). Thus from (5) it follows
that

m-1

Pw; Pwi(l) = c (?)P;(p-' a - (Pop)"--')
i- 1

= 1 - (1 - Po)m(l - P,m) - PF(2 -Po)m

Fig. 2.2 presents Pwi for different values of m with processor utilizations, p, as a parameter.
The curves of the figure indicate that for practical values of p, the probability of a WI state
is remarkably high and that in systems with more than ten processors there is almost always
a task waiting for service while a processor is idling. Pwi reaches its maximum value when

2-5

n
T a

W

td
P
0
k a

I

0..20 0.40 0.60 0.80 1.00
Server Utilization (p)

Figure ,%Z2.' P,,,; vs. p for an m*(M/M/l) system with.no taskmigration
,

the processors are utilized during 85%, of the time. As. the utilization of the processurs
increases past the level of 65% P,,,; decreases. This property of Pw; indicates that a
load balancing algorithm should perform less work when the system-is heavily-utilized. It is
clear that the same holds true for systems that are idle most of the time.

2.1.2 Balancing Distance

In various areas the distance between twu objects is measured in time unita. Years, hours
and minutes are used for describing the distance between stars, towns and houses. Time is
also used as a measure for the distance between elements of a DPS but in a different way.
From the point of view of a scheduling or resource allocation algorithm for such a system,
the distance between resource A and B is the time required for moving a given amount of
data from A to B, whereas in the other examples the distance is the time it takes to go from
A to B at a given velocity. Unlike the other cases the measure used for a DPS has no relation
to the physical distance between the resources. It reflects the capacity of the communication
link through which the resources are connected and the processing overheads associated with

2-6

the communication process. Thus two processors which are located at M e r e n t corrtinenta

may be ‘closer’ than two computers situated in the same room.
The degree to which task migration can reduce the probalditg of a WEstate in it

multi-resource system depends mainly on the ratio of the transfer time to execation h e z
of a task. Therefore from the point of view of the LB process the distance between two
resources is determined by this ratio. Let TJi,j(z) be the trammission time of a task of
length z dus from resource i to i than the belencing didance between i and i is dehed

. . The resources will be considered as being cloee to one another when the expected tranarmssr OZL

time is negligible relative to the mean execution time, i.e. a small BD, and as d i a t u t when
the time required for transferring a task is much longer than the time required €or executing
it, i.e. a large BD. The balancing diemeter of an m*(M/M/l) system will be defined as the

largest balancing distance between two of its processors.

2.1.3 Processing Overheads

In addition to commusication resources, the LB process requires processing reso?t~ces: The
execution of both the control element of the algorithm and the various functions of the com-
munication protocol require processing capacity [Tane81]. The processing capacity utilized by
the LB process is the overheud which the distributed system has to pay in order to achieve a
reduction in Pwi. As a result of this overhead the LB process reduces the amount of process-
ing capacity available to the users. The effect of this reduction on the expected response time
of the system is the opposite of the effect of the reduction in Pwi-

The protocols of communication systems that meet the requirements of a ‘reliable
network’are complex and require a considerable amount of bookkeeping whereas the control
laws of LB algorithms are relativly simple. Therefore, only processing overheads due to
activities of the different layers of the communication protocol will be considered in this
study. The manner in which these overheads will be introduced into the m*(M/M/l) model
will depend on the characterestics of the communication subnet.

Pwi can be reduced to zero only if the balancing diameter and overhead of the
system are zero. In such a case the system can be viewed as a single queue multiple processor

2the execution and transmission times are the actual service times and do not include qaeneingdelays.

2-7

Determinestic (cb = 0) .214 ,500 .750 1.166 2.000 4.500
Ezponentid f c b = 1) .428 1.000 1.500 2.333 4.000 9.000
Gamma(k=2) (cb = 2) 1.071 2.500 3.750 5.883 10.00 22.500
Hu~erez~onedial @h = 31 2.142 5.000 7.500 11.667 20.00 45.000

Ta6fe 2.1. Norm. Expected Waiting Time lkq for Different Distributions

queueing system where the queue consists of n cells. Each cell has an independent stream
of tasks and a processor that serves tasks that were allocated to this cell according t o an
FCFS discipline. Tasks are moved instantaneously from one cell to the other according to the
migration criterion of the LB algorithm. An m*(M/M/l) system with no balancing overhead
and where BDi,j = 0 for all 0 < d, j, 5 m will be called an M/M/m-like system.

82.2 M/G/l and M/M/m Queueing Systems

Processing systems are usually shared by several users. The stochastic behaviour of the tasks
submitted by these users - their arrival times and service demands - cause reaource contention
that leads to the establishment of queues and consequently the tasks have to waste time while
waiting for service. The factor by which the system inconveniences the users due to the fact
that they are sharing the same resources is represented by the mean normalized queueing
time of the system ,fiq, which is the ratio of average time a task spends in a queue to average
service time required by the task.

The &,', of a single processor system that serves a Poisson stream of customers
according to an FCFS discipline, an M/G/1 queueing system, is given by il

I

which is the Poilaczek-Khinchin (P-K) meun value formulu and where Cb is the coeficient of

variation for service time demand distribution. It follows from (8) that @q is an unbounded
monotonic increacling function of the variance of the service time demand distribution.
Therefore a system with a moderate utilization might have a large &,q when the standard
deviation of the service time is large. Table 2.1. presents some numerical values of lkq for
systems with different p and cb. Note that the coeEcient of variation for CPU service time
distributions is assumed to be greater than one [Coff73]. Samples of these times form, in
most cases, a hyperezponentiul distribution.

I

2-8

i

The service time demand distribution in an m*(M/M/ 1) system is exponential and

therefore the mean normalized queueing time of such a system, in which the balancing
distance between any two resources is infinite, without load balancing, is given by

(9) is the upper bound for the Wq of an m*(M/M/l) system and serves as a means for
evaluating the improvement in performance due to the LB process. The best mean normalized
queueing time that m Poisson streams of customers3 can obtain from m exponential processors
is given by

which is the mean normalized queueing time of an M/M/m system [Klei75]. Eq. (10) can
serve as a lower bound,on the Wq of an m*(M/M/l). It follows from (10) that the lower
bound on Wq is a monotonic decreasing function of the number of processors.
The greater the number of M/M/l systems which are integrated into one M/M/m-liike system,
the smaller the expected queueing time of a task is- Fig 2.3. shows the d u e of Wq for an
M/M/m system as a function of m for different values of p .

The rate at which tasks must be transferred from one queue to the other in order to minimize

the probability of a WI state in an m*(M/M/l) system, is a major argument in justifying a
study of task migTation criteria for such systems. Only when a significant percentage of tasks
are transferred, a change in the control law of the LB algorithm will affect the utilization of
the communication system and thus change the performance of the system. In this section a

lower bound on the transfer rate for a M/M/m-like system is derived and used for evaluating
the amount of transfers required for minimizing the mean queueing time of a task in an
m*(M/M/l) system.

--
m Poisson streams can be considered as one Poisson stream with a rate equal to the sum of the rates of the

individual streams.

2-9

5.00 a
a,
N

k
0

2.50

i
m-2

m=3

Server Utilization (p)
Figure 2.3. Wq vs. p for an.M/M/m system

A s s h e a homogeneously loaded M/M/m-lie system and let TR be the rate in
which task transfers are initiated by the LB algorithm. Since the probability of a WI state
in such a system is zero, a task must be tr
occures:

EB

E2

From

A task arrives at a busy processor while at least one of the processors is idling.

A processor completes the service of a task, no other tasks are waiting in its queue
and there is at least one task waiting in another queue.

the above it follows that

P[transfer in (t, t + At)] 5 P[E1 in (t, t + At)] + PfE2 in (t, t -I- At)] (13.1

The number of busy processors at time t is mia(a(t), m) where a(t) is the number of tasks in
the system at time t. When k processors are busy at time t , the probability that a task will
arrive at a busy processor in (t, t + At) is l cMt and therefore

4Because the system is a birth and death system (Klei751 multiple events are prohibited.

2-10

m-1 CQ

P[arrival 0t 0 busy processor in (t,t + At)] = A(iP;(t)At 6 mPi(t)dt) (12)

where P;(t) is the probability that n(t) = i. In order that an arrival will meet the conditions
of El, at least one of the processors has to be idle. Since the number of idling processors at
time t is m - mia(n(t), m) it follows from (12) that

i
Tn-1 i

PIE1 in (t,t + At)] = X iPi(t)At

i i== 1

The number of tasks waiting for service at time t is maz(n(t) - m, 0) and therefore when
m < a(t) < 2m all processors are busy, and in at least 2m - n(t) nodes no task is waiting
to be served. The probability that one of the busy processors which has only one task in its
queue will complete the service of that task in the interval (t,t + At) is (2 m -n(t)) fidt. So

it follows that
m-1

P[E2 in (t,t+ At)] 2)i C (m - i)fm+i(t)At
i-1

api(t)
t

The system is assumed to be in a steady state, 7 = 0. By replacing Pi(*) by Pi =
limt,, Pi(t) and integrating over a time unit interval it follows from (13) and (14) that

m-1

TI2 2 [XiP,.-tfi(rn-i)P,+i] (15)
i- 1

by replac,ag Pi by the expression for the probability of having i tasks in an M/M/m system
it can concluded from (13) that

BL =

k=O

is a lower bound on TR.
In many cases it is natural to use the expected excution time of a task , fi-', as

a time unit when andyzing a queueing system. Fig. 2.4 presents the Iower bound on the
normalized transfer rate per node, &= f i , as a function of p for systems with different
numbers of processors. Note that a considerable number of tasks have to be transferred in

.A

2 -- PI,

- - -

a,
3
d s
Vj 0.80-- m=20
5
&
Ej,

m=l0 k
0.40--

k
0
-d m=5
F: 3.- a 0.20-
m
k

0
Gl

+I

___ . -.

m=2 \

1 I -I 0.60 0.80 1.00 0.00 4
0.20 0.40

Server Utilization (p)

Fiaure 2.4. BL vs. p for an M/M/mcke system

order to achieve the pe

processors almost one out of X-l tasks are transferred.

These results indicate that in an rn*(M/M/l) system where task t r d s s i o n time
is not negligible the load balancing process might utilize a large portion of the capacity of
the communication system. The utilization of the communication system will determine the
delays associated with the transmission of a task or any other message, These delays will
cause an increase in PW; and therefore an increase in The amount of traffic generated by
the balancing algorithm has a major effect on its ability to improve the performance of tht
system. Fig. 2.4 shows that in order to achieve the optimal performance, Pm; = 0, a largf

* "

rmance Of an M/M/m system. For withmore than ten

portion of the tasks have to be transferred.

2.2.1.1 Two policies €or an M/M/2-like system

In order to demonstrate the effect of a change in the migration criterion on the expected
number of task transfers initiated by an LB algoritbm, assume an M/MJ2-l&e system (zero
balancing distance) and consider the follosiving two migration policies:

2-12

1. ‘Look ahead’ poliey- A transfer is initiated whenever the difference between the
number of tasks in the two queues is greater than one and the channel is idle.
‘Trouble shooting’ policy- According to this policy a task that is waiting to be served
at one queue will be transferred to the other queue only when the other processor is not

busy.

2.

Under the above assumption the mean normalized queueing time of a task, in both cases,
will be the same as in an M/M/2 queueing system since the probability of a WI state is zero.
Let TR1 and 2’82 be the expected rates at which transfers are initiated by the ‘look ahead’
and ‘trouble shooting’ migration policies respectivly. It is shown in Appendix A that TRl is

given by

and that TR2 is bounded by

and

, . -
Fig. 2.5 presents the value of TR1 (the dashed line) and the two bounds of TR2

(the cross-hatched line) as a function of p for fi = 1. The curves presented in the figure
demonstrate the wide range of d u e s which the transfer rate of the balancing algorithm

can receive and points at the harmful effect that a balancing algorithm with a too ‘Zibetd’
migration criterion may have on the performance of the system.

The interdependency between the performance of the m*(M/M/l) system and the
migration criteria of the LB algorithm will be discussed in the course of the presentation of

the results obtained from the solution of the performance model of these systems. It is clear
that the optimal policy depends on the balancing distance between the systems’ resources
and the penalties associated with the transfer of a task.

$2.3 Unbdance Factor

The LB algorithm is distributed among the processing elements of the system. Every processor
has its own local LB control element which governs the migration of tasks into and out of

/
/

/
/

/
/

m, / /

/
/

/

Server Utilization (p)

Figure 2.5. Transfer Rate vs. p for M/M/2-like system
)

its queue. The' decisions made by this control element. are based on the infomatian supplied
to it by the LB information elements which reside at other processors. The control scheme
of the algorithm is usually based on a comparison between the load of the processor and
the load of other processors which are included in a subset of processors called the baluncing
region of the processor. This region consists of those processors which the owner of the region
considers as candidates for receiving one of its tasks. The region c

defined ' changed randomIy or adapted dynamically to the instantaneous st

The migration criterion is basically a comparison between the degree to which the
load distribution of the balancing region is unbalanced, and a predefined threshold. The
evaluation of the load distribution is made according to the information available to the
processor at that instance. Although the evaluation method may differ from one LB a l g o r i b
to the other a scheme for scaling the degree to which a load distribution is unbalanced ha:
to be established in order to enable the characterization of task migration criteria.

In an m*(M/M/l) system the degree to which a load distribution is unbalance(
should be measured according to the effect which an instantaneous task transfer has o n thi
probability that the system will reach a WI state in the future. The likelihood that at leas

2-u.

I

1

t

L
J
1

J

e

e

e
a

S

a
.e
;t

one processor will become idle depends on the load level of the least bad& processor, whereas
the probability that a task will be waiting is dected mainly by the number of tasks at the
most loaded processor. Therefore in an m*[M/M/l) system with homogeneous tasks and
processors the enhation of a load distribution can be based on the minimal nnmber of tasks
resident at one processor and the difference between this number and the queue length of the
most loaded processor.

The migration of a task is a binary operation between the source and the t q e k
nodes. Therefore, although the probability that a WI state will be reached is not determined
only by the maximal and minimal queue length of the system, a scaling scheme based on the
extreme loads of the system was selected. Let A be a subset of processors of an m*(M/M/l)
system with homogeneous tasks and processors and ni(t) the number of tasks at processor i
at time t then the unbalance factor of A at time t is dehed as

(u (A , t) > 1) (&jeA(nj(t)) =o)
(AL(A,t) > 1) A (h j E A (* i (t)) > 0)

A where AL(A, t) = maxk,jcA(nk(t) - nj(t)) is the load-diference of A at time t .
The above definition is based on a global point of view. All processors of A are

considered as potential sources or targets for a migration operation. However the co-ntrol.
element of a given processor evaluates the load distribution of the balancing region in order
to decide whether to send out one of its tasks. Therefore an unbalance factor of the load of
a given processor relative to its balancing region, is required. Let BR;(t) be the balancing
region of processor k at time t and mu($) be the number of tasks at processor j as known to
processor i at time t, then the relative unbalance factor of i at time t is defined as

A where dL(k, t) = maxk,=BRi(tl(mi,j(t) - rni ,k(t)) is the relative load-diflerence of i at time t.
Note that only when a task is waiting for service at processor i and one of the processors
of BR;(t) is idling, according to the information available to 6,5 U&F(k, t) becomes infinite.

--
‘from this point on, unless stated explicitly otherwise, when the load distribution of BRi(t) is considered it
is the distribution as known to processor i at time t.

2-15

In all other cases where no task is waiting at processor s' or no processor is idle in BR;(t)
the relative unbalance factor of i is finite. When the factor is zero, the load distribution is
such that there is no processor whose queue length is smaller by two or more than the queue
length of processor i, and thus a task transfer should not be executed.

According to the value of the relative unbalance factor of the source of a migration
at the time it has been initiated, task transfers can be classified into two types - last-minute
and anticipatory transfers.

2.3.1 Last-minute transfers

A transfer initiated when the U&'(i,t) is infinite will be classSed as a.fast-m'nvte transfer.
Although the infinite value of the factor indicates that the balancing region is in a WI state,
it is not always advantageous to initiate a transfer under such conditions. The beneficial

. effect of such a transfer depends on both the balancing distance between the two processors

and the relative load-difference of the source Drocessor.

2.3.2 Anticipatory Transfers

A trans hi tewil l be called
an anticipatory transfer. When o < ~ i i ~ (i , t) < oo ~ ~ i (t) is not in a WI state. However,
an instantaneous transfer of a task from i to the processor with the minimal number of tasks
in B&(t) decreases the probability that the region will reach a WI state in the future. A

transfer initiated under such conditions can be considered as a preparative step taken t o
prevent the occurrence of a WI st . The advantage of h a transfer depends on t h e
balance distance between the sour nd target of the transfer. The effect of the distance

t

ed by processor %' n Uh'(i, t) is greater than zero b

is not monotonic. When the distance is very small or too big the beneficial effect of an
anticipatory transfer is limited. In the case of a big distance the load distribution of the
system at the time the task arrives at the target might be considerably different than the
distribution at the initiation time of the transfer. Consequently a decrease in the distance
increases the power of such a transfer. However when the distance is very small there is nc
need for anticipatory transfers. Last-minute transfers are sufficient when the transfer time
of a task is much smaller than its execution time. Therefore in such a case an increase in the
distance will increase the beneficial effect of this type of transfer.

2-16

$3.1 Introduction

In order to be considered as a distribntedsystem, a processing system should include at least
two processors. Although &vo is the minimal number of processors, a 2*(M/M/1) system
is sufliciently large to serve as a vehicle for studying the basic characteristics of the Load
Balancing process. The interaction between the two processors due to the migration of
tasks captures fundamental aspects of the LB phenomenon. By analyzing the performance
of 2*(M/M/1) systems which are controlled by different LB algorithms, an insight of this
phenomenon may be acquired. On the basis of the results obtained from such a performance
study a range of acceptable balancing distances can be determined and the break-even point at
which the overheads of the algorithm diminishes the advantages of the reduction in Pwi can
be located. The manner in which such a system operates under various operating conditions,
offers answers to questions like “can processor d take advantage of processor j when BDi,j
is 2 ?”, or “what happens when the communication activities require 10% of the systems
processing capacity?”. These answers may guide the design of LB algorithms for larger and
more complex systems. The study of task migration in a two processor distributed system is
the first step towards the development of an intuition for the LB phenomena.

: *

This chapter presents a study of task migration criteria for 2*(M/M/1) distributed
systems. An analysis of both the transient and deady state behaviour of the system and
algorithms is included in the study. Since this study is the first step of an investigation of the

LB process it was decided to use numerical methods (as opposed to discrete event simulation)

to derive the performance measures. It was assumed that by wing stochastic models a better
understanding of the dynamic properties of the migration phenomena may be obtained. The
system is modeled by a multi dimensional birth and death process [Klei75]. The desire t o use
analytical methods for solving the performance models of the system motivated the selection
of the communication system and the specification of the algorithm. Continuous simulation
[numerical integration) is used for obtaining the time-dependent behaviour whereas the steady

state performance models are solved by means of an iterative solution scheme. An analysis
of the characteristics of a single task transfer, based on the system's transient behaviour, is
presented.

$3.2 The BTSQSS System
The Balanced Two Single Queue Single Server (BTSQSS) system consists of two
servers and a communication channel (Fig. 3.1,). The system is a 2*(M/M/1) distributed
system with homogeneous users and processors. The channel interconnects the two queues
and is capable of transferring one task at a time (half duplex link). The data rate of the
channel is j? du/tu? and the amount of data that has to be transferred when a task is migrated
from one queue t o the other, is a random variable with a negative exponential distribution
and expectation 7I. It is assumed that the expected number of dus that describe the results
of a task (7 9 is much smaller than 7' and thus the transmission of the results hack to the
entrance site is neglected.

The operation of the channel can either be cont:olled by the processors or be
autonomous. In the first case the transmission of a task can be stopped in the middIe and
the system is thus defined as a atop system (S-BTSQSS), while in the latter case the system
is defined as a no-stop system (NS-BTSQSS). In a no-stop system the initiation af a transfer
will always result in a transfer of a task from one queue to the other. Regardless of the type
of the system, the communication process may require processing capacity. It is assumed
that when the channel is active the service rate of the processors, p , is degraded by 6%.
This degradation represents the processing overhead associated with the transfer of a task.
The overhead is proportional t o the duration of the transfer and is spread evenly along the
transmission period. Therefore the service rate of each processor is p (l - Sf) during the
channel busy periods, where 6f =

The task distribution of the system at time t , TD(t) , is dehed by the ordered pair
(nl(t>,n2(t)), where nl(t) and n2(t) are the number of tasks in the Srst and second queue

is the degradation factor of the system.

5 - 2

respectivly. In an S-BTSQSS system a task which is being transferredremains Ln the quene
of the source processor during the transmission period, whereas in an NS-BTSQSS system
the task is removed from the source queue when the transfer is initiated. and is placed in the
channel. The task will remain in the channel for the duration of the transmission.

The penalties associated with the LR process in S-BTSQSS systems are smaller
than in equivalent no-stop systems. When the activity- of the channel is controlled by the
processors, the algorithm can intervene and stop a transfer in the middle. Thus a decision
made at an earlier stage can be reconsidered and cancelled. Due to this capability, the number
of ‘wrong’ transfers can be reduced. Although in most cases the communication system. is
autonomous (most probably a reliable network), stop systems were considered in this study.
Their performance was studied in order to evaluate the degree to which the ability to stop

a transfer assists the task migration process. The results of the study give an indication
of the conditions under which an attempt should be made to implement a stop system1

‘In special purpose systems, control lines may be added t o support such a facility.

3-3

because of the superiority of its performance.
The LB algorithms defined for the BTSQSS system do not include aninformation

policy. Introducing the exchange of state-information into the model would have caused a
considerable increase in its complexity and would have imposed the usage of simulation as a
solution technique. In light of the motivation and focus of the study it was decided to assume
that both processors are aware of the current task distribution of the system and thus there
is no exchange of state-information in the model. Systems that utilize special control lines
for controlling the migration process or system where the amount of state information is
negligible relative to 7I, meet this assumption.

53.3 The AT algorithm

An anticipatory approach towards the load balancing process has iniluenced the definition of
the Adaptive Threshold (AT) LB algorithm for BTSQSS systems. The migration criterion
of the algorithm is based on a parameterized state dependent threshold. Inspite of its

anticipatory nature the algorithm attempts to reduce the amount of communication capacity
which it utilizes. The motivation for such efforts result from the assumption that the usage
of the commpication system has a price. Such an assumption is especially valid when the
LB algorithm is not the sole user of communication resources. Since the system has only

two processors each balancing region. includes both of them. The migration criterion of the
algorithm is evaluated according to the current task distribution of the system The ‘load
history’ of the processors is not considered by the control element of the AT algorithm.

P h E G O R ~ T ~ AT (adaptive threshold]

Control Law: Upon the arrival or departure of a task or when a task transfer terminates
the control element is evoked at both servers. Processor i will initiate a transfer to its ‘buddy’
processor at time t if the channel is idle and the instantaneous task distribution meets the
following criterion:

(kL(i,t) - 1 > Lp) A (U k ’ (i , t) > Ap)

where Lp and Ap are the ‘last-minute’ and anticipatory parameters of the algorithm. If
the system has a stop channel, the control element will stop a transmission in the middle
whenever the system enters a state which does not fulfill the above criterion while the channel
is busy.

3-4

The degree to which the algorithm initiates anticipatory transfers depends mainly on
the value of its anticipatory parameter. A large positive value for Ap will prevent almost any
transfer when the system is not in a WI state. Since Ui)P(i, t) is infinite when the system is
in such a state, the initiation of ‘last-minute’ transfers is controlled by the second parameter,
Lp. When Lp = 0 a migration will be initiated whenever U b F (i , t) = 00. However, when
Lp > 0 a ‘last-minute’ transfer will be initiated only when at least lp tasks wait for senrice
at the non-idling processor.

Chow and Kohler in [Chow771 have suggested and analyzed an EB algorithm for
an S-BTSQSS system. The algorithm deihed there is a private case of the AT algorithm
(Ap = Lp = 0). There where no penalties associated with the migration of a task in their
model. It was assumed that the transmission process does not affect the service rate of the
processors (6 = 0) and that the processors possess full control of the channel activity (stop
system). A simulation study of the expected turnaround time of a task as a function of the
utilization of the servers and the transmission rate of the channel was presented in [Chow77].

13.4 The Model

Markov chains are widely dmployed for modeling the performance of queueing systems. Most
of the studies in the area of Queueing Theory are based on this type of stochastics process.
When a queueing system does not meet the assumptions of a Markov Process a common
approach for analyzing the system is first to imbed it on a Markov chain and only then solve
it [Klei?S].

.-.

The BTSQSS system with the AT load balancing algorithm forms a continuous
multi-dimensional rncrrkov chain. The system and algorithm meet the assumption of this type
of stochastic process since all the system state-time distributions are exponential (memoryless)
and the decisions made by the algorithm are based only on the current state of the system.
None of the system attributes are time dependent and therefore the chain which describes the
behaviour of the system and algorithm, is homogeneous. Due to the exponential distribution
of state-times - inter-arrival, service and transfer time - the probability of multiple events
in a small time interval At is of the order of O(At), and thus simultaneous events do not
occur. Each of the chain events - task arrival, task departure and transfer termination -
relate to a particular processor, Because of this property of the system and since the chain is
homogeneous the stochastic model of the system meets the assumptions of a birth-and-death
process,

3- 5

L

The dimensionality of the process depends on the characteristics of the communica-
tion channel. A three dimensional chain is required in order to describe the behaviour of an
NS-BTSQSS system, whereas a two dimensional state space is sufficient for describing a stop
system. In order to simplify the notations and expressions used in the study it is assumed
from this point on that service and transfer rates of the system are normalized according
to the execution and data demands of a task respectively, i.e a = 7I = 1. The balancing
distance of the two processors assuming the above normalization is BD1,2 = f .

3.4.1 The NS-BTSQSS Model

The state of the NS-BTSQSS at time t is described by the ordered triplet (n,m,k) where ra
and m are the number of tasks in the Grst and second queue respectivly, and k is the state of
the channel. k = 0 means no transmission at time t and k > 0 indicates that a transmission
from processor k to the other one is currently on its way.

be (i, j, k) at time t , then transition equations of the NS-BTSQSS model are the following:
Let p (i , j , k, t) denote the probability that the state of an NS-BTSQSS system will

1 (i - j - l > LP/z (i-j > jA,) uj,j =
0 otherwise

A A A A
ande;=min(i,l) , ~ ~ , j = t L ~ , j + ~ ~ , j a n d ~ (- l , i , k , t) = p (i , - l , k , t) = O f o r ~ > 0, k =0,1,2.
The state-transition-rate diagrams for the state (i, j , 0) and (i, j , 1) are presented in Fig. 3.2

5-6

A A
where u;,j and e; are as dehed in (l), and p(-l,i, t) = p (j , -1, t) = 0 for all if j > 0.
The state-transition-rate diagmm for the S-BTSQSS model is presented in Fig. 3.4.

$3.5 Price and Benefit of a Transfer

Whenever a control element of the LB algorithm is evoked the 'transmission dilemma' is faced
and a decision whether to transfer a task has to be made. Since the EB algorithm aspires

3-8

Figure 8.4. state-transition-rate diagram (S-BTSQSS)
to minimize the response time of the system, the algorithm is evaluated according to the
net impact these decisions have on the expected queueing time of a task. This performance
measure, which is a long-range steady-state measure, is affected by each individual migration.
Therefore in order to establish an understanding for the relation between the control law of
the algorithm and the performance of the system the properties of a transfer ought to be
scrutinized. In this section a study of the ‘price’ and ‘benefit’ of a transfer are presented. The
study is based on the transient behaviour of the BTSQSS, and all the performance measures
were obtained from the differential difference equations of the model by means of continuous
simulation.

By migrating a task from one queue to the other the LB process reduces the
probability of a WP state, Pw;(t), in the future. Fig. 3.5 presents Pw;fi, j , t) which is defined
as :

0.45

0.11

-I--
4.00 6.00 8.00 2.00

Time
O.(

Figure 3.5. Pwi(i, j , t) for a BTSQSS system with no migration (A = -8)
,

A Pw;(i, j , t) = P[of (L WI state crt time t I TD(0) = (i, j) and
(3) no transfers in the interval (U,t)]

for different initial task distributions and with t as an argument. The curves of Fig 3.5
demonstrate the effect that a single task
the system task distribution from (3’1) to (2’2) the probability of a WI state is considerabl3
reduced.

is an increase in the probability of a WI state during the transmission
NS-BTSQSS system). Fig. 3.6 presents P,i(2,0, t tJ t) which is defined as:

However, the migration of a task has penalties associated with i

A Pwi(iJ j , it, t) = P[of a WI state at time t I TD(U)=(i,j) and
(4 a tranafer was initiated at t = 0 and terminated at tt]

for different values of tt. From the figure one my conclude that when the transfer time i
‘too long’ a task transfer should not be initiated when TD(t)=(2,0)
the transfer is higher than its benefits. These two figures demonstrat
dilemma which the load balancing process is faced with. For every TD(.E) the ‘price’ and t h

3-10

1.80

0.75

0.25

O.O(
0" c

h \

\
\
\
\

,=.5 <

I I I I
1.00 2.00 3.00 4.00

Time
Figure 3.6. p>,;(2,0, t*,t) for an NS-BTSQSS system (1 = .8)

'benefit' of a transfer hake' to be evaluated and weighted one against the other. Ii order t o
assists this process two factors which quantitively d e h e these two aspects of a transfer, were

defined.

.I The Price of a Transfer

The transmission of a task may reduce the throughput of the system during the transmission
period. This degradation is caused by either one or both of the following factors:

1. At least one task is being served when a transfer is initiated. Because of the reduction

in the service rate caused by the transmission process this task will stay in the system a
longer period then it would has stayed if the transfer was not initiated. The system time
of other tasks that have been in the system when the transfer was initiated or that have

arrived during the transfer period may be affected in a similar way.
In an NS-BTSQSS system a task that is being transmitted can not be served. Therefore

it might happen that the server that initiated the transfer becomes idle while the task is
still being transferred. In such a case the task could have been served during this period

2.

3-11

if it had not been decided to migrate it. An NSBTSQSS syxtem might r e d a state

in which both processors are idle while a task is being transferred and thns can not be
served by either one of them.

The instantoneow thtoughptd degradation fador, TDFij of a transfer initiated when
TD(0) = (i , j) is given by:

where:

L;,i(t) is the expectation of number of tasks in the system at time t , (N(t)) , given that a

transfer has been initiated at t = 0 when TD(0) = (i , j) and has not terminated

in (0 , t) .
is the expectation of N(t) given that TD(0) = (i , j) and no transfer was initiated
in [O , t) .

at t = 0 when TD(0) = (i,j).

.h;,j(t)

ft,(;,j)(t) is the probability density function (p.d.f) of the length of a transmissim initiated

The expressions for Li,j(t),Li,j(t) and ftr(i,j)(t) are given in APP~XMSX A. T D Q will be
considered as the ‘price’ of the transfer and will be used for deriving guidelines for the
development of migration criteria.

A

3.5.2 The Success Factor of a Transfer

Tasks are migrated in order to reduce the queueing time of tasks that reside in the system
and of those that will arrive at it in the future. The beneitt of a transfer is its effect on
the system’s behaviour after it was successfully completed. No method has been found by
which the contribution of a single transmission to the overdl performance of the system can

be evaluated. In the absence of such a measure the only way to evaluate the contribution of
a transfer is to study its effect on the unbalance factor of the system.

Not all transmissions result in a reduction in this factor. In an S-BTSQSS system a
transmission may be stopped in the middle and thus have no effect on the load distribution
of the system. In an NS-BTSQSS a transfer may even cause an increase in the unbalance
factor of the system when the load of the sender at the end of the transfer is smaller than
the load of the receiver. The probability that a transmission initiated when TD(t) = (i,j)
will cause a reduction in the unbalance factor of the system, is d e h e d as the 8uccea8 f d o r ,

8-12

SF;,i , of a transmission. The expression for this factor for the two types of systems is given

in Appendix A.
Note that the probability that a transfer will cause an increase in the load-difference

of the system shouId be included in the ‘price’ of the transfer, However, since no way was
found to evaluate the effect of such a ‘wrong’ transfer on the future behaviour of the system
it was not included in the definition of the ‘price’.

8.5.9 Case Study

The impact of the initial conditions and the parameters of the AT algorithm on TDF;,i and
SF;j have been analized. The transition quation-for €lie potabili ty func3,ions included in
the expressions for the two factors and the expressions themselves (see A.4) were solved by
meam of numerical integraiion. The time dependent model defined bjr these equations and
expressions was translated into a C-SIMSCRIPT II.52 program.

Some of the results obtained from these solutions are given in Figures 3.7, 3.8 and
3.9. Each figure consists of four graphs which present TDF;,j and SFc,j, for both types of
systems, with /3 as a parameter. The f is t two figures demonstrate the properties of two
transmissions whose initi21 task distributions were (2,O) and (5,3) respectivly. The third
graph presents the relation between. the Ap fador of the AT algorithm and the TDF;,j and
SF;,,. of a transfer which was initiated by a processor with 5 tasks in its queue. The number of
tasks in the other queue is the maximal number which permits the initiation of a transmission

for the given value of the anticipatory factor.
From these three graphs the following can be concluded

1. In a no-stop system with /3 < 2, a transfer should not be initiated by a processor with
less than three tasks. TDF2,o for this type of systems is considerably high and SF2,o is
less than .6. As can be seen from Fig. 3.8, TDFJ,~ is relativly low and SF5,3 is about
.7. Therefore it is suggested that under such conditions a processor will. wait until more
than two tasks will be waiting in its queue before shipping out one of them. Note that
since TDF2,0 is almost independent of 6, the cause for throughput reduction in this case
is the increase in Pw;(t) (see Fig. 3.6). TDF2,o for 6 = 0 is almost the same as TDF5,3
for 6 = 10.

2C-SIMSCRPT [CACI78] is a combined (continuous & discrete event) simulation language. The continuous
part of the language is based on the Range - Katta [Rds65] method for numericd integration.

3-18

Benefit @ Price of Task Transfer f o r TD(O)=(2 ,0)
(X=.8 , A,=&=O ' , x 6=0% ; 0 6=3.% ; 0 6=10.%)

o.od I
1 , t

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Transmission Rate(@)

,

TDF(2.3) VS. B (S-BTSQSS)

o - a l I

Transmission Rate(@)

0.0- -
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

I I

o.od*
O..O 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate@)

Figure 3.7. TDFi,: and SF+ for (it j) = (2,O)

3-l-4

Benefit. @ Price of Task
{ A = . 8 , A,=&=O : X S=O%

TBF(5,3) VS. @ (NS-BTSQSS)

O-7------

n n "."".
0.0 (25 1.0 1.5 2.0 2.5 3.0

Ransmission Rate(@)

s

"DF(5.q VS. @ (S-BTSQSS)

8

3
n

J-p----,
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

; 0 6=3.% ; 0 8=1O.% }
Transfer fo r TD(O)=(5 ,a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate@)

Figure 3.8. TDF;,i and SFi,i for (i,j) = (3,5)

3-15

SF(5,s) VS. @ (NS-BTSQSS)

Transmission Rate(@)

SF(,,,) VS. @ (S-BTSQSS) l-or-----
0.7q

o.od ,

0.04 t 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

& 0.4
f l

o.o& I
I t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

8 0.2

o.od , , I
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

o.od
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Transmission Rate(@)

Figare 3.9. TDF;,i and. SF;,,. for (i , j) = (5, k)

3-16

models. The method is discussed in the coming section, and a performance study based on
the performance measures that were obtained is presented in the following sections.

3.6.1 The Iterative SoIution Method

The coefficients matrix of the linear transition equations which define the model falls into
the category that is commonly solved by iterative methods. A number of such methods
for general linear equations [Rals65] and transition equations [Gave761 have been developed.
Brandwajn in [Bran791 has presented the “always converging scheme” for solving the balance
equations of two-dimensional birth and death processes. As indicated by its name the method
has an unconditional convergence and does not require normalization steps. Because of these
properties and due to the low computational complexity of its iteration this method has been

selected for solving the BTSQSS models.
The method has been extended for three-dimensional processes and has been imple-

mented in PASCAL.3 Table 3.1 presents the iterative step for the S-BTSQSS model. The
conversion criterion used for both models is based on the difference between two consecutive
iterations, of the value of fhe conditional probability of having nl tasb in the first server,
given that there are pt2 tasks in the second, p(n€ I s ~ Z) . ~ The maximal value of the above
difference for all feasible values of n1 and a2 for the iterations d and i - 1 will be denoted

by dcon;. In the implementation of the two dimensional model the iterative process will
terminate after the first iteration for which dconi < lo-’. As a result of the nonponotonic
behaviour of deon; in the case of the three disensional model it was decided to terminate
the iterative process only when dconi was smaller than for the last 100 iterations. The
thresholds used in the conversion test were selected empirically on the basis of a number of
case studies.

Iterative solution schemes for a birth and death process assume a finite space-state.
The value at which the state variables of the BTSQSS model are truncated affect the quality
of the derived approximated solution. This truncation causes a degradation of the arrival
rate due to customers’ rejecteon and thus may distort the probability distributions. Since
the size of the state-space affects the computation time of each iteration and their number,
a space that causes a marginal degradation of the arrival rate and keeps the computation

3T7;v0 programs were written - one for each model,

4For the sake of this definition a task being transferred belongs to the source processor in both models.

5-18

p k (i , j) = (1 + ’p{ - [h(ei + ej) + .j,ial~~(i,j)}-’I[1- ~ M e i + e j) + w,~sIIP!,T~
k + vOIpL1,j + ~i , j - lI

+ /J[(I - 6fzi+1,jlpt<:,j + (1 - ~~Zi,j+l)p”-l~, j + 11
k-1 k + B[Ui+l,j-lPi+l,j-1 + ~j+1,i-1~i-1,j+11}1

where the superscript k denotes the value at the kth iteration, y3 =

[ma~(p,@)]-~ and pR(-l , j) = pk(j,-l) = pk(N + 1 , j) = pk(i ,N +
1) = 0 for all k > 0 and 0 5 j 5 N -- -

Table 3.2. The iteration step for an S-BTSQSS model

.Attribute N=20 N=25 N=30 N=32 N=35 N=37 N=48
4.62 4.95 5.00 5.03 5.06 5.07 5.08
0.90 0.90 0.90 0.90 0.90 0.90 0.90 P

I P[reject] 310-3 61Oe4 310-4 210-4 1lOW4 410-5 110-5
iter. 59 1 899 1029 1114 1239 7 1442 1676
time(sec) 17.0 45.7 64.2 78.6 104.1 157.0 I 239.7

_I

Table 3.2. Attributes of the iterative method

-. -
wq

1
j3 = .5,Ap = Lp = 0

~

time at a practical level, has to be selected. Table 3.2 presents the various attributes of the
solution process with space size as an argument. Using the data presented in the table and
information which was derived from similar case studies, a space-state of 35 has been selected
for each processor. It was found that for all cases that where solved in the course of the study
the rejection probability was less than

13.7 Performance study

The expected normalized queueing time of a task in both types of systems and under various
operating conditions are shown in Fig. 3.10 and 3.11. The curves of the figures demonstrate
the impact of the migration process on the response time of the system. The upper curves in
the two figures represent the of the system if no task migration takes place (BD1,2 = 00).

The lower bound for fiq is given by the c w e for BD1,2 = 0. The two figures are a clear
display of the significant gain that can be achieved by migrating tasks in a distributed system.
Even when S = 10 and BDp2 = 2 the LB algorithm considerably improves the performance
of the system. Note that when BD1,2 = l., the response time of the system is almost as
good as the response time of an M/M/2 system. Therefore when the expected transfer time

3-19

Q) I " &OO

/
I
I

I
I

/
/

/
/

Figure 8.10. Wq' va. p for a S-BTSQSS &em (6 = O,Ap = Lp = W)
9

f a task is less then half, its expected execution time of the two servers can be considered
as a single M/M/2 system. The relation between the balancing distance of the system and

s performance, as demonstrated by the figures, lead t o the conclusion that systems with
alancing distances in range of .5 to 2.) had to be used in the study of the migration criteria.

3.7.1 Channel Utilization

It was shown in 2.2.1 that the load balancing process may require a high rate of task transfers.
By limiting the rate at which anticipatory transfers are initiated this rate can be significantly
reduced. However, such a reduction may cause an increase in the Pwi and thus an increa
in the response time of the system. The degree to which the AT algorithm initiates such
transfers is controlled by the Ap parameter.

The effect of the value of Ap on the utilization of the channel and W, for a stop
system with 6 = 0 is shown in Fig. 3.12 and Table 3.3. Note that at the price of a
small increase in the expected queueing time of a task, the utilization of the channel can
be considerably reduced. For highly u+i ilized systems an increase in the arrival rate causes a

8-25

A,=O.O /
Ap=0.5

I I -4

0.60 0.80 1.00
Server Utilization (p)

0.40

0.4(

n
F 0.3C v.

.r(
4 a
N
.m 4

g 0.20

2
9
.-(

A u
0.10

0.00
0.2(

Figure 3.12. Channel utilization va p for S-BTSQSS system (8 = 0, Lp = 0, BD1,2 = 1)

3.7.2 The Migration Criterion

The effect of the migration policy on the normalized expected queueing time of a task, tirB,
is demonstrated by Fig. 3.13, 3.14 and 3.15. The figures present $kq of the two systems with
4 and Lp as parameters for different server utilization and service degradation factors. The
values presented in these figures indicate the strong impact that the values assigned to Ap
and Lp haye dn the expected turnaround time of a task. Note that for no-stop systems with
p = .9 and S = 10% , Wq is greater than that of an equivalent M/M/1 system if the ‘wrong’
migration criterion, (4 = 0, Lp = 0), is selected, whereas the Wq of the same system with
the ‘correct’ criterion (Ap = 2) will be 30% smaller than in an M/M/l.

For most values of Ap and Lp a stop system has a smaller Gq then an equivalent
norstop system. In some cases the difference between the performance of the two systems
with the same migration criterion may be considerably large. However, when each of the
systems is controlled by a migration policy that is best suited to the system’s attributes, the
difference will, in most cases, be less than 5% . From the above observation it follows that the
ability of the server to control the operation of the channel does not considerably improve the
efficiency of the balancing process although the penalties associated with the transmission of

3-22

-

ql.1.0
Ap=1.5

A,=2.0
Apz3 .0

c

C t

L & - I

Figure 3.18. Wq v8. Agorithm Pamneters (&,2 = 1, p= .9)
t NS-BTSQSS - S-BTSQSS -.- p . 8 BDi,=l (+ 6 ~ 0 % X 633% * 6 ~ 1 0 %)

4.5

NS-BTSQSS - S-BTSQSS -- p . 6 BD,S=1 (+ &OX X 65.3% +lo%)

a task are higher in an NS-BTSQSS system.

Results obtained for systems with different balancingdistances.are presented inEigs.
3.16 and 3.17. These two figures together with Fig. 3.1.4 demonstrate the relation between
the balancing distance between the two processors and the manner in which a migrdon
policy affects the performance of the system. Note that even when the distmce is 2 (the
expected transmission time of a task is twice as long as it’s expected service time) and when

6 = 10% , as in Fig 3.16, the @, is reduced by 20% relative to an M/M/l system.
From all the results presented above the following guidelines for the selection of 2

migration criterion can be concluded
1. When BD;,j 5 1 by selecting Ap = 1 the changes in *, due to an increase in 6 (up

to 10%) can be kept low. For all the cases that where analyzed it was found that this
difference can be kept below 10%.

2. In a stop system ‘last-minute’ transfers should be initiated regardless of the queuesize
of the initiator. In all cases (except when Ap is too small Fig. 3.1.3) assigning a non-zero
value to Lp caused an increase in

3. For all no-stop systems with B D I , ~ >, .5 , the last-minute parameter should be greater
than zero. In such systems a ‘last-minute’ transfer should be initiated only when there

5-21,

3.0

2.6

- - \-- -

0.0 0 . 1 0 .2 0 .3 1.0 1.1 1.2 1.3 2.0 2 . 1 2 .2 2.3
1.5A : 1

(4 .h)
Figure 8.16. $, vs. Algorithm Parameters (d1,z = 2, p.= 08)

* NS-BTSQSS - S-BTSQSS -- ps.8 BDlZ=.5(+ 6 ~ 0 % X 6 ~ 3 % &lox)

3 5 4 . 1
3.0 i

1.5 L- : :d
0.0 0 . 1 0 . 2 0 . 3 1 . 0 1 .1 1.2 1.3 2.0 2 . 1 2 .2 2.3

(A P ' L p)

Figure 8.17. wq vs. Algorithm Parameters (&,z = .5, p = .8)

3 -25

chaptez 4

Broadcast Distributed Systems

54.1 Introduction

Broadcast communication subnets are widely used. for intercrannectbg processing elements.
A broadcast subnet consists of a single communication channel which is shared by all the
switching elements of the system. An arbitration mechanism, centralized or distributed, is
required for resolving conflicts when two or more stations attempt to transmit simultaneously.
Although cities or even continents are linked together by broadcast channels [Abra771, in
most cases the elements that communicate via a broadcast medium are less than a; few
kilometers apart. The processing units are usually located in the same room, same building
or at the same institute and thus establish a local network. The increasing demand for
ofice out omotion and distributed processing motivated the development of various protocols
and high bandwidth channels for this type of networks. High communication capacity is a
distinguishing feature of local networks. The bit rate of their communication channels is in
the range of .l-30 Mbit/sec. An erlier version of these algorithms has been presented in
[Livn82].

In this chapter three load balancing algorithms for broadcast m*(M/M/l) systems
are defined and the results of a simulation study of their performance is presented.

54.2 The Broadcast Model

The model describes a broadcast m* (M/M/l) distributed system with homogeneous proces-
sors and users (Fig. 4.1). The communication subnet of the model is a passive broadcast

ARRIVAL i
JODEd42

CLIENT LAYER

I
blODE+m

Figure 41. The Broadcast m*(M/M/l) model

medium with the ETHERNET [Metc76] communication protocol. The commnnication ac-
tivities of a node are controlled either by the processor or by a dedicated Cummunicdow
Processor, CF?, that serves as a fpont-end for the node. Each node maintains an input and an
output message queue in which arriving and departing messages are placed respectivly. It is
assumed that the buffering space available at each node is unlimited.

The processing time required for the transmission or reception of a balancing mes-
sage is determined by the OVerHead parameter of the node, OVHi = (ovhi ovh;, ovh&
The processing time, at node i, required by a message whose transmission time is T m8 is,
ovhi 4- T ouhi ms, where k = 1 for a data message and k = 2 for a control message. A data
message is a message that carries a description of a task or the results of its execution. The
information needed for controlling the migration process is exchanged via control messages.

Each node has a front-end boolean parameter, FEi, which determines whether the
node has a CP. In a node that has no CP, FEi = 0, the arrival or departure of a message

4--2
i !I

interruptes the nodal processing element. If the processor is not occupied by another message
the current task is preempted and is resumed only after all processing demands made by the
communication protocol or balancing algorithm are fulfYled. However, when a front-end
processor is part of the node, FEi = 1, messages are served by this processor and none of
the processing capacity of the node is utilized by the balancing process.

4.2.1 ETHERNET PROTOCOL

The communication protocol selected €or the broadcast subnet is the ETHERNET. The
ETHERNET is based on a Carrier Sense Murtiple Access with Collision Detection (CSMA-
CD) access method and was first described by Metcalfe and Boggs in &fetc76]. After being
in use for several years the protocol was recently given a detailed specification Pigi801 which
establishes a standard for the protocol. The specification gives a detailed definition of the
Physical and Data-Link layers of the protocol which are the lowest two layers of the Open
Syatema Interconnection (OSI) reference model [Tanesl]. Several vendors have developed
hardware to realize the ETHERNET md82] , Plli821 and a considerable amount of effort
has been devoted to the analysis of its performance IStuc83).

The Physical Layer is a coaxial cable with bade-band signalling. Its bit ra€e is
lOMbit/sec and up to 1024 stations which are less than 2.5Km apart can be interconnected
by one ETHERNET network. The Data Link Layer senses the state of the cable by means of
the currier dense signal. This signal is controled by the Physical Layer and indicates whether
a packet is or is not present on the cable. Each Data Link defera transmission as long as
the carrier is set and during an interfiame apacing gap of 9.6psec after the carrier drops.
Simultaneous transmissions by two or more stations cause a cdliuion which is detected by
the Physical Layer. Following the detection of a colIision the collision detected signal is set
by the Physical layer for each station that has participated in the collision. The contending
Data Link Layers respond to the setting of this signal by transmitting a 48 bit jam message
and by suspending any further transmission attempts for a 6ackof period. The duration of
this period is determined according the binary czponentid backoff scheme.

94.3 Load Balancing Algorithms for Broadcast Systems

From the point of view of the load balancing process, broadcast communication system have
two advantageous properties. The fist one is the uniformity of balancing distance and the

4-3

second is Lhe message broadccrst propertg. The time required for transferring amessage from
one node to the other via a broadcast systemis the same1 for all pairs of nodes. Therefore the
balancing distance between all nodes is equal to the balancing diameter of the system. Due
to the uniformity of distance, all nodes whose load is the same are equal-priority candidates
for receiving a waiting task. The control element of the LB algorithm resident at the node
has to consider only the load distribution of the balancing region, which may include the
entire set of processors. A large nodal balancing region provides the control law a broad view
of the instantaneous system load and thus improves the ability of the algorithm to minimize
the probability of a WI state.

The message broadcast facility of this tspe of communication system supports the
information component of the algorithm in providing global and updated information about
the instantaneous load distribution of the system to the control element. By sending one
message a node can inform the entire system about its current state or to describe a balancing
dicision it has made. The information policy is free of touting and %o~-controlconsiderations.
However the broadcast property is actually a double-edge sword because it indicates that
the system has only a single communication resource. A broadcast communication system
can not transfer a number of messages simultaneously.2 Simultaneous transmission attempts
by any subset of statiandeads to contention and thus to queueing delays that increase the
turnaround time of a message.

Using the above analysis of the characteristics of a broadcast system as a guideline
three different load balancing algorithms for this type of system have been developed. An
attempt was made to encapture in the three algorithms the various aspects of the task migra-
tion phenomena in broadcast systems. The algorithms differ in their informatim and task
migration policies and each of them represents a different approach to the balancing prob-
lem. All the LB algorithms dehed are for broadcast m*(M/M/l) with uniform processors
and users.

4.3.1, RST Algorithm

The Broadcrrst STatus (BST) load balancing algorithm is a natural extention of the task

'propagation delays are negligible for such systems and thus the geographical location does not affect the

'A number of messages can be transferred over the same medium if frequency modulation techniques are
transmission time.

used. However in such a case the communication system is no more a single system.

migration criterion of the BTSQSS system (see Chap. 3.). Thealgorithm is Cmticiprrtory h i t s
nature, and has a liberal information policy that provides each node with a complete picture
of the instantaneous load distribution of the system. The control-law of the algorithm aspires
to keep the unbalance factor of the system below a given value. This value is a parameter
of the algorithm and can be adapted to the properties of the system. The algorithm takes
advantage of both the uniformity of the balancing distance and the broadcast facility of the
communication network.

ALGORITHM BST (Broadcad every changes in atute)

Information Policy: Wbenever the length of its queue changes the node broadczsts a stnhia
message that describes the new size of the queue. Each node records the information it
receives via this messages in its Load Di8tdndion, LDi, vector. The information stored in
this vector describes the instantaneous load distribution of the system as seen bynode i. The
node updates the element in LDi which describes its current load, Id:, upon the successful
completion of the transmission of a status messag. I-

BaIancing Region: The balancing region of a node is the entire system.
Control Law: Whenever LDi = (Id:, . . ., Id;) is updated and the output message q e n e is
empty the nodd LB control element is invoked. The algorithm will initiate the migration of
a task from node i to node j if all the following conditions are fulfilled

1. (Zdf > Ed;) V (ldf = Id: A i 3 k) for 0 < k 5 m. (maximal)

i has to be the node with the longest queue. When two or more have the
maximal load, ties are broken according to node numbers.

2. Zdi 5 Id); for 0 < k 5 m. (minimal)

j has to be the node with the shortest queue. When more than one node has
a minimal number of waiting tasks the selection of the target node for the
migrated task is done randomly.

3. U i F (i , t) > BT (three hold)

the unalance factor of BR;(t) has to be greater than BT which is a parameter
of the algorithm.

I Note that since the control element of the BST dgoritlm-will &der
migration only after all previous messages have been transferred, all the nodes wiULbase
their migration decisions on the same information. The BST algorithm .atiliees the broadcast
media as a means for synchronizing the distributed control process w far as the information
on the instantaneous load distribution is concerned. The messages are analized by all the
nodes in the same order and therefore at each stage all nodes have the same picture o€ the
system load.

4.8.2 The BID Algorithm

The Broadcast when IDle (BID) load balancing dgorithm is based on Laat ddinute task
transfers. The control element of the algorithm is invoked only when one of the systems’
nodes becomes idle. The information policy of the BID dgorithm is less litmd than the

previous one and utilizes three types of messages. Iike the BST algorithm this, dgmikhm

takes advantage of the two advantageous properties of the broadcast medium.

ALGORITHM BID(broodcast when idle)

Information Policy: A node broadcasts an idle message vzhenever it enters iin ide &&e.

Following the transmission of such a message the node receives reserodion messages to whom
it replies with accept/reject messages.

Control Law: The control element of the BID algorithm consists of the two compmznts -
the loaded and the idle component. The 5rst one is invoked when an idIe message arrive^

and consists of the following steps (for node i whose queue length is si):

i. If n; > 1 go to step ii, else terminate the algorithm.
ii. Wait DnT1 units of time. D is a parameter of the algorithm and its value depends on

the characteristics of the communication medium (proporgation and round-trip delays).
iii. Send a reservation message to the node that has been declared idle.
iv. Wait for a reply message from the idling node.
v. If the reply is an accept message and ni > 1, initiate a task transfer to the node which

has accepted the reservation, else terminate the algorithm.
The purpose of the state-dependent time-out period in step ii is to give n d e s with mure
tasks higher priority in sending reservation messages and thus to give them a better chance
to migrate a task to the idle node. Note however, that due to the backoff algorithm of
the ETHERNET it is not guarantied that the node whose message has arrived f is t will be
transmitted first.

arrives at the node that has broadcasted an idle message. .If the node is still idle and no
previous reservation has been accepted, an accept message is sent as a response to the reser-
vation request. In all other cases a reject message is transmitted.

Balancing Region: The Balancing Region of node i at time t, B&(t), includes all those I

4.3.3 The PID Algorithm

Unlike the two previous algorithms the Poll when mle (PID) load balancing algorithmdues
not utilize the broadcast capability of the communication system. The algorithm is based on
a polling strategy and its migration criteria initiates only ‘last-minute’ transfers. The Polling
procedure takes advzntage of the uniformity of the balancing distance of the system.

ALGORITHM PID(PoZZ when idle)

Information Policy: An idling node sends request messages by which it not35es;the nudes
to whom the messages are directed that it is willing to receive a task. The node receives as
a reply a data message which contains the description of a task or an empty message.

Control Law: Two components constitute the control element of the PID algorithm - the
poll and reply components. As a node enters an idle state it invokes the poll component that
consist of the following sequence of steps:

i. Randomly select a set of R nodes (a1 , . . .I a& and set the counter j to 1. R is a parameter
of the algorithm that determines the size of the Polled set.

11. Send a request message to node ~j and wait for a reply message.

iii. Receive the reply message. Node ui will either send back a task or an empw reply.

iv. If the node is still idle and j < R , increment j and go to step ii., else terminate the
polling.

..

The reply element of the control law is executed when a request message arrives. If the nade
has more than one task in its queue, one of the waiting tasks is migrated t o the node that
has sent the request. An empty message is sent back if no task is waiting in the queue.

4-7

!

channel transmiasion rate (@)
dot time 51.2 psec
tranami~ion time of control measage

5u msec
BT parameter of STB algorithm 2.1

i m e c
R parameter of PID 5

overhead (OVH? - (U., u., 0.)
simulation length m > 8

10 Mbit/aee:

202.4 yeec
expected task service time(:)

B parameter of BID algorithm

balancing didance(BDi, j) -025,. 05,-1,.2
3Dci = .025 meam 9 tw 1.5Kbyte

40 8ec

simulation length m 5 8
except ir&?.l> ezcept in

80 aec

ezcept for 4.8.3

Table 4.1. Simulation parameters for study of braadcast rn*(M/M/l) systems

44.4 simulation Study

A simulator for the broadcast m*(M/M/l) system has been developed using the DiIsS
simulation language (see chapter 6). The system is mapped onto a stat topology with the
ETHERNET subnet as a center (Fig. 4.2). Each of the system nodes is modeled by a DBS
process and there are three types of such processes - one for each algorithm. The ETHERNET
node is a realizationof the ETHERNET aubnet model, as ia described in [P/le183bj, and includes
both the Physical and Data-Link.Layers of the protocol. Due to this mapping none of the
communication protocol elements is incladed in the nodal process. Therefore by replacing
the central node of the Simulator, broadcast m*(M/M/l) distributed systems with dif€erent
coIpmunication suhnets can be simulated; In the coming subsections a performance study
of the three algorithms will be presented. The study focuses on the effect which the three
algorithms have on the expected normalized queueing time of a task, Gq . Table 4.1 lists
the numerical values of the simulation parameters. In all the cases it was assumed that the
amount of data units needed to describe the results of a task is equal to the amount needed
t o define the task, i.e. qr = 7'.

,

4.4.1 Algorithmic Parameters

The behaviour of both the BST and PID algorithm is determined by the values of their
parameters. The selection of the values to be assigned to the BT and R parameters should

(7 NODE # 1

_-

be guided by the properties of the system for which the algorithmsaw intendeck The mzin

factors to be considered are the balancing distance between the system processors. and their
number.

Fig. 4.3 presents eq and c h e l utilization (91) for systems with diflerent;balancing
distances and number of processors (m) with BT as parameter. Note that an increase in BT,
i.e less anticipatory transfers, causes a decrease in wq in most of the cases. This improvement
in the response time of the system is due to the reduction in the number of ‘unnecessary’

4-9

0zJ.m-20
O M) I L

000 060 120 iao 2.40 zoo 0.00 080 L ~ O i ao 2.14 BT 3.1

Figure 4-3. ti.', and q vs. BT for BST (p = .8)

LoO.00

9

m.00

30.00

25.00

0.00

transfers. In a highly utilized ETHERNET a small reduction in the load has a signiScany
effect oh the turnaround time of a message. But there is a point where any further reduction
in the rate of anticipatory transfers causes an increase . The location of this 'turning
point' is system dependent.

The communication activity of the PID algorithm can be easily controlled by the
value of the R parameter: Fig. 4.4 shows how q and eq depend on the size of the polling
set. When the balancing distance is small (BDi,; = .025) 'CiT, is a monotonic decreasing
function of R. However, when BDi,j = .2 and R> 5 an increase in the size of the set causes
a degradation in the performance of the system. Note that even when R = 3, t@q is reduced
due to the balancing process from 4 to3 1.7 for BDi,; = .2 and to .75 for BDi,j = .025.

4.4.2 Number of Nodes

The fiq of an M/M/m queueing system with a task arrival rate of mX is a monotonic
decreasing function of m (see 2.2). Although the addition of another server increases the rate
at which tasks arrive at the system the supplemental node decreases the expected queueing
time of a task.

The effect of the number of nodes, m, on the @q of a broadcast m*(M/M/l)
system is demonstrated by Fig. 4.5, 4.6 ,4.7 and 4.8. The figures present the Wq of the

34 is the expected normalized queueing time of a task in an M/M/l system with a utilization of .8.

4-10

ow t 1
1 2 3 4 8 7 E R 9

1w 00

t)

: M/M/m-* ; M/M/l-x
BD,- la -20

75 00

so 00

BDq- 0s.m-20

26 00

L - & - + - + I 000
1 2 3 4 6 7 E R 9

Figure 4.4. &q and q vs. R for PID (p = -8)

BST-o ; BID-o ; PID-X : M/M/m-* ; M/M/l-x -17-
LOO 00

0

7s 00

so 00

24 00

OW

three algorithms for four different balancing distances (BDi,i). In all the cases the balanced
system has a considerably better Wq than the unbalanced system, M/M/l.

For a system with BDi , j = .2 the expected waiting time of a task is decreased
by at least 70%. The degree to which the balancing algorithm approaches the optimal Wq
of an m server system (M/M/m) depends both on the balancing distance of the system and
on the number of nodes, The curves show that an increase in the number of nodes in a
balanced distributed system has two counteracting effects. On the one hand, it improves the
probability that a waiting task will be transferred to an idle server, as in an M/M/m system.

4- 11

:
I

PI

1 (p = .8) Figure 4.6. Wq andrlvs.m(~Dij=.l,p=.8)

9"

.t .- ,- a ,
4 8 12 16 20 24 28 a& 36

I

4

'. moo

50 00

'. 2600

I ! ! ! ! ! ! ! ! 0 00
0 4 8 121020242832.36

Figure 4.7. Wq an& VS. m [BDi, j = .05, p = .8) I = .2, p = 3)

D ~ , ~) . h all the c a m

d system, M/M/1-
riting time of a task'
) r i t b approaches thd

e other hand, it raises the utilization of the communication channel. Higher dmmel
1 causes a slow-down in the balancing process resulting from an increase in message
aelays. The net result of these two effects will determine whether the increase in
s, does not affect, or deteriorates the expected turnaround time of a task Every
reaches a point, mm, at which an addition of another server will came an increase B e value of mm depends on the algorithm and balancing rate of the system. Note
cases when m is less than the mm of the BST algorithm the *q of this algorithm is
ft. After it reaches its minimal value the @q of the STB algorithm increases until

amcing distance of th B
reme in the number
3. On the one hand, it\
a e server, as in an M/\

~

4-12

i 1
t

,

I ! ! ! ! ! ! ! A
0 4 8 12 14 20 24 2LI 3arn

,M) 00

7

m o o

60 00

as 00

O M)

it becomes greater than the
of the STB algorithm is caused by the increase in transmission delays.

of the PID algurithm. The degradatian in tlmperfammuce

Both the BST and BID algorithms are sensitive to changes in the t r e o n & &

of a message. By waiting for ail previous messages to. be transferred before a newmigrationis
considered, The B’sT algorithm adaptes its activity dynamically to the, load an the chamrei.
Therefore even when the channel is highly utilized the algorithm succeeds to enhance the

response time of the system. Whereas the BID algorithm may reach a point wheze it becames
a came for performance degradation as a result of its attempts to make a r e s e d o n a& any

idling node reaches a point where it turns to be a cause of performance degradation.

The PID algorithm is less sensitive to the utilization of the channel. As demonstratied
by the f o u curves of Wq for this algorithm, there is a wide range of m-values for which the
algorithm has almost the same performance. The ‘hand shaking’ mechanism of thisalgorithm
minimizes the number of ‘wrong transfers’. For low and moderated channel utilizations the
PID and BID algorithm have similar eq .

4.4.3 Processing Overhead

In all previous cases it was assumed that the load balancing process has no processing
overheads. Table 4.2 demonstrates how processing ovefheads affect the eq of the BST
and PII) algorithm for three merent arrival rates.

4-13

Table 4.2. Wq for Different arrival rates (FEi = 0, m = 16, BDi,j = .05)

I 0 VE- 0, 0, 4 0 VH-1,0, 4 OVH-I,. 5,4 0 VH-5,0,4 OVH-5,. 5,d - X a

.85 PfD .9 I. 02 I . 02 1.64 1.5
.79 .88 .85 1.10 L18 BST

BST .35 . 3 9 648 .61 .67

-.
.7u PID .4 6 .57 .59 .75 -77

.60 PID J4 .41 -42 .58 .80
BST .19 -24 .28 .43 4 5

~

Table 4.3. Wq for Different arrival rates (FE; = 1, m = 16, BDi,j = .05)

An increase in the task arrival rate, X, has opposite effects on the activity of the
BST and PID algorithm;. The information exchange activity of the BST algorithm increases
due to an increase in X, since more tasks per time unit mean more state changes. The
BST algorithm broadcasts at least 2 X control messages! per station per time Unit. The PID
algorithm reacts in an opposite manner to an increase in X. Due to the increase in server
utilization, the length of the nodal busy periods increases and thus the rate at which the
polling element of the algorithm is invoked, decreases. Nevertheless, the expected number
of stations which a node has to poll each time, decreases, as well, due to the increase h . p .
There is a higher probability that the first nodes to be polled are willing to migrate a task.

The values presented in Table 4.2 reflect these characteristics of the two algorithms.
Note that the effect of the increase in the information exchange activity of the BST algorithm
is amplified because all the control messages are broadcast messages. So that every time a
message is transmitted every processor has to devote some processing capacity in order to
receive and decode the message.

Table 4.3 demonstrates the advantageous effect with the addition of a communica-
tion processor to every node. The of the BST algorithm is considerably improved due
to the increase in the processing power of the node. As far as the PID algorithm is con-

cerned, this increase does not si@;nificantly improve its perfurmance. Since in most o€ the
cases this algorithm utilizes processing capacities when the node is idling, the reduction in
the utilization of the processor does not reduce its wq .

4-15

Store and Forward Systems

The data rate of the communication lines used in store-and-forward subnets is in
most cases, less than .1 Mbitlsec. Although attempts are made to utilize fiber-optic tech-
nology in point-to-point subnets there is no such operational subnet yet and all commercial
networks are based on leased lines. Because of the low bandwidth of the communication lines
and the requirement for intermediate buffering space, store-and-forward protocols require
procedures for touting management, for bufer allocation and for the detection or prevention
of deadlocks. Due to the complexity of these issues and the urgent need for efficient protocols
for point-to-point networks, a considerable amount of effort has been devoted to the develop-
ment and analysis of protocols for this type of networks [Klei80], [Schw80]. Various protocols
have been implemented and their characteristics analyzed. Most of these protocols utilize
complex flow control algorithms that require a high level of control activities [MaQu80].

One of the main issues associated with the design of point-to-point subnets is their
topology. This chapter focuses on the interdependency between the topology of the system
and the load balancing phenomena. An LB algorithms for store-and-forward m*(M/M/l)
distributed systems with homogeneous processors and users is defined. The results of a
simulation study of the performance of this algorithm for systems with different topologies
are presented. These results shed light on the way load balancing consideration should affect
the topology selectiorf procedure.

5.1.1 The Store and Forward Model

The topology of the communication subnet of the store and forward model is dehed by a
reguZa9 graph, G = (V , E) . The nodes of the graph, V, are switching processors and the
edges, E, are fdl-duplez communication links. Every processor of the m*(M/M/l) system is
attached to a different IMP Fig. 5.1. The IMP and the processor share the same data storage
facilities. The processing elements and users of the system are homogeneous and all links
have the same data rate, j3 du/tu. Each link has a queue in which messages that are waiting
to be transmitted are placed. It is assumed that each node has an unlimited buffering space.

In the view of the motivation of this study and the characteristics of the model
a ‘simple’ communication protocol for the store and forward m*(hl/M/l) model has been
selected. The protocoI implements a message smxching strategy which does not impose any
limitation on the size of the transmitted data blocks. The routing scheme of the protocol

3The Graph Theory terminology used in this chapter followes the de3nitiona given in (Tane%l] (Chap. 2.).

5 -2

Figwe 5.1. A nade of the store-and-farwwdm*(M/M/l) system

is 8tatice Messages are routed along the shortest pass, the geodeaic, beheen the:sam:and.
the destination. When several geodesics exist between two nodes one of thernisiselected at
the time the system is established. The messages are transmitted according to an FCFS
discipline. Due to the dimited buffering space available at each node no b d e r Teservation
or deadlock detectionlprevention mechanisms are required. Trmsient messages are directed
upon arrival at the input queue of their next link. It is assumed that the processingtiie of
the protocol is much smaller than the transmission time of a message and thns negligible.

f

$5.2 Load Balancing Algorithms

Unless the graph G = (E ,V) that defines the intercomection scheme of the model is it
complete graph, the balancing distance between the processors in a store and forward sgrstem

is not the same for all pairs of nades. The balancing distance between processor d and j of
the system is dilp7I with, di,j being the length of the geodesic between the two processors
in G. The non-uniformity of the balancing distances together with the lack of a broadcast
facility in this type of system imposes iocaiity on the load balancing process. The di€liculQ in
maintaining a global up-to-date picture of the instantaneous load distributionof the system-at
every node and the need to consider balancing distances, prohibit the establishment of large
balancing regions. Unlike broadcast systems, not all the processors with the same load have

equal priority as candidates for being a target for a migration operation. Those processom
which are closer, have higher priority. A natural criterion for including a processor in a
balancing region will be its balancing distance from the owner of the region. Theregion of a
processor will, most probobly, include only those nodes which are adjacent to the processor.
In such a case the control element which resides at node i has to consider only the load
distribution of BRift) and is free of topological considerations.

An algorithm for store-and-forward m*(M/M/I) systems with homogeneous users,
processors and subnet4 is defined in this section. The algorithm is based on an adjacent
balancing region. Performance models of systems with various tapologies are de6ned and
solved.

5.2.1 The H01 Algorithm

The control law of the Hop One (HO1) algorithm aspires to keep the load & i b ~ t i ~ ~ . o f '
BRift) balanced at all times. The algorithm is anticipatory in its nature and amer might
be migrated several times before being executed.

ALGORITHM. HOl[migrate one hap)

Information Policy: The load of a processor is n; + rci where, n; is the -1engiA of its
queue and rc; is the reservdim counter. This counter is incremented when a reserntion.is
accepted and decremented upon the arrival of the task for which the reservation has been
made. Whenever the load of the node changes the processor sends all its adjacent processors
a status message that describes the new load. Each node records the information it obtains
from these messages in a Load Distribution vector, LD;. Before a task is migrated from ane
processor to the other a reservation message is sent to the target processor.

Balancing Region: The balancing region of nude i at time t consists of the following
processors:

*

BR;(t) (j E V 1 (i, j) E Eand no data
message at input queue of (i,j) at time t).

The above definition for balancing region is motivated by the desire to prevent
unsuccessful task transfers (see 3.3). In order t o minimize the probabilitythak due

4A point-to-point snbnet is dehed as homogeneous if G is a regular graph and all its links have the same
capacity.

5 - 4

to long communication queueing time such a transfer will take place, an adjacent
node to which the link is currently occupied by a data message is not included
in the balancing region. Note that the load of a node is defhed according to its
current state and does not reflect its ability to 'fan-out' additional load. This
ability depends on the load of the nodes which constitute the balancing region
of the node. The algorithm is motivated by a 'one step at a time' approach and
therefore does not consider the ability of the target node to ship the migrated
task one step further.

Control Law: the control element of the H 0 1 algorithm is invoked whenever a status or
reservation message arrives. Processor i with LJ)i = (bdi, . . ., Ed',) will initiate a user transfer
to processor j E BR;(t) when all the following conditions hold true:

1.

Due to t-e hig

ni > 2 " (wuiting)

throughput degradation .&or of last minute transfers initiated
when only one task is waiting in systems with long balancing distances (see
3.5.3), the algorith initiates transfers only when at least two tasks are waiting
for service.

,

2. 14 2 14 for all k E BR;(t) (mimmul)

j has to be the node with the minimal load in the balancing region of i. When
several processors have the minimal load, one of them is randomly selected.

3. rci+n,--td: > 1 (threshold)

The load-difference of the BR;(t) has to be greater than one.

55.3 Effect of Interconnection Scheme

The expected turnaround time of a task in a store-and-forward m*(M/M/l) system depends
on the expected queueing length of the processors and the length of the geodesic between the
execution and entrance sites of the task. The expected number of tasks in a queue depends
on the ability of the node at which the queue resides to distribute its load among the other
processors of the system. This ability depends on the structure of the Didance Tree, DTi =

5- 5

(i, V), 5 E E, of the processor. DT; is a spanning free of G such that i is its root and for
all j E V, di,i = d;,;, where d;,j and &,i are the length of the geodesic between i and j in
G and DT; respectivly. A quantitative description of the ability of the processor to ‘fan-out’
its load can be given by means of the following function

-

n-2

BL;(n) = C(n - j)Uj
j-0

where Uj is the number of nodes at the jth level of DT;.5 The value of RLi(n) is the minimal
number of tasks that ought to be in the system so that a load distribution with n; = n will
be a no-migrate distribution. The system is deftned to be in a no-migrate distribution if a)
the queues of all links are empty b) (1 ni - ni 15 1 V n; 5 2) for all (i, j) E E . A processor
with n tasks at its queue would ‘prefer’ that the system would be in a no-migrate state only

if nj >, n - 1 for j = i, j € V, i. e. that R&(n) = n + (n - I)([V [-1) for all n. The
function RLi will have the above form only if the out degree of server i is I V 1 -I which
means that the graph G has to be a complete graph.

$5.4 Simulation6tudy

The DISS (see chapter 6) methodology and simulation language have been used for developing
a simulator for the store-and-forward m*(M/M/l) system with the HOl LB algorithm. Each
of the model nodes describes the behaviour of a processor and its adjacent IMP. The specific
properties of DES have made the construction of simulators for systems with different
toplogies, an easy task. In the course of this simulation study five different system topologies
have been analyzed. These topologies and the corresponding nodal distancetrees are shown
in Fig. 5.2. Note that for all the topologies which were selected all the nodes have the same
distance tree. In Table 5.1 the values of the RLi(n) function for the different topologies are
displayed. The table demonstrates the interdependency between the values of the function
and the interconnection scheme of the communication subsystem.

In this study it was assumed that the length of the control messages is much smaller
than that of the data messages. Consequently, the transmission time of these messages was
neglected and a control message is considered to be transferred instantaneously. However,
the communication link has to be free when such a transfer is executed. One time unit,

5The root of the tree is at level zero.

5- 6

,
0

\

, \

Ring

Figure 5.2. The toplogies and their distance-trees

5-7

Tubh 5.1. RL;(n) for the Merent toplogies (m=24)

7' 2 -lo m=4 m = 8
.l , 0. 2.4 1.4 1.2 1.2
.I 1 I. 3.3 2.6 2.5 2.6
I . . 0. 3.9 2.6 2.5 2.5

I 1. , 1. 3.1 I 3.2 1

Table 5.2. W,, for Rings of different sizes (A = .9)

ty in the simulation runs was equal to the expected execution time of a task [fi-') and the
length of each run was 2500 tus. The various systems were analyzed under two different
task-arrival patterns - the Hom9 and Lo19 patterns. According to the Hom9 pattern, the
system is homogenebusly loaded and X = .9, i.e the utilization of all servers is .9. When the

i

tasks arrive according to the Lo19 pattern, the system is not homogeneously loaded. The
arrival rate of processor 1 is 3.2 and the arrival rates for all the others is .8. Note that the
sum of all arrival rates for the two patterns is the same.

The manner in which the number of processors affect the ability of the H01 algo-

rithm to reduce the response time of the system is demonstrated by Table 5.2. For all four
combinations of and 7 O that where simulated when m goes from 4 to 8; Wq improves
considerably. However, any further increase in the system's size does not aflect . Note
that even in a 4*(MM/M/1) system with 7' = 7 O = 1, w,, is reduced due to the LB process
from 9 to6 3.9.

The results presented in Table 5.3 show that when a store-and-forward m*(M/M/l)
system is homogeneously loaded, a change in the interconnection scheme of the communica-
tion subnet has only a marginal effect on * q . Although the distance tree of a node defined
by the Ring3 topology has better properties than the one dehed by the Ring1 and the Ring

' 9 is the &q of an M/M/l system with a utilization of .9.

5- 8

I I I t- ' .l; 1. 1.67 1.69 1.67
1. J 0. 2.20 817 2-26
1. * 1. 2.94 2* 98 2.94

Table 5.3. Wg for toplogies with 4 m l i i (A = .9)

topologies, these differences in the structure of TDj do not affect ~q w h a tasks anive
according to the Hom9 pattern. However, when the arrival pattern of the tasksis:LolS these

differences do affect . Table 5.4 clearly displays the interdependency between. the &(n)

node is higher than the arrival rate of the other, the structure of its &stance tree plays an
important role in determining Wg . The table presents the expected normaliied queueing
time of a task which has arrived at node 1 , (l), and Wq for different d u e s o f 7' and

The results displayed at the second row of the Table 5.4 demonstrate an impoEtut
aspect of the H 0 1 algorithm. When 7' is small (.1) the algorithm may migrate a task several
times and thus the executiqn site of a task might be several hops away from its entrance site.
Therefore if 7O is not negligible the task might be considerably delayed on its way back%o
the node at which it had entered the system. In the case represented by the second row of
Table 5.4, tasks are transferred without any delay 'down the stream' to their execution site
but are queued up on their way back. Note that due to this behavior of the HO1 algorithm
the response time of the system is better for 7' = = 1. than for 7l = .l, yo = 1.
Thiri property of the algorithm is also demonstrated by Table 5.5. This table shows the inter-
dependency between the number of communication links and the performance of the system
for the HL19 arrival pattern. When each node has only two links the system is 'choked-up'
under such conditions unless 7' is small and 7 O is negligible. However, when the system has
three or four links per node it can serve all tasks and even provide them with better response
time than an M/M/l system which is busy 90% of the time.

function of a topology and the performance of the system. When the arrivdzateofme - _ _

7O *

5- 9

Ring Fring Ring3
7 I , To wq (1) ti.'q - wq (1) wq wq (1) w;
.1 1 0. 1.0 .75 .80 .63 .77 .63
. l > 1. 18.2 4.4 34.0 7.0 12.5 3.3

1. , 1. 5.1 3.1 5.1 3.2 4.75 3.2
1. , 0. 3.2 2.3 2.9 2.2 2.8 2.2

Table 5.4. ti.', and Wq (1) for toplogies with 4m links (XI = 32, X i = .8 1 < %' 5 m)

i 1 Ring I Tring 1 Ring3 1
TI f 7 O wq (1) wq wq (1) wq (1) w q

.I , 0. 2.5 1.4 1.2 .80 .77 -63
-1 , 1. 00 60. 11.3 12.5 3.3

I

4.2 2.5 2.8 2.2
9.4 3.9 4.75 3.2

Table 5.5. wq and (1) for different numbers of links (XI = 3.2, X i = .8 1 < i 5 m)

1

5-10

16.1 Introduction

Performance prediction is an essentid step in the process of system. design and system
upgrading. When differed alternatives are examined by a designer or manager their relative
performance may constitute a cardinal argument for regarding one as superior .to the other.
In order to predict the performance of a non-existing system under an est
a performance model of the devised system has to be defined and so
load. A quantitative description of the desired perfomam atires is then derived from
the solution. The characteristics of the model and the p e measures consictered,
determine whether analyaia can be used as a sol whether a i d a t i o n is
the only means by which the measures can be derived. A considerable amaunt of effort
has been devoted to the study of analytic solution schemes for performance models and
several methods for solving queueing network modeIs have been developed and. implemented
[Bask75],[Chan80]. Although these methods are remarkably general and useful in system
modeling, there are many interesting models that do not meet their assumptions and thus
have no known traceable numerical solution. In order to reiease some of the canstrains of
these methods, approzimation schemes for solving performance models have been developed
[SaueSO]. The main shortcoming of this approach is its inability to bound the error in the
results.

Because of the limited scope of numerical solution schemes, simulation, in spite of
its drawbacks, is widely used for predicting system perfarmance. Simulation is a technique

v

which can predict the characteristics of a model by following the state changes it undergoes
over a period of time. When simulated, the evolution of the model under stimuli that model
its inputs is observed, and the desired behavioural measures are derived. In most cases
simulation is a repetitive process and is, thus, executed, most likely, by a computer. The
computer simulates the model according to a behavionral description, a s h d o t o r , written in
a programming language. Languages that address themselves to such descriptions are called
simulation languages.

Simulation is computationally expensive and requires a considerable amount of
programming effort. In order to assist the programmer in writing simulation programs, a
number of simulation languages have been designed. The various languages differ in their
programming approach and simulation strategy. In this chapter the Distributed System
S'rmulafion (DISS) approach for modeling and simulating distributed systems is defined.
DES views both the model and the simulation program as modular structures which consist
of eelf-contained building blocks. The language is a macro extention of the SIMSCRIPT II.5
simulation language and implements a process interaction simulation strategy.

6.1.1 Motivation

The continuous growth in the size and complexity of Distributed Processing Systems (DPS)
increases the need for efficient methods for predicting their performance. The complexity
of these systems and the variee of services they provide prohibit the usage of intuition as
a design tool. In most cases analytical solution schemes can not be used for solving the
performance models of this type of system, mainly because of the strong interdependency
between the compdnents of the system Wong781. Due to this interdependency, the models
do not satisfy the local balance property and thus have no product-form solution [Chan77].
Interdependency between system elements is a cohesive attribute of DPS because of the
cooperative nature of its elements [Ensl81]. Therefore performance prediction of a DPS almost
always entails a simulation study of the system.

t

Distributed processing systems consist of loosely coupled autonomous elements which
endow this type of system with the qualities of modularity and ezienaibility [Ensl81]. Since
the replacement of a component or the integration of a new one is a simple operation in
a DPS an analysis of the impact of topological changes on the systems' performance will
undoubtedly be included in a performance study of such a system. Therefore it is desired
that the simulation program used in such a study will also be modular and extensible. The

6- 2

efficiency of the study will depend on the degree to which-interd logical d structud
changes in one module impose modifleation on others. In a simulation programiwhereone
module has direct access to a variable of another module (tightly coupled modules) or a single
module may imperativly schedule an event for another one (non-autonomous modules) a

local change in one element may effect other modules. Changes of' this m e may require a
major modification of the entire program unless it is composed of loosely coupled antonomous
modules.

The importance of modularity and extensibility of simulation programsfor the study
of performance issues of DPS and the lack of a simulation language that provides means for
building such programs motivated the development of the DISS methodology for modeling
Dihbuted-Processing-Systems and the &sign and imqlementation of the .DBS language.
DISS provides the modeler and the programmer with a comprehensive approach to modeling
and simulating this type of system. Alkhough the development of the methodology and the
language was guided by the characteristics of DPS, the world view of DlSS is also applicable
to simulation studies of other types of systems.

1

6.1.2 The World View of DISS

DISS is based on a comprehenaive view of the two components of a simnlation, d d y - the
model and the simulator. Each of these components is considered as a network of loosely
coupled and. autonomous modules that interact via a well-defined interface. Two modules of
a model or simulator are loosely coupled when they can exchange information but there is no
direct access from one module to the variables of the other. The information. is exchangedvia
a 'mail box' that can be accessed by the two coupled modules but which does not constitate
an integral part of either one of them. Receiving information and sending out information is
an input/output operation for such modules and is executed via port8.

In a discrete event environment an element is ~utonomous if no other element can
imperatively schedule an event for it. Autonomy does not mean isolation: an..autonomaus
module interacts with the other modules by receiving events scheduled by them. Yet such a
module exercises control over the events it is willing to accept at a given instance by means of
an interrogative mechanism. The loose coupling and autonomy of the modules guaranty that
a change in the structure or logic of one module does not impose changes on other modules
and thus, endow the model or simulation program with modularity.

Each module of the network is a Discrete Event System (DEVS) described as a
model or presented as a component of a simulation program. Discrete Event Systems were
first formally defined by Zeigler [Zeig76]. This definition has been extended so that a DEVS
can be specified as an autonomous module and can be loosely coupled with other DEVSs (see
A.2 for a formal dehition of a DEVS specification). According to the world view of DISS
input and output ports, masks (for external events) and input variables are cohesive attributes
of a DEVS and thus should be part of its specification. Since a DEVS exchanges information
with others through ports, each external event or input variable is associated with an input
port, and an output variable with an output port.

it
I/
I

i
j

I
I

By interconnecting an output port of one DEVS with an input port of another,
individual systems can be integrated into a network. Such a connection is created via a
mapping process from the output variables of the source port, onto the input variables and
external events of the target. The topology and interconnection scheme of a DEVS network
can be represented by a directed multigtuptc where the nodes are DEVS and the arcs are the
output port to input port connections.

When a model, -described by a network of DEVS specification, is mapped to a
DISS program its structure is preserved. A DEVS is realized by a DISS process and the
interconnection by a DISS arc. It is not only the graph presentation of the model that is
preserved by the DISS program but also the autonomy of its modules and the looseness

of the interconnections. Consequently the program is endowed with the modularity and
extensibility of the modeled system.

The DISS methodology imposes a structural similarity between the system, the
model and the simulation program, which assists the designer, the modeler and the program-
mer in communicating with each other. Effective communication is an important aspect of
a simulation study. The ability to relate changes in the specification of the system to the
model and the extent to which the modeler can become acquaintance with the realization of
his model, are major factors in determining the efficiency and quality of a simulation study.
The DISS methodology and simulation language assist programmers and modelers to learn
about each others work. Ln addition, it efficiently supports sharing models and simulation
programs. Because a DISS process is self-contained, libraries consisting of various DISS
realizations of DEVS models can be gradually constructed. Members of such libraries can
then be selected for incorporation in simulators of different systems.

6 - 4

II
i

eBef.3 Simulation Languages

I

A considerable amount of programming effort is required for constructing a s i m h t o r €or a
system. In order to simplify the routine tasks associated with such a process< and in order
to assist the programmer in writing and debugging the simulator, a number of:simulation
languages have been designed. The design of these languages was motivated not ody bythe
need for programming convenience but also by the desire to articulate the modeling concepts
Pivi671. Therefore the design of a simulation language is based on both a programming
approach and a modeling philosophy. The modeliig phase of the simulation study is mainly
effected by the simulation strategy of the language. Various strategies of this kind - event
schedding, activity scanning and process interaction [Zeig76] - are implemented by the
different languages. Each of these approaches to discrete event simulation imposes a different
structure on the model and on the simulator. Most of the simulation languages are eupeneta
of general purpose language, like FORTRAN, PL/l and ALGOL, and therefore c o d e
the flexibility and richness of the base language with the special-purpose features needed to
simulate discrete event systems.

The first steps in the design of specialized computer simulation langnages were
made during the latte? part of the 1950-s. The fmt discrete simulation languages - GASP
fPrit691, SIMSCRIPT [Dims64], GPSS [Gree72] and others (see [TeicSS]) were introduced in
the early 1960-s. Most of these languages where event oriented and had no facilities for
nested declarations of variables or program structures. A behaviaral description of a discrete
event system given in an event oriented language is composed of a set of subroutines, each
of which describes the activity of an event. Individual events may be related one to another,
like all the internal events of a DEVS. However none of the above languages provides means
by which a structural binding between events can be established. Therefore in all these event
oriented languages modules of related events can not be constructed.

The progress in programming methodology which was brought about by the intro-
duction of ALGOLGO, together with the continuous increase in the usage of simulation as a
means for solving performance models, motivated the design of process oriented languages
[Fran78]. Several languages based on this simulation strategy - SIMULA [DahI68], ASPOL
[MacD73], SIMSCRIPT k 5 l [Russ83]- were introduced during the later 1960-s and the early
1970-s. Both SIMULA and ASPOL are block structure languages and provide facilities for

'SIMSCRIPT II.5 processes were added to the language in 1975.

6- 5

nested-scope definitions.

A process is a dynamic entity that con&& of a s& of &ted actMtiess, Eachad;ioity
is associated with an event and defines the change of states the system .nndergues became of
that event. Upon the completion of the execution of such an activity the process is suspended-
until a future resumption. This resumption represents the occnrrence of an event, whether
internal or external. Once resumed the process proceeds its execution from the point at which
it has been suspended.

The entire process represents a seqaence of events and thus can be considered as a
realization of a DEVS. However, due to the limitation of the above process-oriented laugagw,
there are many DEVS specifications that can not be re&sed by a aingle process. In all
these languages different statements have to be used when the process is suspended until
an internal event occurs or when it is suspended untill the occurrence of an extend event.
Therefote a process can not be suspended until either an external or i n t d event will occur.
Nevertheless the bold I w d 2 or work and suapena mechanislns of these langnages d0.no.t
support a process suspension until the first out of a number of internal events' wi€l occur.

Therefore only DEVS that do not posess simultaneous internal delays a n be realized by one
process in the abope process-oriented langaugea.

ASPOL is the only simulation language that provides means by WE& a process
can autonomously control the set of externd events that it is willing to accept - ithe rad(iz]

statement. But the language does not provide a mechanism to be used following a zuaitte]

statment for locating the event which caused the resumption. In all other languages a process
has no control whatsoever on the external event that may reaume it.

SIMSCRIPT II.5 is a general purpose language with a rich varity of data~struckrres
and features that support discrete event simulation. The language has served the author in
many simulation studies and is widely available and commonly used. These properties of the-
language together with the acquaintes with its internal structures4 turned SIMSCRIPT II.5
into a natural candidate for constituting a base language for the simulation language that:
will support and complement the DISS modeling methodology.

21n SIMULA and ASPOL

4AU the internal structures of the timing mechanism of the language are accessable
3 1 ~ SIMSCRIPT n.5

6-6

56.2 Modeling with DISS

Modeling is the second step which a simulation study involves, and is the least well understood
step of such a study. A system can be modeled only after its salient components and
interactions have been isolated by means of an analysis of the system and of the ezperimenfal
frome of the the study. Modeling can be defined as

the process of developing an internal representation and set of transformation
rules which con be ured t o predid the behaviour and reiaiionahips betureen the
set of entitiea cornporing the system Fan771.

The internal presentation, formulated by means of state wa~ables and the transformational
rules, is an abstract description of the behaviour of the system. The DISS modeling
methodology views the abstraction of the behaviour of a DPS as a two stage procedure.
First, the system is mapped to a directed multigraph where each node is a DEVS. Then
each node is modeled individudy. The former stage of the modeling process is mainly
a structurot abstraction of the system, whereas at the latter the behaviour of the system
elements is modeled. Every node of the graph presentation of the system stands for one5
or more of the system elements, and is a well defined autonomous area of activity. Every
system element, including communication channels is related to a DEVS whose input/output
variables and ports are defbed at this stage. The selection of the mapping scheme depends
on both the structure of the system and the requirements of the experimental frame vel83b].

8.2.1 Nodal Interconnection

The interconnection scheme of the multigraph represents the coupling between the modules
of the model. A directed arc that goes from the source node to another node, the tkrget,
represents the ability of the source to transfer information to the target. The data transferred
describes a change in the internal state of the source that the target might be interested in.
These changes are reflected by corresponding changes in the output variables of the source so
that they can been ‘seen’ from the outside. A DEVS receives external information via input
ports. Thus in order for the target node to become aware of a change that has taken place
at the source, either an input variable of the target has to be modified or an external event
has to be scheduled for the target.

v

‘J?ractions of elements can be also mapped to merent nodes but in such a case it is suggested to consider
each part as an element of the system.

6-7

An arc of a DEVS network is a mapping from the output variables of an output
port of the source, onto the input variables and external events of an input port of the target
node. The mapping depends on the way the target node reacts to changes in the output
variables of the source. When the target might consider such a change as an event, i.e. the
node might be waiting for it, the output variable should be related to an external event at
the input port. However, if the value of the output variable has an effect only on the internal
state transition function of the target DEVS, the mapping is to an input variable.

A mapping from an output variable to an external event establishes an infer-node
event. Such an event is triggered by the output function of the source when the variable
is assigned a value and appears as an external event at the input port of the target. An
inter-node event represents an active transfer of information that is based on an attempt
made by the source to alert the target. By relating an output variable to an input variable
an infer-node &ate variable is established. The variable is written by the source and read by
the state transition function of the target. Such a variable represents a passive exchange of
data. The first opportunity at which the target will be able to use the information that was
stored in the variable will be at the time of occurrence of the following event.

-

*
6.2.2 The Node

Once the mapping of the system onto a directed multigraph has been completed, the modeling
process may proceed to its second stage - the nodd ebstraction. At this stage a Discrete
Event System specification is established for each of the nodes that constitute the multigraph.
Since the input/output structures of the nodes have been defined at the previous stage each
node can be modeled individually. However similar nodes will most Iikely, be treated in the
same manner and thus their DEVS specification is defined simultaneously. Throughout the
modeling process the node is considered as the atomic building block of the model. Although
it is the smallest component of the mode, a node is self-contained in both its logic and
structure and therefore has an autonomous existence.

The internal presentation of a DEVS is given by its state variables. There are two
types of state variables - the piecewise constant and countdown clock variables [Zeig76]. The
variables of the first type describe the current state of the system, whereas the clock times
at which internal events are scheduled to occur, are given by the second type. These times
are internally determined and controlled by the node. Each countdown variable is associated
with a different event and thus the set of these variables represents the internal events of the

6- 8

I-

DEVS. Scheduling such an event means an assignment of a positive d u e to a countdown
clock. Once the variable is assigned it will decay linearlyy, as a function of time, until it
reaches zero. Precisely when it reaches zero, the internal event associated with the miable
occurs.

The piecewise constant variables change only when an internal or external event
takes place. Such an event means that the system undergoes a change in state. As a result
of a state transition, the state, the output and the mask variables of the system may change.
The changes in these variables due to a particular event are defined by the state transition,
the output and the masking functions (see A.2 for a detailed description of the elements of
a DEVS specification structure). Although each of these functions is defined formally as a
single relation, it is actually composed of several functions, each of which defines the readion
of the DEVS to a given event. All the functions associated with the same event form the
activity of the event. The activity is a mapping into the range SM X K and is a
natural way to describe the transformational rules of the node.

-,M M
X 0%

Some of the DEVS specification of the various nodes obtained at this stage may
be similar or even identical. In order to limit the number of realizations required, the
specifications may be grouped into disjoint sets such that every set represents one type of
DEVS. All members of the same set will be considered as different inst ancea of the same type
of DEVS and each node will get its individual characteristics by means of input parameters.

$6.3 Simulating With DISS

DBS is a high level simulation language which is a macro eztention of the SIMSCRIPT
‘II.5 simulation language. The extention is baied on the define to mean and substitute
mechanisms of the base language. All the routines that support the DISS language have
been written in SIMSCRIPT II.5. As a result DISS is compatible to the same systems
as SIMSCRPT II.5.6 The desire to save the programming effort which the implementation
of a preprocessor entails, motivated the macro extention approach. However, due to this
approach the statements of DISS had to be structured according to the syntactical constrains
of the base language.

The DISS language was designed to provide a tool for building modular discrete
event simulation programs with well-defined interfaces between their modules. The design

‘SIMSCRPT 11.5 is available for CDC, Honeywell, IBM, NCR, PRUIIE, W A C and VAX computers.

6- 9

6.3.1 The Executive Manager

The execution of a DISS program is considered as a simulation EXPERIMENT that may
consist of several runs. An experiment is characterized by the topology of the simulated

6-10

was guided by the idea that the smallest self-contained element of a discrete event model is
a DEVS, and thus the simulation program shodd be constructed as a network of moddes,
eachof which is a realization of a DEVS. Every module should be an autonomous and self-
contained unit that interacts with the other units by means of a well-defined mechanism.

The DISS simulation language is process-oriented. A simulator written in DISS
consists of a preamble, the Ezecutivc Manager of the experiment and a set of process
descriptions. Each process is a realization of a DEVS specification type. The sirnulator is
viewed as a directed multigraph whose nodes are instances of these processes. The language
provides tools for the description of the behaviour of a DEVS by a self-contained autonomous
process. The statements and data structures of the language constitute a mechanism for
synchronizing the activities of the processes. This mechanism is based on an arc structure
that interconnects the processes. Each arc is capable of capturing the inter-node events and
variables defined by the output to input mapping which is represented by the arc.

All process types are named in the preamble of the DISS program dong with
the external events and the inter-node state variables of the simulator. The inter-node state
variables defined for the needs of the simulator are appended to the DISS arc structure. All
the dejinitions of global variables and data structures should be included in the preamble. In
most cases only those structures that are passed from one node to the other will be declared
in the preamble. All other data structures that are needed for describing the model are the
state-variables of the individual DEVSs and are defied locally by the processes.

The world view of DISS imposes a network structure for the simulator and defines
the mechanism by which the nodes interact. Therefore the language can provide various
services that are common to these types of simulators. These services reduce the amount of
code needed for a behavioural description of the model and thus enable the the designer of
the simulator to concentrate on the particular needs of his model.

In the following sections the salient properties and features of the DISS language
will be described. This chapter is not intended to serve as a user guide or manual for the
language. All the information needed for writing and running DISS programs can be found
in the DISS user guide pe183a]

model, whereas the node type and the actual values of their input parameters specify a
run. The experiment is established and controlled by the Executive Manager process of the
:simulator. All the activities of the Executive Manager are associated with the management
of the simulation experiment and are not related to the logic of the model. Both the topology
and the characteristics of the nodes are given as input data to the simulator. The Executive
Manager reads in a weightedneighbor list which represents the directed multigaph and the
types of the various nodes. The input parameter values for each individual node are read in
by the node itself.

The course of a runis directedhy the Executive Manager by meam of control events.
By scheduling such an event for a particular node the node is alerted imperatively and the
.activity of the given event is executed. Control events may be used for simulating faulty
.elements, for obtaining status reports at selected instances and for terminating the run.

Fig. 6.1 presents the basic structure of the Executive Manager. The process consists
of two main elements - the ezpeninent and the run rnunrzgtr. The main task of the first
element is to establish all the data structures required for nodal interaction as determined
by the topology of the experiment. Thkelement is executed only once and thus most of the
data structures which it es$ablishes are permanent. The process instances that represent the
nodes are activated by the run manager that is executed once for each run. Once activated,
the processes can be controlled via control events. Such an event is also used for terminating
the run and consequently eliminates all process instances. Before proceeding to the next run
the manager must release all structures that were established by the run. Most of the tasks
to be accomplished by these two elements are executed by the powerful DISS statements
hit.the.network, init.the.nodes and rferminate.rux~

.8.3.2 Wait Until Event

The realization of a Discrete Event System by a DISS process is based on the unique
w&.until.event scheduling mechanism of the language. The mechanism enables a process
to wait until one out of a dynamically selected set of events takes place. Once resumed, the
process undergoes a two-phase decoding procedure at the end of which the activity area of
the event that caused the resumption is reached and executed. The process manages the set
of acceptable events by means of a masking system. With the exception of Control events,
there is no way by wbich an event can cause a resumption of a process when the process

6-11

wocess exec.manager

a experiment manager

init .the.network

while rm.v < =cuns.v, do
' 'run manager

*mit.theaodes

terminate.t he.run
~

loop ' ' of run.v < =runs.v

end ' ' of process exec.manageE
' 'experiment termination

1
i

the scheduling system of DISS that an inter-node event has occured and thus an attempt
is made to alert the target process. The number of the output port, the new value of the
output variable and the name of the external event are the attributes by which the source
process identifies an inter-node event and are thus part of the syntax of the set.aJert
statement .

3. Masking - Whenever an event occwes the scheduler of DISS consults the process masks

6-12

~~~~ ~ 

Figure 33. Structnre of Executive Manager Process 

*considers this event- unacceptable. The mPait.until.event approach defines an interrogatirte 
:scheduling mechanism that supports the autonomy of the process. 

This scheduling mechanism is composed of the following three elements: 
1. Msnagement: of i n t d  e v d s  - Each countdown clock of the DEVS specification 

is related to an internal event in the process realization of the system. These events 
are dehed, scheduled and manipulated internally by the process. DISS provides a wide 
variety of statements for managinginternal events. Statements for scheduling, cancelling, 
updating, suspending and resuming. such events are part of the language and assist the 
implementation of complex scheduling algorithms. 

2. Inter node alerfs - The mapping from an output variable to an input variable or 
external event is executed implicitly at the source process of the arc. When an output 
variable is mapped to an external event at the target process, the setalert statement is 
used for assigning a new value to the variable. The statement , when executed, informs 



in order to determine whether t.he process is waiting for this particular event. If the mask 
is set, the event will be placed in a pending state until its mask is reset. The mask, 
unmask and maskpriority statements provide a flexible tool for managing the masks 
of a node. A mask is dehed  per event and per input port, and can be controlled according 
to the priority levels of the ports. 

The internal structure of the process is stronglly affected by the properties of the 
wait.until,event scheduling mechanism. The cyclic execution of the wait statement and the 
two phase decoding procedure of events imposes a well-defined structure OR the process. A 
typical DISS process structure is shown in Fig. 6.2. Note that because of the structural 
isolation of the event activities, the simulator is endowed with a second level of modularity. 
An activity can be easily removed and replaced by another. This quality of the nodal structure 
assists the programmer in merging two processes into one. 

Each event, internal, external or control, has two attributes associated with it - a 
d u e  and port number. For an external event the first attribute holds the value of the output 
variable of the source node that is mapped to this event. The second attribute is the number 
of the event input port. The attributes of an internal event are assigned when the event is 
scheduled and can be used €or binding an event to a given port or entity. 

< 

8.3.3 Allocation of Nodal Data-Structures 

The degree to which a process can be self-contained depends mainly on its ability to declare 
variable and data structures locally. When a process uses global variables their definition 
becomes a part of the process although it is not included in the process. A DISS process 
can locally define a wide variety of data structures. In addition to variables and arrays,' 
a DISS process can locally defme sets, random variables, and stutistics recording probes. The 
three latter structures are defined by the establish statement. This statement, in addition 
to its declarative role, leads to the establishment of an instance, represented by a temporary 
entity, of the structure. The name of the structure, as given in the statement, serves as a 
pointer to this entity. 

Two types of sets - fifo and runked by high value - can be dehed by the esfablih 
statement. All the set operations associated with these sets are executed by using SIMSCRIPT 
II.5 statements. 

'In SlMSCRlPT II.5 only variables and arrays can be defined locally. 

6-13 



ocess server 
st.ports ' 'node initialization 

ile ever=ever,do 

,vait.until.event 
elect.event.type 

select-hLevent 

- 
I 

- 

I *name1' ' ' activitq of INTERNAL event name1 

w- 1 I a name; a ' 'activity of INTERNAL event namei 
I I 

selecLext.event 

I *name1 * * a activity of EXTERNAL event name1 

I 'namej' ' ' activity of EXTERNAL event name j 

select-comevent 

I 'namel' ' 'activity of CONTROL event name1 I 

1 'namek' ' ' activity of CONTROL event namek 
I-. I 

' ' of ever=ever >p - 
' 'node termination 

d a 'of process server 
-- 

Figure 6.2. Typical Process Structure 

By establishing a probe the process builds a tool for sampling a phenomenoaand 
for obtaining a set of statistical quantities for the sample. The probe structure together with 
the measure statement constitute a mechanism for deriving the average, standard deviation, 

mazimum, and minimum of a selected measure. The statistical computation method used for 
deriving these quantities is determined by the type assigned to the probe when established. 



Two methods are available - the tdly and, accumulatemethods puss83]. h thesecondmethod 
a sample is weighted by the duration that measured phenomena remained unchanged with 

the value that was sampled. 
Due to the statistical properties of simulation experiments, conjidence intervals are 

widely used for evaluating the quality of the results obtained from simulation runs. In order 
to facilitate this evaluation process, a batch probe has been included in DBS. The probe 
operates according to the batch mean method for statistical analysis[Gord78]. The size of 
each batch into which the sample is divided is controlled by a globaI variabie. The confidence 
interval for a selected level of a batch probe is retrieved by using the canfhxtr function. In 
order to evaluate the randomness of the batch means DISS provides a function for computing 
the auto-correlation of these meansbaw 791. - - ___ - _ _  ._ .. 

6.3.4 Tracing and Debugging 

In the design of the DISS language special athention has been devoted to the development 
of tracing and debugging utilities. Traces are a useful tool for relating the behaviour of 
the simulator to the spectification of the model. By following the sequence of state changes 
the simulator undergoes, one can decide whether the implementation follows the transition 
rules of the model. Due to the complexity and size of DPS simulators it is difEcult to folIow 
their activities over a period of time, and to see how their various elements interact. A 
considerable amount of data is required for describing the behaviow of such a simulator and 
thus the handling of trace information might be an involved process. 

The trace reporting utility of DISS is based on the snap statement andis contrulied 
by input parameters. At those program locations where a report is desired a srmpGstatement 
has to be inserted. The statement generates a report - a four letter literal and two integer 
values - that is displayed in columns on the output device (see example in Appendix C). Each 
column is associated with a node so that by following the data presented at a given column 
the activities of a selected node can be traced. The lines of the tracing report are related to 
simulation time, in increasing order. A n  attempt is made to place as many reports as possible 
on the same line. 

The four letter literal identifies a tracing report and relates it to the activity that 
caused the report. By means of input parameters a subset of reports can be selected OF 

excluded according to their literals so that only reports that belong to this subset will be 

6-15 



displayed. This facility together with a global tracing level mechanisms constitrrte. a flexible 
tracing utility. 

The debugging utility of DISS assist the programmer in isolating the cause of a run- 
time error. The utility is based on a detailed event report that desczibes the current state of 
the simulator. The report details the attributes of the octive event and aIl immediate, pending 
and schedubd events. This information complements the data provided by the standard 
trace-back report of SIMSCRIPT II.5 when a run-time error occurs. The status report can 
be invoked by the programmer at selected locations by using the reporf,eventa:2statement. 
The amount of data presented is controlled by two global DISS variables. 

, 

8DISS has a global variable named 
by input parameters. 

TRACE.L whose d u e  

6-16 



Chapter 7 

Conclusions and Directions far Further Research 

Since the early days of mankind the primary motidion for the estabIishent of~cammunities 
has been the idea that by being part of an organized group the capabilities of anbdividual 
are improved. The great progress in the area of inter-computer commMicatian led to the 
development of means by which &and-done processing sub-systems can be integrated into 
multi-computer ‘communities’. . ,  The major object of this investigation has been to define 
methods by which a processing sub-system which belongs to such a commnnity can take 
advantage of the other members of this community in order to enhance its response time 
and at the same time to assist the others in achieving the same goal. By doingso, a ‘ s d ’  
sub-system can provide the services of a ‘large’ one. 

$7.1 Conclusions 

The results obtained from the study of the LB algorithms which were-defined in this thesis 
have demonstrated the ability of the task migration process to reduce the response time of 
a DPS. In the opening analysis it was shown that in a multi-resource system which does not 
employ an LB mechanism, there is a high prGbability that a task will be waiting for service 
while at the same time a server which is capable of serving it, is idling. The different load 
balancing algorithms which were defined, establish a set of distributed decision processes 
which DPSs of various kinds may use in order to take advantage of the multiplicity of their 
resources. The performance measures obtained in the study point at the ability of the task 
migration process to reduce the systems’ response time even when the communication and the 
processing overheads associated with this process are none trivial. This ability indicates that 



task migration is a ‘practical’ approach.and thus should be p d  of ang &trib&t&proce&ng 
environment 

Reduction in the expected d t i n g  time of a task due to load balm&.g.iS;.one of the 

benefits which a number of stand-alone systems mzy achive by establishing a mnfbkomputer 
community. Although in some cases a larger commmity does not mean better performance, 
an individual subsystem can improve the quality of services it provides by joining a d t i -  
computer environment. However, in order to achieve the desired improvement, the LB 
algorithm has to be adjusted to the size as well as to the other praperties of the system. The 
taxonomy of load balancing which was presented in chapter 2 was used throughout the h d y  
for describing and characterizing the different LB algorithms that were discnssedin the t&. 
In the various case-studies which were analyzed in the course of this investigationit was shown 
that under a given set of operating conditions and for a system with given ChamCterWcs, 
different balancing algorithms might have opposing effects on. the system’s performance. 
Nevertheless, when a ‘wrong’ migration criterion is selected or a too ‘liberal’ i n f o d a n  
policy is employed, the LB process may become a cause of performance degradation. 

It was shown that for a broadcast DPS, higher resource multiplicity does-not neees- 
sarily result in better response time. Each of the LB algorithms which were deked for this 
type of systems reaches a point at which an increase in the number of servers decreasesthe 
performance of the system. Therefore when a number of processing systems is given it might 
be better, as far as the Wq is concerned, to assemble them into two or more mufti-resonrce 
systems than to integrate them into one system. It was found that when anLB &dh 
which utilizes the broadcast capabilities of the cammunication subnet is used, a f r o n k n d  
communication processor has to be attatched to each system. The processing capakity which 
this type of message requires should not be taken from the main processor. 

Since the addition of a node to a store-and-forward system me= an increase inthe 
number of communication links, an increase in the size of such a system does not cause a- 
degradation in the performance of the system. However, the manner in which the sub.8gstem.s 
which constitute such a system are interconnected, i.e. the topology of the communication 
subnet, does effect the ability of the LB process to enhance the system response.ttme. This 
interdependency between the topology and the behaviour of the LB process should be taken 
into consideration when a store-and-forward system is designed. 

The strong interdependence between the DPS characteristics and the preformance of 
the LB algorithm demonstrate the importance of performance prediction as a design tool for 



such decision processess. It was found that whenshdatiox is used a m  solutiumx&hd Zora 
DPS model the DISS methodology and simulation language assist the design, the:realizzt&m 
and the execution of the simulation study. The modularity of the simulators md the utilities 
provided by DISS have enhanced the construction process of the simulators which were 
needed for this thesis, These advantages of the DBS approach have been demonstrated by 
a number of other studies which have analyzed various aspects of the performance of DPSs 
[Levi82], [Camp83],[Kant83]. 

$7.2 Directions for Further Research 

All the studies of the load balancing problem in DPS systems have m e e d  the task migra- 
tion process as an isolated phenomenon. Now as a better understanding of the properties 
of this process has been acquired, the interaction between the 10ad balancing p~>cess? an& 
other phenomena associated with DPSs should be investigated. Methods for incorporzhg 
load balancing considerations into distributed database management systems and, &stribnixxi 
computing mechanisms, should be developed and their performme studied. The information 
which has been accumulated on the basic characteristics of load balancing algorithms s h d d  
be used as a basis for stpdies which focus on more speciiic aspects of the problem. 

Another area for research should be to try to develop aframework for a cmpar&ive 
evaluation of control processes for DPS. The dependency between the behaviour of these 
algorithms and the system parameters deters from any attempt to select the ultimately: 
‘best’ algorithm. For distributed routing, concurrency control and LB algorithms there is. no 
absolute answer to the question ‘ i s  ufgorithrn A better then B 9‘ (see ~cqqSO]~and [GalBZ]). 
Therefore a systematic scheme together with a set of well defined criteria for evaimting such 
algorithms has to be established. 

Performance prediction will be the main tool such a scheme would employ. Mare 
effort has to be devoted to the development of numerical, iterative and shulatianmeth&.for 
solving performance models of DPSs. An attempt should be made to use admced iterative 
solution schemes for solving multi-dimensional birth and death processes. The hamwork 
for modeling and simulating DPSs that has been dehed  by DISS is not yet a complete 
structure. Additional utilities should be added to the language and a better understanding of 
the process in which a system specification is transformed into a model should be acquired 



Appendix A 

TR for Look. head policy 

Assume an M/M/ft-like system with a ‘look ahead’ migration policy and let A = {PI,  Pz) 
be the set of the system processors. Due to the migration policy and the properties of an 
M/M/m-like system, AL(A, than be one or zero and the probability that the system wiII be 
in a WI state is zero. A transfer will be initiated whenever the &(A, t )  is one, and a task 
has arrived at the longer queue or departed from the shorter one. Thus the transfer rate of 

this policy is given by 

TR1 = (A + ji) P[AL(A,t) = 11 - $PI1 taak in the ~ydtem] 

Since P-; is zero, the above equation can be rewritten as 
40 

2% = (A + F) c P2is.1 - ?if3 (2) 
i-0 

where Pi is the probability of having i tasks in an M/M/2 system. Replacing Pi by PO 2pi 

Plei751 and factorizing the following can be derived 

By using the equation for the s u m  of a geometric series the h a l  equation for TI21 is obtained: 

P2 
(1 - PI 

TBi= 2jiPo--- 

§A.2 TR for ‘Trouble Shooting’ Policy 

Assume an M/M/&like system which is controlled by the ‘trouble shooting’ migration policy. 
In such a system a task is transferred from one queue to another whenever one of the following 
events occurs: 
El 
E2 

A task has arrived at a non-empty queue when there is only one task in the system. 
A server has completed the service of a task, no other tasks are waiting in its queue 
and there are two or more tasks in the system. 

A-1 



Therefore the transfer rate of the system is given by 

(1) 
TRz = XP[one tuak in the syatem] + 

ji P[one taak in one aerver and two or more in the other] 

By dehing 

and 

j> i 

Eq. (1) can be rewritten as 

TR2 = X P o  + pP1 
and the following set of equations can be derived 

Summing Eq. (5) for d l  applicable i yields 

(3) 

(4) 

i z 1  (5) 

Since CEO b; + P0,o = 1 and by factorizing the following equation for can be derived 

00 

Pl = (1 - p ) ( l -  Po - P0,o) + 2 c Pi,. (7) 
i-2 

In an MIMJtlike system in which no tasks are transferred, all task distributions with the 
same total number of tasks are equally probable. Therefore because of the properties of the 
migration policy of the system the following inequalities can be concluded 

P[2i task8 in the ayatem] i 
(2i - 1) pi,. 2 (3) 



From (8),(9),(10) and since Pw; is zero the following lower bound for p; is obtained 

00 -. 

where P; is the probability of having i tasks in an equivalent M/M/2 system. From (1) and 
(11) and by replacing Pj by 2P0 p i  the following lower bound for TR2 is derived 

On the other hand from the definition of P; and Eq. (9) it follows that 

bcI 0 0 .  

= 2 c P;,1 < 2 c $Pi + 1 
t i-2 i-2 

By the same reasoning used for deriving Eq. (12) the following upper bound for TI22 is 
derived from (5) and Eq. (13) 

§ A 3  TDFi,j for S-BTSQSS systems 

Assume two independent M/M/l systems. the service rate of each system is (1 - S f ) c  and 
task arrive at each queue at a rate of X tasks per time unit. Let ~ ( t )  and q2(t)  be their queue 
sizes at time t respectively and let j i , j(k; E ,  t )  be dehed  as 

A-5 



A 
,where jilj(sa, m,t)= 0 for ,nY m$ U. 
From the definition of the AT algorithm for a. S-BTSQSS system it can.be shorn thakfor 
such a system 

with 



with pi(& t) being the probability that an M/M/l *em with service rate ji a;nd amival.rab 

X will have k customers at time t given that there were i cnstomers at t = 0 .  Aceordiw;to 
the definition given in 3.5.1 by computing (4), (5 )  and (6) the throughput degmdxtion factor 
of a transmission h an S-BTSQSS system can be derived. 

$A,4 T D F ~ , ~  for NS-BTSQSS Systems 

The computation of the throughput degradation factor for a NS-BTSQSS is much s b p k  
than in the case of a stop system. Assume an M/M/1 system with service rate (1- 6,) and 
arrival rate X and let $i(k,  t )  be the probability that the system will have k customers at time: 
t given that there were i customers at t = 0 then it follows that NS-BTSQSS Ljd(t) is given 

by 

' 

Ij L j , j ( t )  is the same as for the S-BTSQSS system and thus from (1) (2) and Eq. (5)  ipthe 
previous section TDF;,j for a nostop system can be derived. 

fA.5 SFij for S-BTSQSS system 

A transfer of duration t will not be stopped in the middle if during-the transfer priacktke 
task distribution meet the criterion of the migration policy. The prohabiliQ that thbwill 
happen for a transfer that was initiated at t = 0 with DT(0) = ( d , j )  is: 

t 

P[tranefer of length t was not etopped in the middie I TD(0) = (i,j)] = 1 - 1 pua(;,j)(t)dt 

Since the duration of a transfer has a negative exponential distribution the following expres- 
sion for SFi,j can be obtained: 

(1) 

A-5 



Appendix B-DEWS Specification 

SB.1. DEVS specscation 

A dehition of a Diacrete event syatem specification is presented in this section. The deEnition 
extends the specification structure as has been defined by Ziegler in [Zeig76], so that maaka 
and input/output ports are included in it. The world view of DISS that considers DEVS as 
autonomous elements that can be loosely coupled one to the other, motivated this extention. 
This extended structure provides the means for describing the behaviour of autonomous 
DEVS. Due to the port structures included in the specification definitiom of DEVS network 
should not include elements from the state sets of the individual systems. The definition of 
the network then reflects the looseness of the coupling between its components. 
Definitioni A DEVS specification is a structure1 

where 
SM = {IPT/',.. ., IP?} is a structure - the input ports structure. Each of the indivdual 

input ports is a" structure: 

IPy = {XM, I?} 

with the first element of the structure being the set of external events of the input port 
a:  

XY  = c x r ,  * - - 9  xy> 

I? = car,. . . ,Pi,  1 

and the second element being the set of input variables of port i: 

M 

S M  is a set - the set of sequential states. S M  is the cross product of the range of the state 

d P M =  {OP?, . . ,, OPE) is a structure - the output port structure. Each output port is a 
variables, al,. . ., ak. 

set of output variables: 

OPy = (7f, . .  .) 7 3  

'An attempt was made in the definition to use the same notation used in [Zeig'lB]as much as possible. 

3-1 



= (ICY, * .  *,ICg] is a structure - the mask structure, The dements of the structure 
are sets of masks 

is the mask of the external event x r .  The masks serve as a means by which 
the system communicates with its surrounding. By setting a mask the system declares 
whether it consideres a given change in the state of the universe around it as an event. 
Therefore an external event may occur at time t only if its mask is set at that time. 
is a function - the quasitransition function. Let QM = ( ( 8 ,  e) I 8 E s‘, o 5 e 5 ~ ( 8 ) )  

be the state space of the system and 3 U X Y  a symbol that denotes the ‘nonevent’ 
then S M  is a mapping: __ - - - - -  __  . - 

bM : QM X (uXYU(3)) X INPUTS + SM 

where INPUTS is the cross product of the range of all input variables and f ( 8 )  is the 
duration of state 8 when no external events occur. 
is a function - the masking function. The masking function maps from Q M  X INPUTS 
onto K . 
is a function - th6 output function which maps from Q M  X ENPUTS onto OP 
is a function - the time advance function. 
nonnegative reds: 

- M  

+ M  

t is a mapping from SM into to the 

t : SM + Rzco 

The value of 3 ( 8 )  is defined to be min {a;} where (ai} is the set of countdown-clock 
state variables of the system M .  Therefore € ( a )  can be interpreted as the duration of 
state 8 when the system is isolated (no external events). 

B-2 



Q Q 

Figure (7.1. The Distributed Sysbxfn 

Appendix C-Example 

Assume that a simulation study of the distributed processing system presented i.n Fig C.1. 
has to be performed$ In this example the main elements of the modeling phZse of the 
study are described and the listing of a simulator (written in DISS) that realizes the madel, 
is presented. The system consists of a number of hosts that are interconnected by a 
message switching store-and-forward communication system. The sdne t  is made up‘ of 
communication processors, cp, that are connected by fulI-duplex communication lines. k h  
cp has a finite buffer space in which the messages are stored. Therefore the commnnicatim 
protocol must perform a ‘space reservation’ step before a message is transmitted. _Each has& 
receives an independent stream of tasks. Every task is assigned an execution site at sahich 
it will be served. This assignment is performed by the resource allocation algorithm of the 
distributed system. The task departs from the system via the host of entry into the system, 

@.I Model Definition 

C.l.l  Structural Abstraction 

c-1 



C.1,l.f Mapping to a Directed Graph 

The elements of the above system may be grouped into nodes in a number of ways three of 
which are listed below: 
1. Each element of the system defines a node. The model will include two types of nodes. 
2. The host and the cp are grouped into one node so that the model has ody one type of 

node. An input parameter will determine whether the node is a host, a cp or both. 
3. A host defines one type of node whereas all the communication processors of the network 

are grouped into a second node type. This second node will represent the entire network. 
Ln this case the topology of the network will be represented internally by this node. 

The selection of a mapping scheme depends strongly on the experimental frame of the study 
(see Nel83bl €or a detailed discussion). Each of the above schemes can be considered as being 
the best in keeping with the requirements of different studies. One scheme may be more 
modular whereas another may have a more efficient implementation. A detailed analysis of 
the above schemes is beyond the scope of this example. For the purpose of this example it 
will be assumed that the first scheme has been selected. 

C.1.1.2 Arc definition t 

The inter-node state variables of the model are the following: 
INVl - bufferofill indicates the state of the message buffer of a cp. 
I W 2  - wait will be set whenever the node wants to transfer a message along the arc and the 

buffer of the target node is full. 
The inter-node events of the model are the following: 
INEl - start.trans form a host or a cp to a: cp. Indicates that the source node has started 

INE2 - endotrans between every pair of interconnected nodes. The Occurrence of this event 

INE3 - bufFer.avai1 this event takes place when a cp whose buffer state has changed from 
full to available, assigns a buffer to a node which is in a wait state. Such an event 
may be caused only by a cp but should be accepted by both types. 

Note that due to this approach to the inter-nodal information exchange the cp is given full 
autonomy in allocating available buffer space. The algorithm used by the cp is transparent 
to the node that sends the message. In this example it  is assumed that each cp supports 
a dedicated buffer space for each input port. By means of the buffer.full variable and 

to send data into a buffer at the target. 

indicates that the last data unit of the message has arrived at the buffer. 

C-2 



the bufferavail event it can select which waiting node will be ghen a buf€er .space that 
has become available. In addition to the dedicated buffers, a number of spare buffers are 
provided, and determined as an input parameter. Before each node can be implemented as 
a process the Ipternal Events of each node have to be dehed. 

C.1.2 Behavioural Abstraction 

Only the internal events of the host will be listed here. All the other details of the behavbmal 
.description of the two DEVS can be derived from the listing of the simulator which is 
,appended to the example. All the reserved names of DISS appear in the listings in capital 
laters. 

C.1.2.1 The host 

The host node includes the following Idie-rd Events: 
HIV1- endomessage This event represents the delay associated with the transfer of a mes- 

HIV2 - endotask The end of the execution period of a task is represented by this event. 
HIV3 - faskarrivsl The arrival procedure of the tasks is modeled by this event. The arrival 

sage. 

of one taskcauses the scheduling of the next arrival. 

$3.2 The Simrllator 

C.2.I The Preamble 
309 a 'preambleb f o r  paiEt-to-polnk-afmalator 
310 
311 

316 
317 DECLBBE terminaation C c E v E a T ( i )  

319 proceeeee include boat, commnnicaWn. procseeor 
320 as====== 

321 
322 temporary entitle6 

318 

323 ~a-----.-------- 

C-3 

i 

i 
i 



324 
325 every ARC hoe 8 bu f fe r .h l l ,  a w d t  
328 
327 defixte bellim-frzll , tift 99 -6gW W - U U  
3218 
829 
330 
331 and.= exec,tfme 
333 
333 
334 ae integer variablee 
336 
338 
337 def ine  n. hosts 98 integer vazialalee 
338 end I '  of point---point aimnlxbor prellnble 

e v e r p t a s k  may bslang to  LDISS-SE'P and b e  z i d ,  
a destination, a lengtk. a arSriYtLtdme, an entransm~ite,  o bw-n 

define destirmtion , id, t a sk  ,counter, eatrznce. site bpi  .no 

define arrivaLtima, 1-h. erec.tims aa doahle variablee 

- __ __ .__ - .. 

C.24 The Host 
f procsee host a *22:50:41 83/07/29 
2 
3 
4 
6 
8 
7 
0 
9 
10 
11 
12 
13 
14 
16 
18 
17 

19 
20 
21 
22 
23 
24 
25 
28 
27 
28 
29 
30 
3f 
32 
33 
34 
36 
36 

ia 

D E C U E  end.maemge I. E?ZEXT (1) 
DECLARE end.execll.f;ian I.gOEHT(2) 
DECLbBE. arrival I. EVEET (3) 

ESTABLISH taskq TO.BE FIIFO.SET 
ESTABLISH oatq TO.BE WFO.SET 
ESTABLISH sye.tfms TO.BE T.PBOBE 

define i, krr-seed, exec..aired. tzmU.eeed, tr8k.countmr as W g e r  va 
let  arr.seed H0DE.V 
le t  exec.eeed = B.HODE+HODE.V 
l e t  trule.eeed = 2*19.WDEH?QDE.V 
define i n t  . &I&, low. exec. high-exec, lor. tr;ine, high- tram 

aa dauble xadablee 

read i n t  . arr ival  
read lon.exec, high.exec, 10X.traD8, high.traae 
write BODE. V, m. arrival Jm. exec,hQh .exec, lor. trans. Ugh. trap3 a8 

s t a r t  new c u d  
s t u t  new card 

i 3'6 d(8,1), /. / 

EST. PORTS 

define port.atila8 1-dim fnteger -7 
reserve: port. utu(*) aa OUT-DEGREE(HODE.V) 
fo r  i = 1 to RUT.DEGIiEE(H0DE.V) by 2, do 

ESTABLISH port.util(i) TLBE. LPROBE 
loop 
SET.TUtW exponentiaLf ( in t .ur lval .mr .eeed)  F0R.E arrkval  

while ever = ever , do 
WAIT. UETTIL . EYEHT 
SELECT.EVEETT.TYPE 

SELECT. EXT.EpEH1 

c-4 



36 
37 I .**> '  

38 
39 )I==>** 

40 
41 
42 
43 
44 
46 
46 
47 
48 
49 
60 
61 
62 

64 
66 
66 
67 
68 
69 
60 
61 

63 
64 
66 
66 
67 
68 
69 
70 3 1 * * > * 9  

71 
72 
73 
74 
75 8 '=I=> 

76 
77 
78 
79 
80 
81 
82 
83 
84 
86 
86 
87 
88 

63 '**>I 

62 

' end. trans * "a m?sszge has arrived 
if TRACE.L>2 SXAP 'eota',O,ld(VALUELg) aln;a 
if entrance.site(VALUE.E)= X0DE.V *'a local t a k  hafmtzr&vat€ 

HEASVRE time.v-arrival.time(V&UE.E) YITH.PRUBE e~8,%AaBe 
destroy the task called VUUFLE 

file the VUBE.E in SET(tas%q) 
if e,SET(taskq) = I 

always 'of n. SET(taskq) 

else "an external task has arrived 

"s t i r t  ts execute tha ner 
SET.TIHER exec.time(VALUE.E) IP0R.E ead.erscatiOn 

always ' 'of entrance. site OlbLUE. El 
cycle "of ever = ever 

'buffer.avai1' ''a rantad cp hu, an svxfilabla buffer. 

subtract 1 from P0RT.E 
let wait(OUT.ARC(P0RT.E)) = 0 "rei3et inter n o d a w  - 
f f TRACE. L>2 SNAP 'bf a V  , derxtination (f . SET (out4 , PIlBJl . E 0 

80 to beg.tran8 

" d t c h  to tmnsdS&It port 

' 'intiate 0 message tranaa&miOn 

SELECT.18T.EPEBT 

'end.message' "end of trmsmiseion deby 
remove first task from SET(outq) 
UEASURE 0 IITE.PROBE port.util.(PURT.E) 
SETALERT P0RT.E FOR-E end.trane, task *'an t&er zmdsi:evan 

if n.SET(oatq) > 0 go ta beg.tZans rlrpye 
cycle "of ever = ever 

I) if TRBCE.L>2 SXAP 'eott',demtination(taEk) ,idCWk) dXap 

'8nd.execution' "end of taak execution 

remove the firet taak from.SET(toelal) 
if TRACE.L>2 SXAP 'eote'.Q,id(taak) alnope 
if n.SET(taskq) J=Q 

always "of n.SET(taskq) 
if entrance.site(task) = H0DE.V "RTB it a local t28k 

"more tasks to pracase 
SET.TIYER exec.tlme(f .SET(taskq)) F O B 3  enQaascotion 

=SURE time.v-;rrrival.time(taak) VITH.PROBE sp.tlme 
destroy the task 

let destination (task) = entrance. atte(t;rsk) 
file task in SET(outq) 
if n.SET(outq) = 1 go W beg.trm anaye 

else "retarn task to -.host 

always ' of entrance. site(task) 
cycle 

' arrival 

' 'of ever = ever 

SET. TIHER exponential. f (int . arrival.. arr . need) FOR.E 8zzbral 
create a "new" task 
let arrival. time (task) = time. v 

c-5 



89 
90 
91 
92 
93 
94 *s* * > r 9  

96 
96 
97 
98 
99 
100 
10 I 
ioa 

I04  
106 
10s 
107 
108 
108 
I10 
Ill 
112 ' '=>' 
113 
114 
116 
116 
117 
118 
I19 
120 
121 
122 
123 
124 
126 

ioa 

add I to taek.coaater 
let id(taek) = XODE.B*Ig0000 * txsk,cmntas 
let exec.tfme(task) = W0rm.f (l#.exec,kLgh-41x86.~BW 
let entrance. skte (tpaek) = H0DE.V 
let destination (taek)=radi.f (I, n. ho6te.arr. eeed) 
if TRACE.LX2 SXAP .tam* ,deatinaWn(taEk) .idCturk) a l . .  
if destfeat,ioe(taek) = H0DE.V 9'exe~~te the t;reB Inc9;llp 

file taek i n  SET (taekq) 
if n. SET(taskq) = I 

alwaye - ' 'of  n. SET (taakq) 

let length(taek) = nnif0rm.f (lov.trula,Mgh.tram?&tmuwLrp 

if n.SET(outq) = I go to beg.%rane alTay6 

'is iti the only tzsk 
SET. PIHER a a e .  time (%ask) Fm. E end .etxncntion. 

eles ''execute tank at a remote host 

file taek in SET(0otq) 

alnaye ' 'of  deetlnation(ta8k) 
cycle ' 'of ever = ever 

'beg.trane' "try to intiate a -age tram&sa%ntoe 

let PORT. E = SEL . PORT (destination (f . SET (outs> ) 
if bnffeP.full(IH.IIAC(PORT.E)) f 0 "the targ@% b d f m  3 s  rp 

SET.TIYW length(f.SET(oatq)) F0R.E end.msreeagge, 0: p X %  
IIEBSURE I IIT€I.PROBE porb.util(P0RT.E) 
SET.ALERT P0RT.E F0R.E etart.trane 

let rait(OUT.ARC(P0RT.E)) = I "e6t inter node 

"izcker nod= a n t  
elee ' ' buff er ie not available 

alrnye 
cycle 'Beyep = ever 

' 'of buffer. full (IX.ARC(PURT. El) 

SELECT. COH. EVENT 

'termination' ' 'print ata%tltics an& terminate 
write IOODE,V, AVG.P(eye.time) as 
for i = I to OUT.DEGRE(H0DE.V) by 2 

i 4.d (10,3) 

write Imnr.P(port.util(i))/a,AVO.P(port.Irl;ilW) a? i &a@ 
leave 

126 

128 for  each taek in SET(oatq) , do 
129 remove the task from SET(ontq) "and" 
130 for  each taek i n  SET(ta8kq) , do 
131 remove the taek from SET(taakq) "and' a 

127 loop 

132 
133 DISPOSE.BOFE 
134 end "of procese host 

C.2.3 The CP 
I procesca communication.procaeeor 
2 DECLARE end.meeaage I.EVEHT(1) 

C-6 

deetroy the task: loop 

deetmy the talc loop 



4 
6 
8 
7 
8 
9 
10 
I1 
12 
13 
14 
I S  
i6 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
36 
36 
37 

39 
40 
4L 
42 
43 
44 
46 
48 
47 
48 
48 
60 
61 
62 
63 
64 
66 
66 
67 

38 

d e f i n e  ever as a~! in%eger variable 
defina i, oatb. des.port. rond.buf2. epb.ctr, st.=-, O x a i l a b U  

dafSna baf .vec, oat.port, port.util a6 I-& fntegar mp 
ae integer variahlee 

EST .PORTS 

read outb &art new :card 
mite BODE.V, oatb 98 i 3.b 37,3 2./,/ 
reserve out.part (*) , port,util(*) ae OUT.gCBE(BODE.V) 
reserve buf .vet(+) ae in.degrea(BODE.V) outb 
for i = I to OUT.DEGREE(~E.V) by 2, do 

ESTABLISH ant.port(i) Ta.BE P'IFILSET 
ESTABLISH port,util(i) 1II1.BE. A.PIUlBE 

loop 
l e t  rd.buff = 2 
while ever = ever, do 

WAIT. UNTIL. EVEHT 
SELECT. EVEBT . TYPE 

SELECT. EXT .EvEFs 
'stiart.tzane' "a nsfghbor ha8.intla~ed o t m f e r  

let huffer .fall(OUl.ABC(PORT..E)) = 1 ' 'set in- n& v;rrizh 

cycle 

',end. trans ' "o.messap h?e arrived 
if TBBcE.L>2 SHAF %otii8, O.id(VALUE.E) almp 
if epb-ctr < out& "there I s  a free e - buffer 

* ' * *> 'a  if TRBcE.L>2 SAP' 'eota8. PORL.E. 0 always 
' 'of ever = ever 

' a * *> '  

let. b.uf .no(VALUE.E) = 0 
add I to spb,ctr 
let. buff er . f ull(0UT. ARC (PORT. E) 
ii wait(IH.BBC(P0BT.E)) = I 
alwaye ' 'of buffer. Lul l  

else "no e-buffer is arblble 
18% bRf.no(V,ALUE.E) = PORT.E+I 
let bai.vec(PORT.E+i) = XALUE.E 

"move the meesrge to a 8-buffer 
= 0 
"the Bource hae amit- 

'*inter node e 8ET.ALERT PORT.Ep1 F0R.E buffer.aVai1 

always 
let PORT. E = SEL.PORT (deetlnation (VALUE.E) 1 
f i l e  VALUE. E in SET (out. port (PORT. E) ) 
if n.SET(out.po~(POB.E)) = i go to beg.tr;ma 
cycle 

' 'of sbp . ctr  

alwzye 

'haff8r.avaj.l' "Lnpat buffer via output PORT3 is avail. 

subtract I from P0RT.E 

let wait (OUT .ARC (PORT. E) 1 = 0 
go to beg. trans 

a**> ' * if TRACE,L >2 SHAP 'bafoa, PORT.E,O a m p  

SELECT. INT. EYEHT 

c-7 



69 
80 ')**>'D 

61 r'==>ar 

62 
63 
64 
66 
66 
67 
88 
69 
70 
71 
72 
73 
74 
76 
78 
77 
78 
79 
80 
81 
82 
83 
84 
86 
86 
87 
88 
89 
90 "**>'* 
91 ''==>'' 
92 
93 
94 
96 
98 
97 
98 
99 

100 
101 
102 
103 
104 
10s 
108 
107 

109 
I10 

aoa 

ir TRBCE.L 
Y E A m E  0 WITH. PROBE gofi. u%.il.@[lLRT a El 
renave the V&€YE.E frm SEE$out.par%(PORT.~) 
SET.ALWT P0IT.E F0B.E end..lmm@, BALJJE-E 
let available = 0 
if buf.no@ALUE.E) = 0 '"i% is loGlt(pd. ie a rappa lmff%ir 

2 SX& *entt*, o,~d@&m.E] z i k -  

eubtract i from spb.ctr 
for  i = 0 t e  ie.degree(HOI)E.V)-2 by 2 *%la 
buf .vec(mod.f (rund.bPff+i,ip.degree(~E.B))+2) .L-- 0 
f i n d  the first casa i f  found 
let rund buff =mod. f (rund . bxtff+.f, fo.xiegree(NOaE-V?) +2 
add 1 t o  6pb.Ctr 
let buf no (buf . vec ( m d .  buff) 
let buf.sec(rand.bafr) = 0 
let buf f er . full (OUT. dRC (rand bUff-3) 
l e t  available = rrrnd.baif 

= Q 

= 0 

aluaye 
else "in the insport buffera 

let buffer . f all (OUT .ARC (bar . no CpdLaE. a-1) )=o 
let buf a vec (buf . a0 (VALUE. E)) = 0 
let available = ba3. no (VALUE E) 

alwaye 
if available &=Q and wait(IH.dRC(avlflable-1)) =: 1, 

alwaye 
if SET(oat.port(PORT.E)> l a  emptr cycle 1sTape 

SETALERT available F0R.E buffer.avail 

'beg.trme' 
if buffer. f 011 (Ill .AX (PORT. E) 1 =O 

let act. memeage = f . SET (out. poxt (PURT . E) 1 
if TRACE. L>2 SNAP 'bgtr., 0, id (act .meesage) 
HPASURE 1 VITH. GOBE port. util(PORT. E) 
SET. TIHER lengtih (act .mesaage) FOR. E 

end.meeaage, act .mteeaage, P0RT.E 
if ronting.matrix((H0DE.V. deetinatkon(;rtt,meseage)) 

&=YE 

.L= deetination(act .message) 
SETALERT P0RT.E P0R.E etazt.trane 

alvaye 

let wait (OUT. ARC (PORT. E l )  = I 
else 

aluaye 
cycle 

SELECT.CO(H.EIWIT 

'termination' 
mite B0DE.V ae i 3,s 11 
for I = I to OUT.DEGREE(B0DE.V) by 2 

write arp /,/ 
leave 

write Bm[.P (port. a t i l  (i) 3 /2,AVG.P(port.,atil(i)> as L 6, 

C-8 



C.2.4 The Executive Manager 
I procees to pxEC.yBHBGW 

defina-i , j , node as integw v&sblee 2 
3 
4 
6 
8 
7 
8 
9 

10 
11 
12 
13 
14 
I S  
18 
17 
18 
I 9  
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 

IHIT. TEELHEnm 

start maw card 

write a8 'node puameterrr*, / 
write .as 'n0ds.l.a. t L x c t  h 3 . t  1. t .t h . t  ..t epr i n m  output*,/. 

for i = I to 15 &te a8 ** 

no. sec. sec. sec. bee. rcec. buf portEl ports',/ 

IEIT -ODES 

work SILTUlE unite 

for  nnde = I to IP.HODE 

write ae *resd.%s', / 
write ae *node avg t 

SET. COBTROL node FUR .E temcbtstion 

3r i = I to 8 write ae .=a mite as /,/ 
port no. I port no. 3 portno.  6.. 

* p o ~  no. 7 port no. g a r / .  
na. exec t-.. msge util. m e p  atfl;. megs at i l . ' ,  

' mgs u t i l .  msge lltil.',/ 
for i = i t o  80 write as '=a 

TWYIUTE.RUH 

write ;ae /,/ 

end ' ' of proceaa EXEC.WGER 

c-9 



po8nt-eo-point natmrk lor exunpla 
neighbor l ist  (to (fronr , night ,  toluaf)) 
----------~-------u-------- 
--_----_-----------I_ 

f i 9 ,  2, 1.0) 
2 ( 9, 2, 1.0) 
a ( 10, 2, 1.6) 
4 ( 90. 2. 1.0) 
6 ( 11, 2. 1.0) 
6 ( 11, 2, 1.01 
1 ( 12, 2, 1.0) 
8 ( 12, 2, 1.0) 
9 ( 1, 2, 1.0) ( 2, 2, 1.0) ( 10, 2, 1.0) c 11, 2, 2.0) c l2, 2. 
10 ( 3, 2, 1.0) ( 4, 2. 1.0) ( 9, 2. 1.0) ( 11, 2, 1.0) c 12, 2, 

12 ( 7, 2, 1.0) ( 8, 2, 1.0) ( 9, 2. 1.0) ( 10, a. 1.0) ( 11, 2, 
11 ( 6, 2, 1.0) ( 6, 2, 1,O) ( 9, 2. 1.0) ( 10, 2. 1.0) ( a, 2, 

1 26.0 1.0 20.0 .l 2.0 
2 26.0 1.0 20.0 .I 2.0 
3 26.0 1.0 20.0 .l 2.0 
4 26.0 1.0 20.0 .l 2.0 
6 26.0 1.0 20.0 .l 2.0 
6 26.0 1.0 20.0 .l 2.0 
7 26.0 1.0 20.0 .1 2.0 
8 26.0 1.0 20.0 .1 2.0 
Q 

C.2,6 Example of Tracing Report 

c-10 



600.4048 
600.6496 aote( 0, 800016) 
500.8781 
SOO. 8781 
600.8781 
501.0846 
601.0846 
501.2622 
501.2622 
501.4i44 
601.4144 
601.4144 
601.4769 
601.6106 
601.6106 
601.684E 
601.7244 
602.3816 
602.4716 
602.4716 
602.8082 
602.8082 
603.0218 
603.0218 
603.1229 
608.1229 
603.1229 
603.4324 
603.8817 
503.9841 
604.4324 
604.6011 
604.8811 
604.8811 
604.9890 
606.9181 
606.9181 
606.9181 

aott( 3, SOOO18) 

.oat( ti, 300019) 

608.1992 

608.4010 tur( 2, 100022) 
508.8840 

608.2182 cot.( 0. 200021) 

508.8840 
608.9870 aot t (  2, 100022) 
608.9870 I 

507.3 
607.3 
507.3 
607.6 
608.3 
608.3 
608.7 
608.8 
610.0 
610.3 
610.3 
610.3 

9 
9 
9 
3 
7 
7 
!6 7 

17 
iE 
iE 
IE 

198 
‘98 
198 
I30 
‘89 
‘89 
‘33 eota( 0. ~ o o O I S )  
I38 
‘39 
I07 e o t t (  4, 400019) 
107 
107 

610.7470 
bfav - buffer available .......................... 6 
eota - e.o.taak.arrivaL a 
tofi - toek arrival 

.... 

rott( 0 .5uwlx )  

0, 3300011) 
0, i800011) 

0, :mooil) 

a - a.o.t.rk axecution eot t  - o .o .h .k  tr.ndar 

c-I1 



Refferences 

[Abra77] 

[Bask751 

[Bran791 

IBrya811 

[CACI76] 

[ Camp831 

[Chan77] 

[ChanSO] 

[Chow771 

[Coff73] 

[Dahl66] 

[Digi80] 
[Dims641 

Abramson, N.: aThe Throughput of PtacM Brudcuding Ch&&>* EEE !bans. 

Comm., Vol. COM-25,pp. 117-128, January 1977. 
Basket% F.,Chandy K. M., Mmtx Re and Palacios F,: &Open, C l ~ d a n d  Miad 
Network of Queues with Different CTcrssea of C&omers,* Journal of the ACM, 
Vol. 22, No. 2, pp. 148-160, April 1975. 
Bradwajn A. : “An Iterative Solution of Two - Dimeneimd BM-cued Death 
Processes,” Operations Research, Vol. 27, No. 3, pp. 595-605, May 1979, 

Bryant R. M. and Finkle R. A., “A Stable Distributed Scheduling A€gori%km,’ 

Second International Conference on Distributed Computing Systems, Paris, 
Prance, April 1981., pp. 314 - 323. 

C.A.C.1, 1978. 
Campeanu D. : “Performance Evakdiun of a Parallel File Sorting aUgm3izq” 
Msc. Thesis, Weizmann Institute of Science, Rehovot, Isreal, November 1983. 
Chandy K. M., Howard J. H. and Towsley D. F.: “Product-form and L.ocdBa&zrce 
in Queueing Netrporh,” Journal of the ACM, Vol. 24, No. 2 pp. 25ot283, April 
1977. 
Chandy K. M. and Sauer C. H.: “Compufafiond AIgmUm for Pmdrctifonrr 
Queueing Network, Communication of the ACM, VoI. 23, No. 10, pp. 573483, 

October 1980. 
Chow Y. C. and Kohler W. H. : “Dynamic Laad Balancing in Hamogelmraas 
Two-Processor Distributed Sydem, t, International Symposium on Cumplo[ter 
Performance, Modeling, Measurement and Evaluation, Yorktown Heights, New 
york, pp. 39-52, August 1977. 
C o 5 a n  E. G. and Denning P. J.: aOperating Systems Theory,’ Prentice-Hall 
1973. 
Dahl 0. J. and Nygraard K. : “SxMtvLA - An ALGOL - Based..Simul&*vn 
Language,U Communication of the ACM, Vol. 9, No. 9, pp. 671-678;September 
1966. 

Digital , Intel and Xerox: aThe ETmRNET,n September 1980. 
Dimsdale B. and Markowitz H. M. : “A Description of the SIMSCRlPTLruzguage,’ 
IBM Sys. J., Vol. 3, No. 1, pp. 57-67, January 1964. 

“Continuous Simulation and Combined Simulrrtion in SIMS-T U.,” 

R-1 



[Echh78] 

[Elli82] 

[Ens1781 

[Ens1811 

[Fay0801 

per2751 

[Fran77] 

[ G a11821 

[ G ave761 

[Gord78] 
[Gree72] 

Echhouse R. H. and Stankovke J. A. : “Issaea i n  Distrribded Processing. - An 
Overview of Two Woykshops>” Computes, January 1978, pp. 22 - 26. 
Elliot D., Kopec S.: 
Design,pp. 121-128, October 1982. 

Enslow P. H. : “What i s  a Distributed D d a  Processing System?” Computer, Vol. 
11, No. 1, pp. 13-21, January 1978. 

Enslow P.H. and Saponas T.G.: “Distributed and Decentralized Control in  Fully 
Distributed Processing Systems, Final Technical Report, GIT-ICS-81/02, Georgia 
Institute of Technology, School of Jnformation and Computer Science, Atlanta, 
Georgia 30332, 1981. 

Fayolle G., King P. J. B. and Mitrani I.: =The Solution of Certain Two - 
Dimensional Markou Models,* The 7-th IFIP International Symposium on Computer 
Performance, Modeling, Measurements and Evaluation, pp. ,283-239, may 1980. 
Herzog U., Woo 1. and Chandy M. : “Solution of Queueing Problem by aRecuraiue 
Technique,” IBM J. Res. Development, Vol. 19, No. 3, May 1975. 

Franta W.: “A Process View of Simulation,” North-Holland, New York, 1977. 

Baller B. I, : ,“Concurrency Control Performance Issues, ’’ Phd thesis, University 
of Toronto, September 1982. 

Gaver D. P. and Humfeld G. : “Muitjtype Mdtiprogremming Models,” Acta 
Informatica 7,pp. U1-121, 1976. 

Gordon G. : “System Simulation, ” Prentice-Hall, Inc. Englewood CE, NJ., 1978. 
Greenberg S. : “GPSS Primer,” John Wdey & Sons, Inti New York, 1972. 

“One Chip Carries Out Bhernet ptOtOCdj” Electronic 

[Hindi821 Hindin H.J.: “Dual-Chip Sets Forge Vital L i d  far Ethernet Local-Network Scheme, ” 
Electronics, pp. 89-91, October 1982. 
Jensen E. D. : “The Honeywell Ezperimeniaf Distributed Processor-An Uveruiew, 
Computer, Vol 11, No. 1,pp. 28-38, January 1978. 
Kantor M. : USimulation and Performance Evuluation of Basic 2P.L Algorithm, 
Msc. Thesis, Weiemann Institute of Science, Rehovot, Isreal, September 1983. 

Kiviat P. 3.: “Development of Discrete Digital Sirnulatian Languages,” Simulation, 
Vol VIII, No. 2, February 1967. 
Mleinrock L. : ‘?&eueing Systems Vol. 1 ; Theory,” Wiley, New York, 1975. 

Mleinrock L. and Gerla M.: W o w  Control: A Compurutive Surveg) ” IEXE Trans. 
Comm., Vol. COM-28, No. 4,pp. 553-574, April 1980. 

[Jens78] 

[Kan83] 

[Kivi67] 

[Klei75] 

[Klei8O] 



! 

i 

Frat801 

[Law 791 

[Livn82] 

[Metc75] 

[MacD73] 

Ficau~OI 

[Me183a] 

[Me183b] 

[Ni 811 

[Prit69] 

[Puzi73] 

[Rals65] 

[Robe701 

Kartzer A. and Hammerstrom D. : 
COMPCONSO, pp. 647-654, September 1980. 
Law A. M. and Carson, J. S. : “A Sequential Procedure for Determining the Length 
of a Steady-State Sirnulation,” Operations Research, Vol. 27, No, 2, pp. 1011- 
1025, Sept.-Bct. 1979. 

Levy E. : 

“A S t d y  of Leaels’ngi” Proceedings of 

“The Simdation Model for a Concurrency Control Afgorithm of 

a Distributed, Multiple Copy Database, ’ Msc. Thesis, Weizmann Institute of 

Science, Rehovot, Isreal, May 1982. 

Limy M. and Melman M. : “Laud Balancing in Homogeneous Broadcctst 
Distributed Systems, ” in Proc. of Computer Network Performance Symposium, 
College Park, Maryland. April 1932, pp. 47-55. 

Metcalfe R. M. and Boggos D. R. : ?Ethernet: Distributed Packet Switching for 
Local Computer Networks,” Communication of the ACM, Vol, 19, No. 7, pp. 

- 

395-404, July 1976. 

MacDougall M. H. and MacAlpine J. S. : “Computer System Simulation with &pol 
) ”  Proceedings Symposium on the Simulation of Computer Systems, pp. 92-1.03, 
June 1973. 

M~QUillan‘J. M., Richer I. and E. G. Rosen “The New Routing Algorithm for the 
ARPANET,” IEEE Trans. Comm., Vol. COM-28, No. 5,pp. 711-719, May 1980. 
Melmnn M. and Limy M. : “DISS User Guide,” Weizmann Institute of Science, 
Rehovot, Israel.(preliminary printing). June 1983. 
Melman M. and Limy M. : “Sirnufatian Models of the Bhernet Protocol, ’’ in Proc. 
of Summer Computer Simulation Conference, Vancouver, B.C., July 1983 

Ni L. M. and Abni K. : “Nonpreemptive Load Balancing in a Class of Locd 
Networks, ” Proceedings of the 1931 Computer Networking Symposium, December 
1981, pp. 113 - 118. 

Pritsker A, A. B. and Kiviat P. : “Simulation with GASP I .  Prentice-Hall, Inc. 
Englewood Cliffs, NJ, 1969 

Puzin L.: “Presentation and Major Design Aapects of the CYCLADES Computer 
Network,’ in Proc. 3rd ACM-EEE Commun. Symp. Tampa. Fly pp. 8887, 
November 1973. 

Ralston A. : “A Fimt Course in Numerical Aaulpia, ,’ McGraw-Hill, 1965. 

Roberts E. G. and Wessler B. D.: crComputer Network Development t o  Achieve 

R - 3  



[Schw80] 

[Saue80] 

[Scho78] 

[ St on771 

[Stuc83] 

puss2331 

[Tane81] 

[Teic66] 

[Wong781 

[ Zeig761 

Resource Sharing,” in 1970 AFPS Cod. Proc (SJCC), Vol. 36,ppC543-549. 
Schwartz M. and Stern T. E. : aBouting Techniques Used in Commer 
Communication Networks,” E E E  Trans, Comm., Vol. C0M~2.8, No. 4, 
pp. 539-552, April 1980. 
Sauer C. H, and Chandy K. M.: aAppruximate Solution of Queueing Models,” 
Computer, Vol. 13, No. 4, pp. 25-32, April 1980. 
Schoute F. C. and McQuiUan J. M. : “A Companion of Information Policies for 
Minimum Delay Routing Algorithms, ” IEEE Transactions on Communications, 
Vol. Corn-26, pp. 1266-1271, August 1978. 
Stone H. S. : “Multiprocemer Scheduling with the Aid of Network Flaw 
Algorithm,” IEEE Trans. of Software Eng., Vol. SE-3, No. 1, January 

Stuck, B. W.: “Calculating the Mazimurn Mean Data Rate  in Local Area 
Networles, Computer, Vol.16,Number 5, pp. 72-76, May 1983. 
Russell E. D., Editor : “SIMSCRIPT K5 Programming Language, ” C.A.C..hc., 
Los Angeles, Ca, 1983. 

1977, pp. 85-93. 

Tanenbaum, A. S. : “Computer Networks, ”Prentice-HalI, Englewood Cliffs, N.J. 
1981. 
Teichroew D. and Lubin J. F. : “Computer Simulation - Discuaaion of the 
Technique and Comparison of Languages,” Communication of the ACM, Vol. 9, 
No. 10, pp. 723-741, October 1966. 
Wong J. W. : “Queueing Network Modeling of Computer Communicution 
Networfcs, ACM Computing Surveys, Vol. 10, No. 3, pp. 344-351, September 
1978. 
Zeigler B. P.: “Theory of Modelling and Simulation,” John Wiley, New York, 
1976. 

, 






