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Abstract. The goal of our work is to create a tool that easily allows users to distribute large scientific compu-
tations in metacomputing environments. To achieve this goal, a number of difficult implementation issues must
be addressed, which may explain the relative lack of complete tools addressing this purpose. Our tool relies on
the simple master worker paradigm, and we show that this paradigm is nicely suited for performing many of the
requisite tasks of our metacomputing tool. We describe an implementation and present a case study showing the
paradigm’s effectiveness in solving large scientific computing problems.

1. Introduction

As a result of decreasing computer hardware costs and the increasing connectivity between com-
puters, typical users now have access to more computational resources than ever before. When
large sets of resources are connected by local or wide area networks or the Internet, they can
be assembled into “metacomputers” and used to solve large and complex scientific computing
problems.

Before users can take advantage of metacomputers, however, there are numerous issues that
must be confronted. To bring together computational resources to attack a single problem, ex-
isting algorithms must be made to work in a distributed fashion. The problem of distributing a
computation has been studied and is understood in the context of traditional computing envi-
ronments, but less is known about how to effectively distribute computations in a metacomput-
ing environment. Projects such as Condor [LBRT97], Charlotte [BKKW99], Legion [GFKH99],
SNIPE [FMD99], MOL [RBD*97], and Globus [FK97] all provide basic software infrastructure
for supporting metacomputing. For application programmers, however, using this infrastructure
to build a metacomputing application can be quite difficult. The goal of our work, then, is to
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develop a complete, easy-to-use tool whereby users can distribute large, diverse scientific compu-
tations in a metacomputing environment. The goals of this project are quite similar to that of
the EveryWare toolkit [WBK*99].

The primary purpose of this paper is to show that the implementation difficulties encountered
when distributing computations on a metacomputer can easily be resolved through the use of
the master-worker paradigm. Furthermore, we describe our implementation of a master-worker
framework that enables users quickly and easily to build master-worker applications that will run
on metacomputing platforms.

The paper is organized as follows. In Section 2, we describe the distinguishing characteris-
tics of our target computing environment, we mention features of an ideal parallel metacom-
puting tool for distributing large scientific computations, and we discuss the degree to which
the master-worker paradigm can achieve this ideal. Section 3.2 describes the framework from
which metacomputing-based, master-worker applications can be easily built. In Section 4, we
demonstrate how to exploit algorithm characteristics in order to build efficient master-worker
implementations. Section 5 presents a case study showing the effectiveness of the master-worker
approach in solving a complex mathematical optimization problem. We conclude by giving some
future directions of research.

2. An Effective Paradigm for Metacomputing

The term metacomputing is generally used to denote the idea of bringing together diverse, het-
erogeneous, possibly geographically distributed computing environments in a seamless fashion
in order to attack large-scale computing problems. A metacomputer differs from a traditional
parallel computer in a number of ways, but two characteristics are important to this discussion:

— Dynamic availability. The quantity of resources available and the amount of computation
delivered by a single resource may vary over time. Participating resources may also disappear
without notice.

— Heterogeneity. Resources may have varying physical characteristics, such as architecture,
operating system, amount of memory, and processor speed.

2.1. A Parallel Metacomputing Tool

The dynamic environment of a metacomputing system raises the need for resource management
software that detects when processors are available, determines when they leave the computa-
tion, and matches jobs to available processors. Parallelizing a computation involves breaking
the computation into elementary tasks, scheduling these tasks, and making the results of the
tasks available. Therefore, to enable parallel applications to run on metacomputers, we require a
tool that performs resource management, facilitates the decomposition of the problem into man-
ageable computational subtasks, and enables the exchange of information between processors.
Ideally, this parallel metacomputing tool should have the following characteristics:

() Programmability. Users should easily be able to take an existing application code and
interface it with the system.
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(TT) Adaptability. The system should transparently (to the user) adapt to the dynamic and het-
erogeneous execution environment. Thus, new resources of varying types should be seamlessly
integrated into the computation at any point.

(TIT) Reliability. The system should perform the correct computations in the presence of proces-
sors failing.

(IV) Efficiency. The system should be effective in the high-throughput sense [LR99]. That is, the
resources should do useful work over long time periods.

In a heterogeneous and unreliable computing environment, building an efficient high-throughput
system is a more realistic goal than aiming for traditional high-performance computing metrics
such as FLOP rates. The focus of high-throughput computing is on the amount of useful work
done over long time spans. Since the problems that we target to solve will require days or weeks
of computing time, it makes sense to build a system that is effective on this time scale.

2.2. The Master-Worker Paradigm

In this section, we address the effectiveness of the master-worker paradigm in light of its ability
to meet each of the goals of our parallel metacomputing system.

The master-worker paradigm is very easy to program. All algorithm control is done by one
processor—the master. The user need not be burdened with the difficult issue of how to dis-
tribute algorithm control information to the various processors. Moreover, the typical parallel
programming hurdles of load balancing and termination detection are circumvented. Having a
central point of control facilitates the collection of a job’s statistics. Furthermore, a surpris-
ing number of sequential approaches to large-scale problems can be mapped naturally to the
master-worker paradigm. Tree search algorithms [KRR88], genetic algorithms [CP98], parameter
analysis for engineering design [ASGH95], and Monte Carlo simulations [BRL99] are just a few
examples of natural master-worker computations. All these features increase a system’s ease of
use, accomplishing goal (I) of our parallel metacomputing system.

Programs with centralized control are easily able to adapt to a dynamic and heterogeneous
computing environment. If additional processors become available during the course of the com-
putation, they simply become workers and are given portions of the computation to perform.
Having centralized control also eases the burden of adapting to a heterogeneous environment,
since only the master need be concerned with the matchmaking process of assigning tasks to
resources making the best use of the resource characteristics. Thus, we are able to accomplish
goal (IT) for our parallel metacomputing tool.

Using the master-worker paradigm, we can easily achieve goal (ITT) of our metacomputing tool
and ensure that the computation is fault-tolerant. If a worker fails and is executing a portion
of the computation, the master simply reschedules that portion of the computation. A small
difficulty is that the basic master-worker paradigm is not robust in the presence of failure of the
master. To overcome this liability, the state of the computation can be occasionally checkpointed.
This is a simple matter, since all state information is located in the master process.

Attaining efficiency of our parallel metacomputing tool (goal (IV)) is not completely straight-
forward, but the master-worker paradigm can be used to build efficient implementations in the
high-throughput sense. In this context, there are two main roadblocks to efficiency: scalability
and task dependence. The master-worker paradigm is not scalable, since as the number of workers
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increases, there may be a bottleneck at the master, because it attempts to deal with the many
requests from the workers. By task dependence, we mean the degree to which the start of one
task computation depends on the completion of other task computations. A high degree of task
dependence can greatly decrease efficiency in metacomputing environments, since processing and
communication times of tasks and results are highly variable. The combination of this variability
and task dependence can result in a large number of idle processors that are waiting on the com-
pletion of a small number of tasks. To overcome the potential problems with the master-worker
paradigm in a metacomputing environment, it may be necessary to exploit certain characteristics
of the parallel algorithm. These characteristics may be inherent in the algorithm, or the algorithm
may be modified in order to highlight these characteristics.

One algorithm characteristic that can be exploited is dynamic grain size, which refers to the
ability to break the computation into portions of work of variable size. We can use a dynamic
grain size in order to increase a program’s scalability. For example, in a tree search, the master
can assign larger portions of the tree to each processor, reducing the rate at which the processors
make work requests. However, this contention reduction technique comes at the expense of a loss
in algorithm control, since workers now process for longer amounts of time without any feedback
on whether their search is useful. Section 4.2 gives a case study showing the importance of this
algorithm characteristic.

A second algorithm characteristic that can be exploited is an incremental data requirement,
referring to the situation in which a large amount of data is required to initialize a worker
process, while each individual task can be defined by a relatively small amount of additional
data. Scalability problems at the master can stem from the large amount of network traffic
to the workers. Only passing the incremental data required for the task reduces the necessary
bandwidth and increases the scalability.

A final algorithm characteristic that can be exploited is a weak synchronization requirement,
or a low task dependence, meaning that the ability to execute a task does not depend on the
completion of a large number of other tasks. In a cutting plane algorithm for stochastic pro-
gramming [KW94], each iteration consists of a number of tasks. However, the correctness of the
algorithm does not depend on all of the tasks completing before proceeding to the next iteration.
The synchronization requirement can be reduced, and the efficiency increased, by starting the
next iteration after only a certain number of the previous iteration’s tasks have completed. The
significance of exploiting this algorithm characteristic will be demonstrated in Section 4.1.

Note that increasing the efficiency of the algorithm by increasing the grain size or by reducing
the synchronization requirement may actually worsen the basic algorithm; more tree nodes might
be explored or more iterations required. This algorithm deterioration is made in the hope of
obtaining a higher parallel efficiency and lower overall computation time. Users of metacomputers
and the master-worker paradigm should be keenly aware of this tradeoff, however.

One final point can be made in the case where the task dependencies of a computation can
be grouped into “work cycles”, where the whole algorithm is blocked until a certain set of tasks
is completed. As noted before, ideally the parallel algorithm would not require this much task
dependence. If work cycles are unavoidable, and tasks in a work cycle are not of equal size, or the
processors performing the tasks are not of equal speed, then many processors may be left idle.
An advantage of using the master-worker paradigm in this case is that the master can attempt
to balance the work cycles by varying the size of the tasks sent to various processors. Pruyne and
Livny [PL96] have made a similar observation.



