A Service Migration Case Study:
Migrating the Condor Schedd

Joe Meehean and Miron Livny
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706
{j meehean|m ron}@s. w sc. edu

March 11, 2005

Abstract

Service migration has become an important topic due thegisiterest in both service-
based architectures and mobile computing. We have idahtifie core problems asso-
ciated with migrating a service: packaging the service t@saand data in a fashion that
allows it to be restarted at a remote site and locating aceafiter it has migrated. Many
implementations of service migration assume homogeneosisanchitectures as well as
uniform file access. Additionally, some implementationguiee that migration occur in
kernel-space. We require that a service capture its owa g&hg configuration files and
operation logs. This state is then marshalled to be machahétecture independent as well
as independent of any file system or mount point. We call #ghniqueservice-defined
logical checkpointingit occurs entirely in user-space and significantly easesrtigration
of a service. We mobilized the Condor High Throughput Sy&efstributed scheduling
service (schedd) to illustrate the use of service-defingat#b checkpointing to migrate a
service. Further, we created a specialized Condor commahdssociated Condor job that
can be used to migrate a schedd to a specific host or to a hastingaan arbitrary set of
requirements, including CPU load.

1 Introduction

Services and service-based architectures are becomimgi@asingly popular way to im-
plement distributed systems. Web developers are creghplgcations using the distributed
web service approach offered by J2EE [4] and .Net [6] sohstid he Open Grid Services
Architecture details an extension of web services for ti, gr which grid functionality is
provided by a series of transient and stateful grid serités Several operating systems
are implemented using a local service based architecturiiding Kea [30] and ExoKer-
nel [13]. In addition, the recent popularity of P2P conteistrébution networks, such as
Kazaa [5], has caused many users to install peer-basedeg their desktop machines.

This new reliance on services has created a need for a maustrbtand of service; ser-
vices must be mobilized. Server-side service mobility mayubed as a load balancing
technique. Generally a service is bound to a particularesesv cluster of servers. In-
creased demand for a given service may cause a poor perfoemarspecific server while
within the same server room other machines remain relgtids. Additionally, it is occa-
sionally necessary to take a server offline for maintenaBegvice mobility would allow
a given service to migrate to another machine while maimeaaccurs and migrate back
when maintenance is finished. Client-side service mohalipws more freedom for an in-
creasingly mobile computing population. A user may wish igrate a service from their
desktop to a laptop for roaming, or to migrate a service froranaote desktop to a local
desktop. Or more dynamically a user may wish to run a serldaedoes not want the
service to interfere with interactive tasks the user is mignA service could be migrated
from active desktops to inactive desktops throughout thesmof the day.

We have identified problems associated with migrating aiseand have applied a series
of techniques to solve them in user-space without a unifaew wf the file system. Fur-
ther, we have mobilized the distributed scheduling serefadde Condor High Throughput
Computing System to test the effectiveness of our approach.

In the remainder of this paper, we refer to the machine a eeng migrating from as
the sourcemachine and the machine a service is migrating to agdtget machine. In
Section 2, we discuss our basic designs goals. Section 3dewan overview of our
service migration techniques. We provide a brief overviétne Condor High Throughput
Computing System in Section 4. In Section 5, we delve intoitti@ementation details
of mobilizing the distributed scheduler. Section 6 prosigerformance metrics of the
mobilized service. We briefly discuss related work in Sec#i@nd lay out our future work
and conclusions in Section 8.

2 Design Goals
At the outset of this project we set forth a series of desigalgyaestrictions, and assump-
tions for completing service migration. Many of these gaaksinfluenced by the Condor

High Throughput Computing System [29] because in the Cosgsiem homogeneity can
rarely be assumed. Our basic design goals are as follows.

1

e A service should behave in the same manner after migrating.

e A mobile service does not require a specialized compiler.

e Migrating a service will occur entirely in user-space.

e A service wishing to be mobilized may be modified to ease caypguts state.

e A migrated service will have no residual dependencies osdliece site. This means
that there will be no need for contact between the migratedcgeand its previous
host after migration.

e A migrated service cannot assume uniform access to a distdlile system.

e The data migrated with a service cannot assume the samdiogesgstem or archi-
tecture.

e Itis acceptable for the service to be temporarily unavéelaliring migration.

Several of these goals may seem arbitrary or conflicting satteenpt to justify our de-
sign choices. We anticipated that modifying a service iseedasan modifying all of the
operating systems the service may wish to migrate to. Fyrgeeforming migration in
kernel-space may make a migration framework fragile andeqitgble to breakdowns be-
tween versions of the same kernel let alone other operayisigss [12]. Additionally,
we felt that attempting to capture the state of a servicegusispecialized compiler would
limit our ability to migrate services written in non typefsdanguages such as C/C++ [26].
While distributed file systems are popular we felt it wouldri@@ve to assume that a mi-
grating service would have homogeneous access to its hoengytem at every host. A
service’s home file system may be unavailable or mountedréifitly at the target site. The
theme of our goals is heterogeneity and with that in mind wested that a service’s data
should be migrated in an operating system and host archieectdependent manner. A
service may be ported to several different operating systmmd architectures. Therefore,
when migrating a service we cannot assume that the serda&swill be interpreted the
same way on the target site. Finally, we allow the user toceai brief interruption in a
migrating service. Adding service redirection at both tleework and application layers
may allow us avoid this interruption but would violate ousdg goal of having no residual
dependencies.

3 Architecture

We have identified two core problems associated with miggadiservice: physically mov-
ing the service binaries and data in a manner which allowgxXecution at a remote site
(Section 3.1) and locating the service once it has migrédedt{on 3.2).

3.1 Service-Defined Logical Checkpointing

Physical process checkpointing would allow us to suspenidresume a service, but vi-
olates many of our basic design goals. Some implementatibpBysical checkpointing
require that the checkpointing occur in kernel-space [D2,20], while others require re-
mote kernel calls, which violates our goal of removing rasidlependencies [16]. Virtual
machine solutions checkpoint a guest operating systeme’'syistem as well as its pro-
cesses, but require that a service always run in a virtuahmad15]. This requires either
significant slowdown or the assumption that a service wilende migrated to a machine
with a different architecture. The Tui System [26] providemechanism to translate a pro-
cess’s data into an architecture independent intermefiatg but requires a specialized
compiler and works only for type-safe programs.

Since our design goals allow changes to a service we havdetkthat a service should
be able to contribute to checkpointing. We define our cheickimg techniques aservice-
defined logical checkpointingessentially, the service captures its own state in a servic
dependent manner. This state must be translated into amiedtigate form breaking all
dependencies on uniform file access, kernel version, ardtecture. Finally, this mar-
shalled state must be packaged along with any files needelebgetvice into a single
checkpoint file.

3.1.1 Mobile Service State Capture

A service’s state is divided into static state and dynamatestThe static state of service
are values which are not likely to change over the run timéefervice. Static state could
include values like the service’s name, logging level, dredlocation of helper programs.
In contrast, a service’s dynamic state are values whichgdh&equently, as frequently as
several times a second. Dynamic state could include vakesthie number of requests cur-
rently being serviced, a list of open files, and the state oferii requests. Static state can
be thought of as read-only while dynamic state can be readvattdn. Due to their differ-
ent nature, it makes sense to capture these states differ8tdtic state can be effectively
captured even before a service begins executing, whilendynstate must be captured in
real-time.

Static service state can be captured in configuration orgeti@s files. Configuration files
allow users to customize applications or libraries fortspecific needs, and for this reason
many applications and code libraries already use configurdites. These files range in
size and complexity from the dozens of logically linked fiteseded by Apache Struts [1]
to the relatively simple configuration file for Emacs [2].

Dynamic service state can be captured using logging or gungy Logging is the act of
writing events in the order they occur to non-volatile sgra Typically logging is done
along-side actual processing and stored in a separate pl@wale debugging information
and failure recovery. Write-ahead logging is used by da@bdo provide transactional
logic and failure recovery [23]. The Log-Structured filetgys (LFS) differs from database
transaction logging in that the actual file system data igestn a log format [25]. Using

3

both LFS and database logs as a model, a service can expageshto its dynamic state
as updates to an operations log file. After migration, a sermeed only replay its log to
reconstruct its dynamic state.

3.1.2 Marshalling Service State

Once a service’s state is captured it must be migrated watehvice. For performance and
efficiency a service’s state may contain assumptions abeutrtvironment it is executing
in. These assumptions include things like the locationlwfliies, the architecture of the
host machine, the mount point of a distributed file systendl, thie location of service-
specific files and directories. These assumptions must bevesirfrom a service’s state
to produce a host-independent checkpoint. Therefore véceér state must be marshalled
prior to checkpointing. The details of marshalling are sgrdependent, however, the basic
principles are the same.

Base data types, integers, floating-point numbers, and yé@spbmust be modified into a
machine agnostic representation. Flat data types, a effi@se data types maintained in a
structure or array, must be modified in such a way that thecborder can be determined at
the remote host. Complex data types are structures that omgtin pointers or references
to other structures which must also be marshalled. Thera anee variety of techniques
for marshalling base, flat, and complex data types [22]. Gimgthe appropriate technique
is service dependent and relies heavily on how the servitats is captured.

If we do not assume uniform file access between migrationtpairen file paths require
a specialized marshalling scheme. When discussing filespeg¢hare referring to absolute
file paths and believe this simplification is legitimate grecrelative file path can be easily
converted to an absolute file path. One might consider a fille pdlat structure since it
is composed of an array of characters. However, in servicgation a file path is more
closely related to a complex data type in that special cargt reitaken not to lose impor-
tant context. The path portion of a file name provides corftaxthe file, if it is located
in abi n directory then the file is likely an executable binary. Farflsome of this con-
text is only relevant at a particular host. For example tht@ pansup/ vdt / gl obus/
may be the location of the Globus program files at host A, bist path may be mean-
ingless on host B. Relations between files may be inferredhbyr {paths names, but
without extremely intelligent software the overall cortéxlost. For example, the files
kbat t | eshi p andkast er oi ds may both reside it s/ kde/ bi n/ which implies a
relationship, but it would be difficult for a program integting this relationship to rec-
ognize that this path represents the binary executableld& version 3.2. To prevent
losing this context and to decouple a file’s path from its entrmachine we can replace
portions of a path name with a macro. The patmsup/ vdt / gl obus/ could be re-
placed with$GALOBUS/ , or the path s/ kde/ bi n/ kbat t | eshi p can be modified to
$KDE_3_2/ bi n/ kbat t | eshi p. Many application already use a similar approach to lo-
cate needed libraries. For example, the Apache Jakartaaapplication server uses an
environment variable) AVA_ HOVE, to determine the location of the Java Runtime Envi-
ronment [8].

Demarshalling these path names requires that a host haegpinepriate macros defined.
These macro definitions encapsulate important informatimwout a host, such as the loca-
tion of code libraries and helper binaries. It would be veffialilt to migrate a service to
a machine that the service knew absolutely nothing abowgs¯os can be considered
an addition to the minimal set of information needed to desmali a service at an arbi-
trary host. Other items in this minimal set include opemgtgstem version and machine
architecture. Further, decoupling files from their absohaths allows us to migrate these
files with a service when they are not already stored at tlyetaite. The file migration
implementation can set the macros at the remote site to fithe location of the newly
migrated files. Even if a file is stored in a distributed fileteys and reachable from a
target site, the distributed file system may only be acckssib a high latency connection
making file migration to a local file system a performance iovement.

3.2 Mobile Service Location

A common solution to general service location is to employmimg service that maps a
persistently named service instance to a transient IP asldmed port number. DNS [19],
a classic example, maps dot-separated hierarchical nam@&saddresses for email and
WWW. Another example is Sun’s Port Mapper [18] which mapsraise name to the port

number on which the service is currently accepting requests

Although naming services provide a solution to generaliseriocation, mobile services
introduce an added difficulty by potential changing theiat®l port number frequently. A
naming service’s effectiveness in providing a locationganobile service is limited by its
latency in updating its service mappings. In addition,rdkeof a mobile service must be
prepared to reconsult the naming service any time a coromefails.

4 Condor

We mobilized the distributed scheduling service of the @ondigh Throughput System
to test using our techniques for actual service migratiomadic knowledge of Condor is
necessary to understand our implementation of a mobilizedduling agent. This section
provides a brief overview of Condor.

4.1 Condor Architecture

The Condor High Throughput Computing System is composecoflaction of machines
loosely coupled into a pool. The machines in a pool work togeto collectively provide
high throughput processing, measuring work accomplismédirs not milliseconds. Each
pool must have at least one machine representing each ajltbeihg roles, see Figure 1.
A submitmachine accepts job submissions from users and must rigctieeldthe Condor
distributed scheduling service. Agxecutemachine runs jobs submitted to Condor and
must be running thatartd the Condor distributed computation service. A startd & th
representative of the machine’s owner, enforcing the olwmalicy regarding when jobs

Central Manager

Match
Maker

Matchmaking
Protocol
Submit Machi:% Execute Machine
Schedd Binding Startd
— Protocol e
Fork Fork
Shadow Execution Starter
Protocol

Fork

User Job

Figure 1: Machine Roles in a Condor Pool

may be run on the machine, who can run jobs on the machine, arah\jobs to give
priority to. The third and final role in the Condor pool is thentralmatch maker The
match maker matches jobs submitted to the schedds with macksources represented
by the startds. A machine may serve many roles and there casaine submit and execute
machines, but at the present there is only one match mak@opé[29].

Because a Condor pool may consist of machines with diffespatating systems and ar-
chitectures the match making language must be machine endept. Condor uses the
ClassAds [24] language, which was inspired by classifieceabements, for describing
both jobs and resources. ClassAds are composed of a seaésilodiite-expression pairs,
e.g.,0pSys = LI NUX. The schedd converts a job submission description into algss
ad, stores it internally, then transmits it to the match més&ematching. On the execute
machine, the startd converts the machine specificationshendwner’s policy into a ma-
chine class ad and also submits it the match maker. The ma&kmm turn attempts to
match job ads to machine ads. When the match maker finds dfgsstch it notifies each
party, indicating that a match has occurred. However, tta iimding between job and ma-
chine is negotiated by the schedd and startd, if an agreerartte reached a match is not
made. After binding has taken place the schedd forks a psaraked theshadowwhich

is responsible for staging the job to the remote executitenas well as providing remote
access to any files the job may require. On the execute mattterstartd forks a process
called thestarterwhich is responsible for setting up the execution environtyferking the
job, and monitoring the job’s execution.

4.2 Advantages of using the Schedd as an Example Implemeniait

The schedd is a good example for illustrating service migmnatising our techniques be-
cause it has several desirable features of a complex seiMeeschedd maintains several

6

Migrate

schedd_migrate
Logical)
Checkpoint schedd_checkpoint schedd_restart
csi csu csar jobQMD configMD
\ I |
Install/Uninstall Marshall/Demarshal

Figure 2: Migration Infrastructure

files related to a job’s execution. These files must be mignaith the schedd allowing us
to test our path marshalling. Additionally, the schedd $ookher processes, meaning the
process binaries must be migrated and their remote patesnieed. Further, the schedd
already captures its state using an operation log and a coafign file. Basic and flat
data types are already in a machine independent form betaigdeg file is written in a
marked up version of ClassAds. The schedd already loggirgfaidure recovery mecha-
nism because it is designed to work in a dynamic environméetrg/resources may crash
or be reclaimed. Additionally, due to the heterogeneityesiources within a Condor pool,
which can span several networks and administrative dom#iesschedd is dynamically
configurable using both configuration files and environmaniables. Also, a schedd pe-
riodically sends a portion of its state to the match makeiuiing its IP address and port
number. When a service or user wishes to locate a specifidddhgueries the match
maker. There is only one matchmaker per pool so their is neddatency involved in
updating replicas, which satisfies our requirement for all@ncy naming service.

5 Implementation

Naming is handled by the match maker, and state capture ddthby a combination of
the schedd’s operation logpbQ, and schedd’s configuration filepndor.config Only state
translation and the migration infrastructure remainecdetonplemented, see Figure 2. State
translation is the required marshalling and demarshadifripe schedd’s captured data for
execution at the target site. While the migration infrastinee is the combination of many
components, including state translation, to logicallya{p®int the schedd, move it to the
target site, and restart it.

5.1 Install/Uninstall

A core set of functionality required by logical checkpoingiis packaging all the service’s
components into a single file, cleaning up the packaged casengs, and unpacking this
single file into a set of service components at the target Siteés can be accomplished
using an archiver, an installer, and an uninstaller

5.1.1 Archiver

A schedd service is more than just a binary, it is compose@\rsl parts including the
condorconfig, jobQ, individual job files, and debugging logs. Foseeand efficiency
these files need to be packaged into a single file for comessid transmission. We
have implemented the Condor Schedd ARchieegrto collect the needed components,
package, and compress them into a single file. caedafig details the locations of all of
the files needed by the schedd, including the location of sy binaries. csar queries
the condorconfig to locate all of the needed files, copies them into a nexetbry, archives
the directory, and compresses the archive. Archiving amdpcession are implemented
using GNU's tar [7] and gzip [3] programs.

5.1.2 Installer

Upon arriving at a target machine the schedd must be indtallle implemented the Con-
dor Schedd Installegsi, to uncompress, unpack, and install a schedd from an aratéve
either installs the components in the current working dowg or, if supplied with an in-
stallation configuration file, installs the components ierugefined locations. Additionally,
csi generates a log file detailing the location of all of thecassfully installed components.

5.1.3 Uninstaller

A schedd may be migrated from one machine to the next. It wbelghoor design to
assume that the schedd would eventually be migrated backytmachine it was migrated
from. Once a schedd leaves a machine it must leave no fileadhelnnagine a scenario in
which several schedds made a brief stop at single machi@aepéichine’s disk space would
eventually fill with old schedd files. We implemented the Can8chedd Uninstallegsy

to clean up and remove schedd components. csu locates thgonents to uninstall by
guerying condaiconfig or an uninstall configuration file. In the event that @mstallation
fails, csi can be used to clean up the partially installeegéddrby supplying it with the log
file created by the failed installation.

5.2 Marshall/Demarshall

In order for a service to migrate, its state must be made iexlggnt of its host environment.
However, in order for the service to operate at the target, itssstate must be attached to
the new host environment.

5.2.1 JobQ Marshalling

The schedd exports its dynamic state in the form of a log filledahe jobQ. The jobQ is
a marked up version of ClassAds; the markings are used toateloperation type: insert,
delete, and update. The jobQ is dependent on the host maahine schedd, specifically
on the file system. Each file, including the binary, of eachigpbsted in the jobQ. At
submission, a job’s files are copied into a special schedetwiry. The jobQ is updated
to point to the special directory version of the files needgdihob. During migration

8

the jobQ must be modified to remove these absolute file pathsh@neby remove the de-
pendency on the host file system. We refer to this modificammarshalling the jobQ.
Every instance of an absolute file path that specifies a sotaugonent is replaced by a
macro. For example the path to a mobile job’s initial workéigectory may be represented
aslwd "/scratch/condor/spool/cluster5. procO. subproc0". The pre-
fix / scrat ch/ condor/ spool specifies the spool component of the schedd and mar-
shalling should replace the prefix with(SPOOL) . The entry would then appear as
I wd $(SPOCL) / cl ust er5. procO. subprocO. After arrival at the target machine
the jobQ must be relinked to the file system so that the filegpthnt to an actual loca-
tion. We refer to this relinking as demarshalling the job@ely macro indicating a schedd
component is replaced with the actual location of the coreptin

We implemented a prograrjgbgMD, to both marshall and demarshall a jobQ. The set of
possible Condor ClassAds attributes may expand or oldatas may take on new mean-
ing. To prevent this from requiring a rewrite of the jobQ nieadter a jobgMD configuration
file stores which attributes are candidates for marshdtdemarshalling. To perform the
marshalling and demarshalling correctly jobgMD requiresapping from schedd com-
ponent macros to their current location. This mapping caditeztly computed from the
installation log file both at the source and the target sites.

5.2.2 Configuration Marshalling

A schedd’s static data is maintained in the condonfig file. This file specifies locations of
schedd components, the name of the central manager, gesmitings and preferences, file
system domain, and other settings. A subset of the propet@iBned in the condazonfig
file are machine independent. For example, the central neanéti be the same machine
regardless of where a schedd migrates within a pool. Silyiléwe security settings should
not change simply because the schedd has migrated. Hoveeree properties are tied
directly to the host machine. The schedd uses the propeltigsed in condarconfig to
locate its helper binaries, e.g. the shadow.

In order to migrate the schedd we must remove these host neadependencies. Mar-
shalling the condaconfig file is different from marshalling the jobQ, in that, rslaalling
the jobQ introduced place holders for machine dependentiatits while marshalling con-
dor_config simply removes any machine dependent properties. abdralling the con-
dor_config reintroduces these machine dependent propertidisdorew host.

We implemented a prograrapnfigMD, to marshall and demarshall the conagonfig. The
set of properties stored in condoonfig can change with each version of Condor, in that
new features are added that require configuration variallésld features are removed. To
handle this flexibility configMD uses a configuration file tlkgtails which properties are
machine dependent. Additionally, each machine depenaepepy must specify whether

it is a required or optional property. During demarshallogynfigMD must be provided
with a file mapping required machine dependent properti@saohine specific values. In
the case where configMD finds a required machine dependepéfyowith no entry in

the map file during demarshalling, it produces an error anis.ei an optional machine
dependent property is not in the map file, configMD does ndudesit in the demarshalled
condorconfig. configMD allows a series of macros to be used in the niapnitluding
macros representing the current machine’s IP address a&iiahne.

5.3 Schedd Checkpoint and Restart

Using the components from the previous section a scheddecelndzkpointed and restarted
on different hosts.

5.3.1 Schedd Checkpoint

A schedd must be shutdown prior to logical checkpointings cannot guarantee a correct
logical checkpoint of the state if the state is changing. joi€) is marshalled using the
current installation log as a schedd component map file. Therondorconfig is mar-
shalled with configMD. The schedd is then archived by csarthedschedd components
removed by csu. What remains is a single logically checKkedischedd. These tasks are
completed by a program callegheddcheckpoint

5.3.2 Schedd Restart

To restart a schedd, it must be installed at the target site &in archive using csi. The
installation log is used as an input into jobgMD to demarigiia jobQ. The condaconfig
is demarshalled using configMD with either a predefined mayofila map file generated
from the installation log and local knowledge about the eafgost. Finally, the schedd
is restarted. The schedd reconfigures itself by readingdhdar config, then replays the
jobQ to reconstruct its dynamic state, and, finally, regssits new location with the match
maker. These tasks are completed by a program cadleeddrestart

5.4 Schedd Migration

Determining when to migrate is a service-dependent polegision. We leave policy
decisions about when to migrate to the user. Determiningrevibi@ migrate is also a
policy decision. If a user has a specific host in mind then tmeyely need to execute
scheddcheckpoint on the source host, transfer the archive to tiget&ost, and execute
scheddrestart. However, the user may wish to migrate the schedartora general set of
hosts with more complex requirements.

A user wishing to migrate the schedd only has to checkpomstiedd, create a job sub-
mission file for the scheddestart program with the checkpoint file as a parameter, and
submit the job to another schedd. The checkpointed schellbeviestarted on the next
available execute machine. Further, a user can includethgtfob submission a complex
set of target machine requirements and preferences,idgteylerything from average CPU
load to a specific subset of target machines. Many of thegs st repetitive for every
migration of a schedd. To ease the use of this type of migratie created a program,

10

i
@
o

I 1 Job — I 1 Job
L| B 10 Jobs 4 got | I 10 Jobs
1100 Jobs 1100 Jobs

[N
o
o

= I
o >
=) S
: :
o ~
S o

=

(=]

o
T

Time (sec)
Time (sec)

B D e}
o o o
T T
N w
o o

N
o

 mml llﬂ Il lzJ-!_\ -.H -l

100KB imMB 10MB 100KB 1MB 10MB
Job Size Job Size

o

Figure 3: Checkpoint times for a schedffigure 4: Restart times for a schedd with
with varying number and size of jobsvarying number and size of joblote: The
Note: The x-axis is log-scale x-axis is log-scale

scheddmigratewhich automates many of the steps. The user must only speeifschedd

to migrate, the schedd to submit the job to, and the prefeseaad requirements for the
migration. schedanigrate executes schedtheckpoint, generates the job submission file
with the appropriate preferences and requirements, andisaithe scheddestart job. The
astute reader may be wondering, how one can submit anythiagsthedd if the schedd
service on a machine has already been shutdown and chetdgho@ondor allows remote
submission to a schedd. The schaddtart job can easily be submitted to a schedd on
another host.

6 Performance Analysis

To ensure that the cost of our checkpointing technique isvertly restrictive we performed
a series of benchmarks. These benchmarks were run on a readttira Intel P4 2.40GHz
processor, 512MB of RAM, running the Linux 2.4.21 kernel.

Figure 3 illustrates the average checkpoint times of a stlo@r five runs with 1, 10,
and 100 jobs of size 100KB, 1MB, and 10MB. Job size, as rafetoehere, is the total
size of a job’s executable and required input files. Breakimgge tests down into micro-
benchmarks of the individual components we found that ceamidates the checkpoint
time, accounting for over 90% in all cases. jobgMD and configtddgether complete in
less than 150 milliseconds even in the worst case.

Figure 4 displays the average restart times of a schedd eeeruins with 1, 10, and 100
jobs of size 100KB, 1MB, and 10MB. Breaking these tests dovmmicro-benchmarks of
the individual components we found that csi dominates tharttime, accounting for over
90% in all cases. jobQMD and configMD together complete is than 60 milliseconds
even in the worst case.

11

These figures show that logically checkpointing and rastathe schedd scales linearly
with the size and number of jobs. Logically checkpointinghesld with 100 10MB jobs,

which yields a 1GB compressed schedd image, still complatésss than 180 seconds.
A schedd can be restarted from this same image in less thaec@hds. Given Con-

dor's emphasis on high throughput computing we feel thagghanes are within reason.
Our micro-benchmarks indicate areas of improvement, nametsar and csi. A sim-

ple improvement to increase performance may be to not casmg the schedd image.
We introduced compression to reduce migration overheadgauetwork transmission.
However, when migrating within a fast local network it mayrbere efficient to send an

uncompressed image.

7 Related Work

Service Continuations [28] and service migration in the Keanel [30] both provide ker-
nel space for a service to store its state. After migratiogtate is returned to the service.
Both of these implementations assume uniform access todime fiile system. Service
Continuations assumes a uniformly mounted distributedsfigem, while Kea only pro-
vides migration of a service within a single machine, betweser and kernel space. Luo
and Yang present the idea of zero-loss web services [17ehetheir work is less service
migration and more service fail-over as requests for a serare duplicated to a a backup
service. Network address rewriting is used to switch fromia@ry service to the backup
in during failure.

Process migration is closely related to service migrat®prite [12] and Charlotte [10] are
examples of in-kernel implementations of process mignatigprite and Charlotte assume
identical system images on both the source and target messhimcluding uniform file
access. Additionally, Sprite has residual dependencigbesource site that allows users
to query the source site about processes that have beentexigra

Zap [20] is a kernel module that allows groups of processbs taigrated without breaking
their network connections. Zap even virtualizes the fildeysto allow a uniform view if
the migration location can access the process’s home fitersysHowever, Zap does not
include any of a process’s files in the checkpoint so it cahaatle migrations outside the
range of the process’s home file system. Further, a failedchapkpointed process could
not be safely restarted from the checkpoint because thetlieeprocess depends on may
have been modified by the process after checkpoint but pri@iltire. The Condor system
also provides process checkpointing [16]. However, theckpoint mechanism relies on
remote I/O back to the source site to provide a uniform viewheffile system.

Internet Suspend/Resume [15] uses VMWare [9] to checkamidtmigrate an entire oper-
ating system. This requires a process to run in a virtual imaockéven when it will never
migrate. Further the current implementation of VMWare asupports x86 architectures.

The Tui System provides a migration architecture that dyinalty captures and translates
a processes data into machine independent form at run-Béje lHowever, this approach

12

relies on a specialized compiler and only works on type-pedgrams.

8 Conclusion and Future Work

We have developed a set of techniques for checkpointingviceghat removes the check-
pointed data’s dependencies on the host machine. We haatedra multi-component

architecture to apply this technique in mobilizing the ConHigh Throughput System’s

distributed scheduler, the schedd. Further, we have usedd@to schedule the placement
of the migrated service based on an arbitrary user-defineof sequirements and prefer-

ences. Additional work will be needed to determine whethesé techniques are broadly
applicable to other services. However, we feel that manyices built using the crash-

only approach proposed by Candea and Fox [11] will be ablake advantage of these
migration techniques.

Our techniques for service migration do not provide a sessm@gration in that there may
be a brief interruption in service. In the future we may egtédmese techniques to include
technologies such as MobilelP [21], SIP [31], or VNAT [27¢, provide uninterrupted
service migration. Our current implementation of the mekithedd includes an operating
system and machine architecture independent marshalflithg @chedd’s state. However,
this state must be packaged with the schedd architectufispginaries at checkpoint
time which limits the architectures and operating systdmessthedd can be restarted on.
We intend to modify the schedd installer to ftp the apprdprianaries for the target site’s
operating system and architecture during installations Way a schedd’s restart will only
be limited by the platforms supported by Condor and avaslabthe ftp site.

Acknowledgments

Thanks to Alain Roy whose incite, comments, and paper rexyreade a marked improve-
ment in the quality of this publication. Thanks also to thsetref Condor Team whose
patient support proved invaluable.

References

[1] Apache Strutshttp://struts.apache.org/.

[2] Emacs http://www.gnu.org/software/emacs/.

[3] Gzip http://www.gnu.org/software/gzip/.

[4] Java 2 Platform Enterprise Editiginttp://java.sun.com/j2ee/.
[5] Kazaag http://lwww.kazaa.com/.

[6] Microsoft .NET http://www.microsoft.com/net/.

13

[7] Tar, http://www.gnu.org/software/tar/.
[8] The Apache Jakarta Tomgdtttp://jakarta.apache.org/tomcat/.
[9] Vmware http://www.vmware.com.

[10] Yeshayahu Artsy and Raphael FinkBlesigning a process migration facility: The
charlotte experiencd EEE Compute?2 (1989), no. 9, 47-56.

[11] George Candea and Armando F@xash-only softwargdth Workshop on Hot Topics
in Operating Systems, May 2003.

[12] Fred Douglis and John K. Ousterhotitansparent process migration: Design alter-
natives and the sprite implementatj@oftware - Practice and Experierg(1991),
no. 8, 757—-785.

[13] Dawson R. Engler, M. Frans Kaashoek, and James O'T@olekernel: An operat-
ing system architecture for application-level resourcenagementSymposium on
Operating Systems Principles, 1995, pp. 251-266.

[14] lan Foster and Carl Kesselman (ed3he grid: Blueprint for a new computing in-
frastructure Morgan Kaufmann, 2003.

[15] Michael Kozuch and M. Satyanarayandnternet suspend/resumé&ourth IEEE
Workshop on Mobile Computing Systems and Applications,il&02.

[16] Michael Litzkow and Marvin SolomonSupporting checkpointing and process mi-
gration outside the unix kerngProceedings of the Winter 1992 USENIX Conference
(San Francisco, CA), January 1992, pp. 283-290.

[17] Mon-Yen Luo and Chu-Sing Yang;onstructing zero-loss web servic@®th IEEE
Intl. Conference on Computer Communications, June 2001.

[18] Sun MicrosystemdRPC: Remote Procedure Call Protocol specification: Versipn
RFC 1057 (Informational), June 1988.

[19] Paul V. Mockapetris and Kevin J. Dunlapgevelopment of the domain name system
SIGCOMM, 1988, pp. 123-133.

[20] S. Osman, D. Subhraveti, G. Su, and J. NiBe design and implementation of Zap:
A system for migrating computing environmeiih USENIX Symposium on Oper-
ating Systems Design and Implementation, December 200364p-376.

[21] C. Perkins,IP Mobility Support for IPv4 RFC 3220 (Proposed Standard), January
2002, Obsoleted by RFC 3344.

[22] Larry L. Peterson and Bruce S. Daviegopmputer networksecond ed., Morgan Kauf-
mann, 2000.

14

[23] Raghu Ramakrishnan and Johannes Gehbie#abase management systertisrd
ed., McGraw-Hill Science/Engineering/Math, 2002.

[24] Rajesh Raman, Miron Livny, and Marvin Solomddatchmaking: Distributed re-
source management for high throughput computiPr@ceedings of the Seventh IEEE
International Symposium on High Performance Distributesm@uting (HPDC?7)
(Chicago, IL), July 1998.

[25] Mendel Rosenblum and John K. Ousterholite design and implementation of a
log-structured file systepACM Transactions on Computer Systefrs(1992), no. 1,
26-52.

[26] Peter Smith and Norman C. Hutchinsdtheterogenous process migration: The Tui
systemSoftware - Practice and Experierz@(1998), no. 6, 611-639.

[27] Gong Su and Jason Niellobile communication with virtual network address trans-
lation, Tech. Report CUCS-003-02, Columbia University, Febr2£§2.

[28] Florin Sultan, Aniruddha Bohra, and Liviu Iftod8ervice continuations: An operat-
ing system mechanism for dynamic migration of internetisersession22nd Inter-
national Symposium on Reliable Distributed Systems, 2003.

[29] Douglas Thain, Todd Tannenbaum, and Miron LivDystributed computing in prac-
tice: The Condor experienc€oncurrency and Computation: Practice and Experi-
ence (2004).

[30] A. Veitch and N. HutchinsorDynamic service reconfiguration and migration in the
Kea kernel CDS '98: Proceedings of the International Conference onfiGorable
Distributed Systems, IEEE Computer Society, 1998, p. 156.

[31] Elin Wedlund and Henning Schulzrinnklobility support using SIPWOWMOM,
1999, pp. 76-82.

15

