Overview of DaemonCore in Condor
Todd Tannennbaum

tannenba@cs.wisc.edu

July 8, 2004

)

Il

Abstract

This document provides a high-level overview of the DaemonCoredveork.

1 Introduction

The DaemonCore framework attempts to consolidate all ofutthetionality that is common to all Condor daemons,
as well as provide a basic operating system abstractiom tayshield the developer from differences between Unix
and Win32. In its current form, it is indeed much more dfameworkinstead of dibrary, largely because it includes
a main function. The following facilities are provided:

e A consistent core set of command-line parameters.

Configuration of daemon parameters, including the abititseconfigure remotely.

Logging.

Process management, independent of the underlying opeyasgstem.

A non-preemptivevent driven framework that supports remote method inimeat(commands), timers, sig-
nals, pipes, and more.

2 CEDAR

DaemonCore is built on top of tHeEDARIibrary. Originally, CEDAR was written as a replacement $am’'s XDR
library, back when the Condor Team grew frustrated that ptatform had its own independent XDR implementation,
each with its own subtle differences and bugs. CEDAR is aodtwommunication library that evolved over time and
serves the following purposes:

1. Convert a large number of types between different hostsraliable method. For example, if a client sends a
server a double, and they're totally different architeef @EDAR will reorder the bytes if need be, and convert
it into the right-size (if a long is 4 bytes on one platformgdahon another CEDAR gets it right.)

Optena Corporation Oopjf;irmm'r DaemonCore Description
CEDAR Client CEDAR Server
ReliSock s; ReliSock list,s;
char *data="foo"; char *data=NULL;
int result; int result = 0;
s.connect(server.com,4499); /* Setup the socket */
list.bind(4499);
/* Send the data */ list.listen();
s.encode(); list.accept(s);
s.code(data);
s.endof_message(); /* Receive the data */
s.decode();
/* Receive the result */ s.code(data);
s.decode(); s.endof_message();
s.code(result);
s.endof_message(); /* Compute/send result */
printf("Result = %d”,result); if (data) {
} result = strlen(data);
free(data);
}
s.encode();

s.code(result);
s.endof_message();

}

Figure 1: A simple CEDAR example.The client sends a string, and the server responds with tireg&t length.

2.

0 N o O

CEDAR is also our platform-independent socket and conicatinns library that provides a C++ abstraction
to Berkeley sockets. CEDAR has two types of Sockets: Rélei Sock, which gives you a TCP-like stream,
and theSaf eSock, which gives you a UDP-based message exchange. (The S&faSoe has to do with
buffering- you can just give it huge packets and it gets htjigplitting them up into fragments and reassembling
it on the other side)

. CEDAR can authenticate for you with a whole host of autisatibn methods - all you have to do is say

"authenticate()” to a CEDAR socket, and it can use Kerbex&99, NT LanMan, File system, Claim-to-be, and
hopefully soon a password (actually, hopefully soon a PAMiate, which gets us a huge new world of stuff)

. CEDAR can encrypt everything that goes over it, eithehvidtowfish or 3DES. This is separate from the

authentication code, so you can authenticate without @tiagy, or encrypting with only a shared secret ahead
of time. CEDAR can also verify the integrity of the messageMD5.

. CEDAR can bandwidth regulate
. CEDAR can limit itself to a range of ports
. All blocking network calls in CEDAR can be invoked with engout value (in seconds).

. CEDAR (will soon enough in the v6.7 development serieppsut a connection-broker approach via the Condor

Project's GCB (Generic Connection Broker) technology, ltovafor third parties to establish connections on
a users behalf. We need this for supporting Condor insi@tfiatthat span across firewalls and NAT networks,
where network access is not symmetric.

Practially all network communication throughout the Conslgstem is performed via the CEDAR library.

The CEDAR classes of primary interest, and the only ones ghatild be directly instantiated, aReliSock
and SafeSock ReliSock provides communication via TCP, and SafeSockiges communication via UDP. The
encode() method sets up the socket to send data, andl&@ode() method sets up the socket to receive — see
the simple example in Figure 1. CEDAR does not encode thetgpon the wire; thus, it is imperative that the

Page 2 of 9

Optena Corporation Oop:[mﬂ@ DaemonCore Description

client and server “match-up” in that if the client is encaglean integer followed by a string onto a socket, the server
had better be written to decode an integer followed by agtritheend_of _nessage() method, or sometimes
abbreviated asom() , flushes the encoded data onto the wire if the socket is dilyri@erencode mode. If the socket
is in decode mode, theor() will verify that all buffered data has been consumededin() fails in the encode
direction, it means there was some error writing onto théebdf it fails in the decode direction, it typically sigrsal

a programmer error due to a mismatch between what the ctiesgtriding -vs- what the server received. Eloan)
method should be called whenever the message is completeawewthe programmer desires to switch from encode
to decode, or vice-versa.

CEDAR homoginizes data representations across diffetatibpms. For example, on one platform an integer may
be represented by 4 bytes in big-endian format, while onhargilatform an integer may be 8 bytes in little-endian
format. When CEDAR encodes an integer, it will translate titeger from platform native format into an abstract
CEDAR representation, send it on the wire, and then tramblatk into a native format on the receiving side.

The implementation of CEDAR can be foundsnc/ condor _i o, while most of the header files are located in
src/ condor _i ncl udes. The class hierarchy of CEDAR is a little bit funky, but basig the St r eamclass is the
base class. Thst r eamclass is mostly concerned with homoginization of data regméations. Th&ock class is
derived from Stream, and defines an interface for networkection establishment. This interface is implemented
with TCP in theRel i Sock class and with UDP in th8af eSock class. ReliSock and SafeSock are derived from
Sock, and are the only CEDAR classes which should be instedti however, pointers to the Stream base class are
often used at points in the application where it is not imgatif the underlying medium is TCP or UDP (for example,
in a daemon which handles the same commands over both TCPIAH U

Throughout the code, you will see references teiaf ul string. All this means is a string of the form
<XXX. XXX. XXX. XXX: ppp>, i.e. an ip address plus colon plus port nunber, all enclaséess-than greater-than
characters. The sinful string is a common convention thnouty CEDAR and DaemonCore for communicating a
unique network endpoint. Several helpful functions for ipatating sinful strings can be found in
src/ condor util Iib/internet.c.

The most complicated portions of CEDAR are the parts dealiitly security. The ReliSock class includes an
aut henti cat e() method that will perform strong authentication using Kedse NTSSPI, GSI, or several other
methods. In addition, both ReliSock and SafeSock providaHility to encrypt data via 3DES or Blowfish algorithms,
and also the perform an integrity check on the data via an Miggksum. The implementation for these algorithms
is courtesy the OpenSSL library, which must be linked intax@wr (and typically is linked via the Globus Toolkit
external). More information on security in DaemonCore wuded in a different document.

3 Understanding the Event-based Framework

DamonCore functionality is accessed via invoking methqaisnuthe global singlotodaenonCor e.

Every DaemonCore daemon must have a global string variatikedary SubSy st emand few entrypoints. See
src/ condor _dcskel for a skeletal DaemonCore daemon as an example. nji8ibSyst emvariable is used
to identify the name of the service. For example, the valuend®ubSyst emfor the condor col | ector is
" COLLECTOR". This variable is used by DaemonCore for several purposeh, &s constructing the name of this
daemon’s log file.

DaemonCore is an event-driven framework. All functionstteri by the daemon programmer mustrbgistered
as a callback to some event, or they will never be invoked.nEl2memonCore daemamustdefine the following
handlers (callbacks), which do not need to be “registereitti @aemonCore;

void main_pre_dc_init(int argc, char** argv) Invoked by DaemonCore very early after the process is ale&arely
used — usually just an empty function.

void main_pre_command.ssock.init() Invoked by DaemonCore early after the process is creatadftar the con-
figuration and logging subsystems have been initializedelRased — usually just an empty function.

Page 3 of 9

Optena Corporation Oop:[mﬂ@ DaemonCore Description

int main _init(int argc, char **argv) Invoked by DaemonCore after everything has been initidliz€his function
should be considered to be timai n() function from the point of view of the daemon developer. Daa@ore
will parse the command line and handle any parameters taapacific the DaemonCore (see section 3.8.2 of
the Condor Manual), and then pass any remaining daemotifisgggnmand line arguments to mainit(). In
maininit(), typically command line arguments are parsed andstrimaportantly, callbacks for any interesting
events that the daemon wishes to respond to are registered.

int main _config(bool isfull) When DaemonCore receive SBGHUP signal (typically viatheondor r econfi g
command), it will reconfigure itself and then invoke this tizm.

int main _shutdown_graceful() Invoked by DaemonCore when the daemon has been requesthdttlown grace-
fully, such as when the user issues@ndor _of f or aSI GTERMsignal is delivered.

int main _shutdown_fast() Invoked by DaemonCore when the daemon has been requesthdttitown as quickly
as possible, such as when the user issuesredor _of f with the- f ast argument, or &l GQUI T signal is
delivered.

So a typical DaemonCore-based daemon will register a buheliemt handlers imai n_i ni t (), and then the
bulk of the rest of the code will be functions that respondh tegistered events. Every registered event handler is
expected taeturn quickly to DaemonCoreBecause DaemonCore is (currently) single-threaded, eyt dandler
that takes a long time to perform its duties will in block theiee daemon, possibly causing clients to timeout, etc.
That means an event handler ideally should not make anyiblgpskstem calls, such as waiting for a network reponse
— instead, the event handler could turn around and registghar event before returning.

For every type of event handler, the programmer must proigeinter to the either the C++ callback method
or the C callback function (i.e. a function that is in the glbbcope, and not a member of an object) to be invoked
when the event is triggered. The C++ callback type defintisitishave a "cpp” appended to their typenames. For
instance, use the type definition ®f mer Hander cpp to register a timer handler that is a C++ method, and use
Ti mer Handl er to register a timer handler that is a C function or a static @¥ethod. When registering C++
methods with DaemonCore, it is required that the class auntathe callback methods be derived from the empty
classSer vi ce.

In addition to a function pointer, several DaemonCore evegistration methods allow the programmer to provide
an authorization levelsuch as READ, WRITE, ADMINISTRATOR, etc. Clients can be deahaccess to certain
authorization levels via the settings in the configuratitends described in the Condor Manual, e.g. ALLAREAD,
ALLOW WRITE, DENY_READ, DENY_WRITE, etc.

The following sections will give a brief overview of the typef events handled by DaemonCore.

3.1 Command Handlers

DaemonCoreonmand handl er s enable a simple model for remote method invocation.

By default, a DaemonCore daemon will be born with two listenkets created at startup. One socket will be
a ReliSock (TCP), and the other will be a SafeSock (UDP). Battkets will share the same port number, which
will be chosen dynamically unless otherwise specificed wimmand-line option or via a parameter passed into
Creat e_Process() by the parent process.

When a connection is made by a client to this listen socketnida€ore willaccept the connection if it is TCP,
and then it will read one one integer off of the socket via CEEDANhis integer is refered to as a "command” integer,
and DaemonCore then looks up in its data structures to sew iE@mmand handler function has been registered to
respond to this command int. If so, DaemonCore then cheekauthorization level of the handler and compares it to
the authorization level allowed by this client by callingter i f y method. This method return whether or not the
client is authorized to perform a specified command giverclieat's ip address and/or authentication information. If
the authorization check fails, the connection is closedt.gésses, then the registered command handler is invoked.

Page 4 of 9

Optena Corporation Oop:[mﬂ@ DaemonCore Description

The command handler is given access to the network socketisaresponsible for reading any subsequent pa-
rameters off of the wire and also for writing any results. &ttee command handler returns, DaemonCore will close
the socket (if it is TCP) unless the const&EP_STREAMis returned from the command handler. The idea here is
all DaemonCore handler should attempt to return quicklyn@and handlers could perform a non-blocking read by
invoking the methodRegi st er _Socket (see section 313) on the socket passed into the handler én trdegister
a callback function to be invoked when there is more datadad o the socket, and then returniRBEP_STREAM

SeeRegi st er Conmand() and related calls in the header file.

3.2 Signal Handlers

Signal handlers in DaemonCore can be thought of as commaatisid not have any input or output parametes.
DaemonCore methods exist to register a signal handler, lhasvalock and unblock signals. The method for sending
signals in DaemonCore Bend_Si gnal () ; signals may only be sent to a process’ parent or children.

Signals are implemented in DaemonCore as follows: if a ®esending a signal to itself, just some in-memory
data structures are manipulated. If a signal is being semptrent or child process and that process is linked with the
DaemonCore library, then DaemonCore sends a command eigcibdi signal number to the command socket of the
destination.

The UNIX operating systems have signal support in the opgyatystem. Because DaemonCore delivers signals
via its own mechanism, DaemonCore applications are notdiiridy the set of 20 or so signals provided by UNIX.
Any number of signals can be defined; see sitec/ condor _i ncl udes/ condor _conmmrands. h. Furthermore,
on UNIX, DaemonCore catches common POSIX operating sysigmals, such as SIGTERM, and turns around and
raises that DaemonCore signal @and_Si gnal () ; then the UNIX signal handler returns. The actual DaemoaCor
signal handing function is then invoked later from the maiweat loop. This means that DaemonCore signal handlers
are not called from inside a UNIX signal handler, and thusfiage from the hassles normally associated with UNIX
signal handlers (such as being limited to only POSIX sigaatmtrant function, volatile data, inability to call mallo
etc). For this reason and several others such as the lack 8PP€ignals in Win32, programmers should not use
UNIX/POSIX signal handling calls (like sigaction, sigproask, kill) in their DaemonCore programs.

The following signals are handled automatically by DaenmeGand therefore the programmer should not asso-
ciate a handler with these signals:

SIGTERM Request a graceful shutdown; same as calhgt down_Gracef ul ().

SIGQUIT Request an immediate shutdown; same as caBimgt down_Fast () .

SIGSTOP Request the operating system to suspend the process; saalérasSuspend_Pr ocess() .

SIGCONT Request the operating system to continue a previously adsplgprocess; same as callidgnt i nue_Process() .
SIGHUP Request a process to reconfigure itself (i.e. re-read itBgiomation).

SIGKILL Request the operating system to immediately destroy a gsodehe programmer should never send this
signal to another process.

SIGCHLD A child process has exited; DaemonCore will determine which and invoke the proper reaper handler.
SeeRegi st er _Si gnal (), KeywordSendSignal(), and related calls in the header file.

3.3 Socket Handlers

The programmer can register a handler that will be invokeenglrer there is data ready to be read on a given CEDAR
socket via the methoRegi st er _Socket () and related calls.

Similarly, if the non-blocking flag is passed to the ReliSednnect () method, therRegi st er _Socket can
also be used to invoke a handler once a TCP connection haebtsdtished.

Page 5 of 9

Optena Corporation ‘;’OP:EJ DaemonCore Description

ART

S,

Sk

3

3.4 Pipe Handlers

DaemonCore contains methods to create and destroy unapesigs a way to facilitate interprocess communication.
DaemonCore pipes can communicate with other DaemonCooegses or with non-DaemonCore linked processes.
A pipe created by the DaemonCdteeat e _Pi pe() method can be passedRegi st er _Pi pe in order to receive

a callback whenever there is data ready to read on the pipe.

One reason DaemonCore needs its own methods to handle pipateial with Win32. On UNIX, pipe descriptors
and socket descriptors are fairly intechangable; both egpassed intsel ect () in order to determine when they
have data available. But on Win32, pipe descriptors canaqiassed intgsel ect () . Thus, in the internals of the
DaemonCore implementation, when a pipe handler is reg@t&aemonCore will pass the descriptor into the Win32
Wai t OnMul ti pl eObj ect s() system call which it invokes in another thread seperate ftanthread that blocks
onsel ect () .. The implementation is further complicated by the fact th&s Win32 system call can only watch
a maximum of 64 objects. To get around this limitation, Dar@aore will start additional threads as needed so this
limitation in Win32 is hidden from the DaemonCore developer

3.5 Timer Handlers

Any number of timers may be registered with DaemonCore. Réw st er _Ti mer () method takes a pointer to a
timer handler function and an integer that specifies how nsgegnds to wait until invoking the handler.

If a periodic value is specified, then the timer is automatically resetlierspecified number of seconds when
the timer handler returns. For example, the below will cadg€lass-¢ foo() to be invoked in 5 seconds, and then
automatically reset for every 30 seconds once foo() returns

daenonCor e- >Regi st er _Ti ner (5, 30, (Ti mer Handl er cpp) f oo, Myd ass) ;

Timers can be cancelled or reset (to a different time) at anytpincluding from within the timer handler function
itself.

Realize that timers, like everything else in DaemonCore nat preemptive. Thus, a periodic timer set to go off
every 30 seconds may fire late if some other handler takes thane30 seconds to return back to the DaemonCore
driver. Furthermore, DaemonCore timer implementationigsavtimeout value passed ins&l ect () in the main
driver loop. Thus timers do not rely upon UNIX’s SIGALRM féty, and timer handlers are not called from within a
UNIX signal handler.

SeeRegi st er _Ti ner (), Reset _Ti mer (), and related calls in the header file.

3.6 Reaper Handlers

A reaperis a handler that will be invoked when a process or threaditett®s. The reaper handler will be passed the
process or thread id of the process or thread that exitedelhsisvthe exit status.

Areaper handler is registered via tRegi st er _Reaper () method, which returns a reaper id (a positive integer
starting at 1). This reaper id is then passed as a paramefeetat e_Pr ocess() orCreat e_Thread().

DaemonCore will guarantee that the process id (pid) of age®that terminated witiot get reused by the oper-
ating system until the reaper handler for that pid has retlitrack to the DaemonCore driver. This is not such a big
deal on UNIX, since UNIX goes out of its way to procrastindte teuse of process and thread ids as long as possible.
However, this semantic guarantee is very important on WisB&e Win32 tends to reuse pids almost immediately
after the handle to the process is closed.

The implementation of the reaper callback mechanism irfi@@emonCore is very tricky and was difficult to get
correct, especially on Win32. On Win32, process handlegvatehed via calls t&\&i t For Mul t i pl eObj ect s()
in another thread. DaemonCore can watch over and reap maréthchild processes by spawning additional threads
as needed - see section 3.4 for more discussion of this misamanplemented inside of DaemonCore for monitoring
non-socket Win32 handles.

Page 6 of 9

Optena Corporation Oop:[mﬂ@ DaemonCore Description

SeeRegi st er _Reaper () and related calls in the header file.

4 Process Management

Because process creation and management is so differe@SiXPversus Win32, DaemonCore abstracts away these
differences by providing its own methods for the creati@stdiction, suspension, and testing for the existenceosf pr
cesses, as well as its own cross-platform implementatid?Qs1X-like functions such aget pi d(), get ppi d(),
W FSI GNALED() , and many others.

The implementation details of a few of these facilities desg special mention, and is discussed in the sections
below.

4.1 Process Creation

The Cr eat e _Process() method spawns a child process (i.e. both a fork and exec oXP§)Stems). Method
parameters can control many aspects of process creaticinasithe specification of the environment, redirection of
stdio, operating system priority (nice value), which CED#dtkets should be inherited by a child process, and many
others. A few tricky implementation details Gf eat e_Pr ocess() deserve special mention.

First of all, internal to the implementation on POSIX, a tergy pipe is created between the parent and child
process. This pipe is used to pass back any errors that may aiter the call tof or k() andbeforethe completion
of the call toexec() . This is a nasty problem with POSIX that DaemonCore hidas fitee developer.

Another implementation detail: if the process to be creseddaemonCore process (i.e. linked with the Daemon-
Core library), then it is th@arentprocess that creates the command sockets. The child simtpdyiis these sockets
from the parent. The reason for this is it allows the pareimttiate the sending of signals and commands to the child
before the child spawn process has completed, becausertér gaows the IP port of its child process a priori. This
eliminates the nasty situation where the parent wants td aegignal to its child before the child has told the parent
the address of its command port.

Another facility provided "behind the scenes” in Daemon€ the automatic killing of a child process that
appears to be hung. This fits the model of Condor, where evaeyndn is responsible for the management and
cleanup of any child processes it may spawn. How it works isrwéa DaemonCore process starts, it looks to see if
its parent process is a DaemonCore process. If so, thends sesparent a heartbeat command at a specified interval
(can be specified per subsystem in the configuration file).eQine parent process receives a hearbeat, it will hard
kill the child process if subsequent heartbeats do notatrefore a timeout. The DaemonCore user can call method
Was _Not _Respondi ng() in the reaoper callback to determine if a child exited of itaccord or was forcibly
killed by DaemonCore because it appeared to be locked umuBedhe parent witlo nothing until the first heartbeat
has been receivethion-DaemonCore processes may be safely spawned wittayuhft DaemonCore may kill them
because no heartbeat is sent.

4.2 Process Suspension

The Suspend_Pr ocess() method on UNIX is trivial, but on Win32 it is tricky because N82 only provides a
primitive to suspend a specific thread within a process, m@tentire process itself. Therefore, the implementation
becomes complicated because it must handle problems tbafienm a lack of an atomic process suspend on Win32 —
it is not sufficient to simply iterate through all the threagshe process and suspend them.. For example, consider the
following: we want to suspend a process that has two thréadsd B; we suspend A; then, before we can suspend
B, thread B sends a continue to thread A; we then suspenditBredow we are left in a state where thread A is still
active. The DaemonCore implementation handles thesdisitga

Page 7 of 9

Optena Corporation ‘;’OP:EJ S DaemonCore Description

3
S,

4.3 Thread Creation

DaemonCore includes a method nant@deat e _Thr ead() . This method is best ignored, and should ultimately
be depricated, because in its current incarnation it dosywaifferent things on UNIX -vs- Win32. On UNIX, this
method starts a new process Viar k() but does not calexec() . Because there is no equivelent to a fork call
on Win32, this method when invoked on Win32 actually starteea kernel thread. Because the vast majority of
the code in Condor is not thread safe, this is a dangeroug thinlo. Thus most of the currently existing calls to
Cr eat e_Thr ead are located in places where functionality is restricted ki XI

5 Logging

The API to a simple debug console logging interface is pripara thedpr i nt f () function.dpri ntf () is just
like good 'olpri ntf (), except that it also takes a loggisgbsystenparameter. The available logging subsystems
are defined irtondor _debug. h and examples include_SECURI TY, D_DAEMONCORE, andD_FUL LDEBUG,

The logging of different subsystems can be enabled or digabh the configuration file. All messages are written
into a specified file that can be automatically (and safeltgtenl once it reaches a specificed size.

Different subsystems can have their messages duplicatediiferent files, each with their own file rotation size
— for example, all messages for thendor _st art d can be logged into the fil&t art Log, and in addition all
D_SECURI TY messages can be logged into a secondstilar t LogSecuri t yEnt ri es that never rotates.

The configuration file can specify that the logging systemae@onCore obtain an exclusive write lock on the file
before writing to it. This is handy if multiple daemon proses want to write into the same log file, as is typical with
thecondor _shadow. The actual lock file can be specified to exist in a differentt®mn than the log file, enabling
the log files to reside on a shared filesystem like NFS andstilé proper locking semantics.

6 Configuration
7 Client Library

8 Future Directions

This section briefly presents a few of the major changes iredtr DaemonCore, currently in either the planning
stages or early implementation phases at UW-Madison.

8.1 Threads

A significant gain in scalability of ondor _could be realized if DaemonCore daemons could easily ovedapputa-
tion and I/O. While that can be done with the current impleraton via the generous useRégi st er _Socket (),

this callback model is hard for programmers to work with. fEfere, in the later half of 2004, the Condor Team and
the University plans to enhance DaemonCore to support neenptive cooperative threads. Such a system would
only preempt a thread when the thread explicitly relingessbontrol via a yield() call. The plan calls for threads to
yield solely when they would otherwise block on I/O, or whepleitly coded to do so at "safe” moments.

This approach is likely the easiest and safest way to intredireading to a large body of existing code that was
not originally designed to be thread-safe. Furthermoris, abproach should be easier to maintain into the future
considering that (i) the Condor Team has a large amount ofldper turnover of various skill levels due to the
continuous flow of graduate students that join and leavedhmt and (ii) a small mistake in a preemptive threading
model can easily result in a non-deterministic bug that megtiremely difficult to reproduce.

Page 8 of 9

Optena Corporation ‘;’OPJ:EJ DaemonCore Description

AR

&

Shi

3

8.2 SOAP

9 Conclusion

Page 9 of 9

	1 Introduction
	2 CEDAR
	3 Understanding the Event-based Framework
	3.1 Command Handlers
	3.2 Signal Handlers
	3.3 Socket Handlers
	3.4 Pipe Handlers
	3.5 Timer Handlers
	3.6 Reaper Handlers

	4 Process Management
	4.1 Process Creation
	4.2 Process Suspension
	4.3 Thread Creation

	5 Logging
	6 Configuration
	7 Client Library
	8 Future Directions
	8.1 Threads
	8.2 SOAP

	9 Conclusion

