
Overview of DaemonCore in Condor

Todd Tannennbaum
tannenba@cs.wisc.edu

July 8, 2004

Abstract

This document provides a high-level overview of the DaemonCore framework.

1 Introduction

The DaemonCore framework attempts to consolidate all of thefunctionality that is common to all Condor daemons,
as well as provide a basic operating system abstraction layer to shield the developer from differences between Unix
and Win32. In its current form, it is indeed much more of aframeworkinstead of alibrary, largely because it includes
a main function. The following facilities are provided:

• A consistent core set of command-line parameters.

• Configuration of daemon parameters, including the ability to reconfigure remotely.

• Logging.

• Process management, independent of the underlying opereating system.

• A non-preemptiveevent driven framework that supports remote method invocations (commands), timers, sig-
nals, pipes, and more.

2 CEDAR

DaemonCore is built on top of theCEDARlibrary. Originally, CEDAR was written as a replacement forSun’s XDR
library, back when the Condor Team grew frustrated that eachplatform had its own independent XDR implementation,
each with its own subtle differences and bugs. CEDAR is a network communication library that evolved over time and
serves the following purposes:

1. Convert a large number of types between different hosts ina reliable method. For example, if a client sends a
server a double, and they’re totally different architecture, CEDAR will reorder the bytes if need be, and convert
it into the right-size (if a long is 4 bytes on one platform, and 8 on another CEDAR gets it right.)

1



Optena Corporation DaemonCore Description

CEDAR Client CEDAR Server
{

ReliSock s;
char *data=”foo”;
int result;

s.connect(server.com,4499);

/* Send the data */
s.encode();
s.code(data);
s.endof message();

/* Receive the result */
s.decode();
s.code(result);
s.endof message();
printf(”Result = %d”,result);

}

{
ReliSock list,s;
char *data=NULL;
int result = 0;

/* Setup the socket */
list.bind(4499);
list.listen();
list.accept(s);

/* Receive the data */
s.decode();
s.code(data);
s.endof message();

/* Compute/send result */
if (data){

result = strlen(data);
free(data);

}
s.encode();
s.code(result);
s.endof message();

}

Figure 1: A simple CEDAR example.The client sends a string, and the server responds with the string’s length.

2. CEDAR is also our platform-independent socket and communications library that provides a C++ abstraction
to Berkeley sockets. CEDAR has two types of Sockets: TheReliSock, which gives you a TCP-like stream,
and theSafeSock, which gives you a UDP-based message exchange. (The SafeSock name has to do with
buffering- you can just give it huge packets and it gets it right, splitting them up into fragments and reassembling
it on the other side)

3. CEDAR can authenticate for you with a whole host of authentication methods - all you have to do is say
”authenticate()” to a CEDAR socket, and it can use Kerberos,X509, NT LanMan, File system, Claim-to-be, and
hopefully soon a password (actually, hopefully soon a PAM module, which gets us a huge new world of stuff)

4. CEDAR can encrypt everything that goes over it, either with Blowfish or 3DES. This is separate from the
authentication code, so you can authenticate without encrypting, or encrypting with only a shared secret ahead
of time. CEDAR can also verify the integrity of the message via MD5.

5. CEDAR can bandwidth regulate

6. CEDAR can limit itself to a range of ports

7. All blocking network calls in CEDAR can be invoked with a timeout value (in seconds).

8. CEDAR (will soon enough in the v6.7 development series) support a connection-broker approach via the Condor
Project’s GCB (Generic Connection Broker) technology, to allow for third parties to establish connections on
a users behalf. We need this for supporting Condor installations that span across firewalls and NAT networks,
where network access is not symmetric.

Practially all network communication throughout the Condor system is performed via the CEDAR library.
The CEDAR classes of primary interest, and the only ones thatshould be directly instantiated, areReliSock

and SafeSock. ReliSock provides communication via TCP, and SafeSock provides communication via UDP. The
encode() method sets up the socket to send data, and thedecode() method sets up the socket to receive – see
the simple example in Figure 1. CEDAR does not encode the datatype on the wire; thus, it is imperative that the

Page 2 of 9



Optena Corporation DaemonCore Description

client and server “match-up” in that if the client is encoding an integer followed by a string onto a socket, the server
had better be written to decode an integer followed by a string. Theend of message() method, or sometimes
abbreviated aseom(), flushes the encoded data onto the wire if the socket is currently in encode mode. If the socket
is in decode mode, theeom() will verify that all buffered data has been consumed. Ifeom() fails in the encode
direction, it means there was some error writing onto the socket. If it fails in the decode direction, it typically signals
a programmer error due to a mismatch between what the client is sending -vs- what the server received. Theeom()
method should be called whenever the message is complete or whever the programmer desires to switch from encode
to decode, or vice-versa.

CEDAR homoginizes data representations across different platforms. For example, on one platform an integer may
be represented by 4 bytes in big-endian format, while on another platform an integer may be 8 bytes in little-endian
format. When CEDAR encodes an integer, it will translate the integer from platform native format into an abstract
CEDAR representation, send it on the wire, and then translate back into a native format on the receiving side.

The implementation of CEDAR can be found insrc/condor io, while most of the header files are located in
src/condor includes. The class hierarchy of CEDAR is a little bit funky, but basically theStream class is the
base class. TheStream class is mostly concerned with homoginization of data representations. TheSock class is
derived from Stream, and defines an interface for network connection establishment. This interface is implemented
with TCP in theReliSock class and with UDP in theSafeSock class. ReliSock and SafeSock are derived from
Sock, and are the only CEDAR classes which should be instantiated; however, pointers to the Stream base class are
often used at points in the application where it is not important if the underlying medium is TCP or UDP (for example,
in a daemon which handles the same commands over both TCP and UDP).

Throughout the code, you will see references to asinful string. All this means is a string of the form
<xxx.xxx.xxx.xxx:ppp>, i.e. an ip address plus colon plus port nunber, all enclosedin less-than greater-than
characters. The sinful string is a common convention throughout CEDAR and DaemonCore for communicating a
unique network endpoint. Several helpful functions for manipulating sinful strings can be found in
src/condor util lib/internet.c.

The most complicated portions of CEDAR are the parts dealingwith security. The ReliSock class includes an
authenticate() method that will perform strong authentication using Kerberos, NTSSPI, GSI, or several other
methods. In addition, both ReliSock and SafeSock provide the ability to encrypt data via 3DES or Blowfish algorithms,
and also the perform an integrity check on the data via an MD5 checksum. The implementation for these algorithms
is courtesy the OpenSSL library, which must be linked into Condor (and typically is linked via the Globus Toolkit
external). More information on security in DaemonCore is included in a different document.

3 Understanding the Event-based Framework

DamonCore functionality is accessed via invoking methods upon the global singlotondaemonCore.
Every DaemonCore daemon must have a global string variable calledmySubSystem and few entrypoints. See

src/condor dcskel for a skeletal DaemonCore daemon as an example. ThemySubSystem variable is used
to identify the name of the service. For example, the value ofmySubSystem for the condor collector is
"COLLECTOR". This variable is used by DaemonCore for several purposes, such as constructing the name of this
daemon’s log file.

DaemonCore is an event-driven framework. All functions written by the daemon programmer must beregistered
as a callback to some event, or they will never be invoked. Every DaemonCore daemonmustdefine the following
handlers (callbacks), which do not need to be “registered” with DaemonCore:

void main pre dc init( int argc, char** argv) Invoked by DaemonCore very early after the process is created. Rarely
used – usually just an empty function.

void main pre command sock init() Invoked by DaemonCore early after the process is created, but after the con-
figuration and logging subsystems have been initialized. Rarely used – usually just an empty function.

Page 3 of 9



Optena Corporation DaemonCore Description

int main init(int argc, char **argv) Invoked by DaemonCore after everything has been initialized. This function
should be considered to be themain() function from the point of view of the daemon developer. DaemonCore
will parse the command line and handle any parameters that are specific the DaemonCore (see section 3.8.2 of
the Condor Manual), and then pass any remaining daemon-specific command line arguments to maininit(). In
main init(), typically command line arguments are parsed and, most importantly, callbacks for any interesting
events that the daemon wishes to respond to are registered.

int main config( bool is full ) When DaemonCore receives aSIGHUP signal (typically via thecondor reconfig
command), it will reconfigure itself and then invoke this handler.

int main shutdown graceful() Invoked by DaemonCore when the daemon has been requested to shutdown grace-
fully, such as when the user issues acondor off or aSIGTERM signal is delivered.

int main shutdown fast() Invoked by DaemonCore when the daemon has been requested to shutdown as quickly
as possible, such as when the user issues acondor off with the-fast argument, or aSIGQUIT signal is
delivered.

So a typical DaemonCore-based daemon will register a bunch of event handlers inmain init(), and then the
bulk of the rest of the code will be functions that respond to the registered events. Every registered event handler is
expected toreturn quickly to DaemonCore. Because DaemonCore is (currently) single-threaded, any event handler
that takes a long time to perform its duties will in block the entire daemon, possibly causing clients to timeout, etc.
That means an event handler ideally should not make any blocking system calls, such as waiting for a network reponse
– instead, the event handler could turn around and register another event before returning.

For every type of event handler, the programmer must providea pointer to the either the C++ callback method
or the C callback function (i.e. a function that is in the global scope, and not a member of an object) to be invoked
when the event is triggered. The C++ callback type defintionswill have a ”cpp” appended to their typenames. For
instance, use the type definition ofTimerHandercpp to register a timer handler that is a C++ method, and use
TimerHandler to register a timer handler that is a C function or a static C++method. When registering C++
methods with DaemonCore, it is required that the class containing the callback methods be derived from the empty
classService.

In addition to a function pointer, several DaemonCore eventregistration methods allow the programmer to provide
an authorization level, such as READ, WRITE, ADMINISTRATOR, etc. Clients can be granted access to certain
authorization levels via the settings in the configuration file as described in the Condor Manual, e.g. ALLOWREAD,
ALLOW WRITE, DENY READ, DENY WRITE, etc.

The following sections will give a brief overview of the types of events handled by DaemonCore.

3.1 Command Handlers

DaemonCorecommand handlers enable a simple model for remote method invocation.
By default, a DaemonCore daemon will be born with two listen sockets created at startup. One socket will be

a ReliSock (TCP), and the other will be a SafeSock (UDP). Bothsockets will share the same port number, which
will be chosen dynamically unless otherwise specificed via command-line option or via a parameter passed into
Create Process() by the parent process.

When a connection is made by a client to this listen socket, DaemonCore willaccept the connection if it is TCP,
and then it will read one one integer off of the socket via CEDAR. This integer is refered to as a ”command” integer,
and DaemonCore then looks up in its data structures to see if any command handler function has been registered to
respond to this command int. If so, DaemonCore then checks the authorization level of the handler and compares it to
the authorization level allowed by this client by calling theVerify method. This method return whether or not the
client is authorized to perform a specified command given theclient’s ip address and/or authentication information. If
the authorization check fails, the connection is closed. Ifit passes, then the registered command handler is invoked.

Page 4 of 9



Optena Corporation DaemonCore Description

The command handler is given access to the network socket, and is responsible for reading any subsequent pa-
rameters off of the wire and also for writing any results. Once the command handler returns, DaemonCore will close
the socket (if it is TCP) unless the constantKEEP STREAM is returned from the command handler. The idea here is
all DaemonCore handler should attempt to return quickly. Command handlers could perform a non-blocking read by
invoking the methodRegister Socket (see section 3.3) on the socket passed into the handler in order to register
a callback function to be invoked when there is more data to read on the socket, and then returningKEEP STREAM.

SeeRegister Command() and related calls in the header file.

3.2 Signal Handlers

Signal handlers in DaemonCore can be thought of as commands that do not have any input or output parametes.
DaemonCore methods exist to register a signal handler, as well as block and unblock signals. The method for sending
signals in DaemonCore isSend Signal(); signals may only be sent to a process’ parent or children.

Signals are implemented in DaemonCore as follows: if a process is sending a signal to itself, just some in-memory
data structures are manipulated. If a signal is being sent toa parent or child process and that process is linked with the
DaemonCore library, then DaemonCore sends a command encoding the signal number to the command socket of the
destination.

The UNIX operating systems have signal support in the operating system. Because DaemonCore delivers signals
via its own mechanism, DaemonCore applications are not limited by the set of 20 or so signals provided by UNIX.
Any number of signals can be defined; see filesrc/condor includes/condor commands.h. Furthermore,
on UNIX, DaemonCore catches common POSIX operating system signals, such as SIGTERM, and turns around and
raises that DaemonCore signal viaSend Signal(); then the UNIX signal handler returns. The actual DaemonCore
signal handing function is then invoked later from the main driver loop. This means that DaemonCore signal handlers
are not called from inside a UNIX signal handler, and thus arefree from the hassles normally associated with UNIX
signal handlers (such as being limited to only POSIX signal re-entrant function, volatile data, inability to call malloc,
etc). For this reason and several others such as the lack of POSIX signals in Win32, programmers should not use
UNIX/POSIX signal handling calls (like sigaction, sigprocmask, kill) in their DaemonCore programs.

The following signals are handled automatically by DaemonCore and therefore the programmer should not asso-
ciate a handler with these signals:

SIGTERM Request a graceful shutdown; same as callingShutdown Graceful().

SIGQUIT Request an immediate shutdown; same as callingShutdown Fast().

SIGSTOP Request the operating system to suspend the process; same ascallingSuspend Process().

SIGCONT Request the operating system to continue a previously suspended process; same as callingContinue Process().

SIGHUP Request a process to reconfigure itself (i.e. re-read its configuration).

SIGKILL Request the operating system to immediately destroy a process. The programmer should never send this
signal to another process.

SIGCHLD A child process has exited; DaemonCore will determine whichone and invoke the proper reaper handler.

SeeRegister Signal(), KeywordSendSignal(), and related calls in the header file.

3.3 Socket Handlers

The programmer can register a handler that will be invoked whenever there is data ready to be read on a given CEDAR
socket via the methodRegister Socket() and related calls.

Similarly, if the non-blocking flag is passed to the ReliSockconnect() method, thenRegister Socket can
also be used to invoke a handler once a TCP connection has beenestablished.

Page 5 of 9



Optena Corporation DaemonCore Description

3.4 Pipe Handlers

DaemonCore contains methods to create and destroy unamed pipes as a way to facilitate interprocess communication.
DaemonCore pipes can communicate with other DaemonCore processes or with non-DaemonCore linked processes.
A pipe created by the DaemonCoreCreate Pipe() method can be passed toRegister Pipe in order to receive
a callback whenever there is data ready to read on the pipe.

One reason DaemonCore needs its own methods to handle pipes is to deal with Win32. On UNIX, pipe descriptors
and socket descriptors are fairly intechangable; both can be passed intoselect() in order to determine when they
have data available. But on Win32, pipe descriptors cannot be passed intoselect(). Thus, in the internals of the
DaemonCore implementation, when a pipe handler is registered, DaemonCore will pass the descriptor into the Win32
WaitOnMultipleObjects() system call which it invokes in another thread seperate fromthe thread that blocks
on select().. The implementation is further complicated by the fact that this Win32 system call can only watch
a maximum of 64 objects. To get around this limitation, DaemonCore will start additional threads as needed so this
limitation in Win32 is hidden from the DaemonCore developer.

3.5 Timer Handlers

Any number of timers may be registered with DaemonCore. TheRegister Timer() method takes a pointer to a
timer handler function and an integer that specifies how manyseconds to wait until invoking the handler.

If a periodic value is specified, then the timer is automatically reset forthe specified number of seconds when
the timer handler returns. For example, the below will causeMyClass-¿foo() to be invoked in 5 seconds, and then
automatically reset for every 30 seconds once foo() returns::

daemonCore->Register_Timer(5,30,(TimerHandlercpp)foo,MyClass);

Timers can be cancelled or reset (to a different time) at any point, including from within the timer handler function
itself.

Realize that timers, like everything else in DaemonCore, are not preemptive. Thus, a periodic timer set to go off
every 30 seconds may fire late if some other handler takes morethan 30 seconds to return back to the DaemonCore
driver. Furthermore, DaemonCore timer implementation is via a timeout value passed intoselect() in the main
driver loop. Thus timers do not rely upon UNIX’s SIGALRM facility, and timer handlers are not called from within a
UNIX signal handler.

SeeRegister Timer(), Reset Timer(), and related calls in the header file.

3.6 Reaper Handlers

A reaperis a handler that will be invoked when a process or thread terminates. The reaper handler will be passed the
process or thread id of the process or thread that exited, as well as the exit status.

A reaper handler is registered via theRegister Reaper()method, which returns a reaper id ( a positive integer
starting at 1). This reaper id is then passed as a parameter toCreate Process() or Create Thread().

DaemonCore will guarantee that the process id (pid) of a process that terminated willnot get reused by the oper-
ating system until the reaper handler for that pid has returned back to the DaemonCore driver. This is not such a big
deal on UNIX, since UNIX goes out of its way to procrastinate the reuse of process and thread ids as long as possible.
However, this semantic guarantee is very important on Win32, since Win32 tends to reuse pids almost immediately
after the handle to the process is closed.

The implementation of the reaper callback mechanism insideof DaemonCore is very tricky and was difficult to get
correct, especially on Win32. On Win32, process handles arewatched via calls toWaitForMultipleObjects()
in another thread. DaemonCore can watch over and reap more than 64 child processes by spawning additional threads
as needed - see section 3.4 for more discussion of this mechanism implemented inside of DaemonCore for monitoring
non-socket Win32 handles.

Page 6 of 9



Optena Corporation DaemonCore Description

SeeRegister Reaper() and related calls in the header file.

4 Process Management

Because process creation and management is so different in POSIX versus Win32, DaemonCore abstracts away these
differences by providing its own methods for the creation, destruction, suspension, and testing for the existence of pro-
cesses, as well as its own cross-platform implementation ofPOSIX-like functions such asgetpid(), getppid(),
WIFSIGNALED(), and many others.

The implementation details of a few of these facilities deserves special mention, and is discussed in the sections
below.

4.1 Process Creation

TheCreate Process() method spawns a child process (i.e. both a fork and exec on POSIX systems). Method
parameters can control many aspects of process creation, such as the specification of the environment, redirection of
stdio, operating system priority (nice value), which CEDARsockets should be inherited by a child process, and many
others. A few tricky implementation details ofCreate Process() deserve special mention.

First of all, internal to the implementation on POSIX, a temporary pipe is created between the parent and child
process. This pipe is used to pass back any errors that may occur after the call tofork() andbeforethe completion
of the call toexec(). This is a nasty problem with POSIX that DaemonCore hides from the developer.

Another implementation detail: if the process to be createdis a DaemonCore process (i.e. linked with the Daemon-
Core library), then it is theparentprocess that creates the command sockets. The child simply inherits these sockets
from the parent. The reason for this is it allows the parent tointiate the sending of signals and commands to the child
before the child spawn process has completed, because the parent knows the IP port of its child process a priori. This
eliminates the nasty situation where the parent wants to send a signal to its child before the child has told the parent
the address of its command port.

Another facility provided ”behind the scenes” in DaemonCore is the automatic killing of a child process that
appears to be hung. This fits the model of Condor, where every daemon is responsible for the management and
cleanup of any child processes it may spawn. How it works is when a DaemonCore process starts, it looks to see if
its parent process is a DaemonCore process. If so, then it sends its parent a heartbeat command at a specified interval
(can be specified per subsystem in the configuration file). Once the parent process receives a hearbeat, it will hard
kill the child process if subsequent heartbeats do not arrive before a timeout. The DaemonCore user can call method
Was Not Responding() in the reaoper callback to determine if a child exited of its own accord or was forcibly
killed by DaemonCore because it appeared to be locked up. Because the parent willdo nothing until the first heartbeat
has been received, non-DaemonCore processes may be safely spawned without fear that DaemonCore may kill them
because no heartbeat is sent.

4.2 Process Suspension

TheSuspend Process() method on UNIX is trivial, but on Win32 it is tricky because Win32 only provides a
primitive to suspend a specific thread within a process, not the entire process itself. Therefore, the implementation
becomes complicated because it must handle problems that arise from a lack of an atomic process suspend on Win32 –
it is not sufficient to simply iterate through all the threadsin the process and suspend them.. For example, consider the
following: we want to suspend a process that has two threads,A and B; we suspend A; then, before we can suspend
B, thread B sends a continue to thread A; we then suspend thread B. Now we are left in a state where thread A is still
active. The DaemonCore implementation handles these situations.

Page 7 of 9



Optena Corporation DaemonCore Description

4.3 Thread Creation

DaemonCore includes a method namedCreate Thread(). This method is best ignored, and should ultimately
be depricated, because in its current incarnation it does vastly different things on UNIX -vs- Win32. On UNIX, this
method starts a new process viafork() but does not callexec(). Because there is no equivelent to a fork call
on Win32, this method when invoked on Win32 actually starts anew kernel thread. Because the vast majority of
the code in Condor is not thread safe, this is a dangerous thing to do. Thus most of the currently existing calls to
Create Thread are located in places where functionality is restricted to UNIX.

5 Logging

The API to a simple debug console logging interface is primarily via thedprintf() function.dprintf() is just
like good ’olprintf(), except that it also takes a loggingsubsystemparameter. The available logging subsystems
are defined incondor debug.h and examples includeD SECURITY, D DAEMONCORE, andD FULLDEBUG.

The logging of different subsystems can be enabled or disabled via the configuration file. All messages are written
into a specified file that can be automatically (and safely) rotated once it reaches a specificed size.

Different subsystems can have their messages duplicated into different files, each with their own file rotation size
– for example, all messages for thecondor startd can be logged into the fileStartLog, and in addition all
D SECURITY messages can be logged into a second fileStartLogSecurityEntries that never rotates.

The configuration file can specify that the logging system in DaemonCore obtain an exclusive write lock on the file
before writing to it. This is handy if multiple daemon processes want to write into the same log file, as is typical with
thecondor shadow. The actual lock file can be specified to exist in a different location than the log file, enabling
the log files to reside on a shared filesystem like NFS and stillhave proper locking semantics.

6 Configuration

7 Client Library

8 Future Directions

This section briefly presents a few of the major changes in store for DaemonCore, currently in either the planning
stages or early implementation phases at UW-Madison.

8.1 Threads

A significant gain in scalability ofcondor could be realized if DaemonCore daemons could easily overlapcomputa-
tion and I/O. While that can be done with the current implementation via the generous use ofRegister Socket(),
this callback model is hard for programmers to work with. Therefore, in the later half of 2004, the Condor Team and
the University plans to enhance DaemonCore to support non-preemptive cooperative threads. Such a system would
only preempt a thread when the thread explicitly relinquishes control via a yield() call. The plan calls for threads to
yield solely when they would otherwise block on I/O, or when explicitly coded to do so at ”safe” moments.

This approach is likely the easiest and safest way to introduce threading to a large body of existing code that was
not originally designed to be thread-safe. Furthermore, this approach should be easier to maintain into the future
considering that (i) the Condor Team has a large amount of developer turnover of various skill levels due to the
continuous flow of graduate students that join and leave the team; and (ii) a small mistake in a preemptive threading
model can easily result in a non-deterministic bug that may be extremely difficult to reproduce.

Page 8 of 9



Optena Corporation DaemonCore Description

8.2 SOAP

9 Conclusion

Page 9 of 9


	1 Introduction
	2 CEDAR
	3 Understanding the Event-based Framework
	3.1 Command Handlers
	3.2 Signal Handlers
	3.3 Socket Handlers
	3.4 Pipe Handlers
	3.5 Timer Handlers
	3.6 Reaper Handlers

	4 Process Management
	4.1 Process Creation
	4.2 Process Suspension
	4.3 Thread Creation

	5 Logging
	6 Configuration
	7 Client Library
	8 Future Directions
	8.1 Threads
	8.2 SOAP

	9 Conclusion

