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1 Overview

This document provides a formal specification of the syntax and semantics of the ClassAd (Classified Adver-
tisement) language. The name of the language derives from its origin in the Condor distributed computing
system [7, 8], where it is used for discovery and allocation of resources. Providers of computing resources
submit advertisements describing their capabilities and declaring constraints and preferences for jobs they
are willing to run. Consumers submit ads describing their jobs. Like the provider ads, these ads may impose
constraints and express preferences regarding execution sites. A matchmaker process matches the producer
and consumer ads. All policy considerations are contained in the ads themselves; the matchmaker merely
supplies the mechanism for interpreting the policies expressed in the ClassAd language. The present docu-
ment only defines the language. This introduction hints at how the language can be used to express a variety
of scheduling policies, but a full discussion of this issue is beyond the scope of this document.

The ClassAd language is a functional language. The basic unit is the expression, and execution entails
evaluation of expressions, replacing an expression with its normal form or value. There are no side-effects:
Evaluation has no effect other than calculating the value of an expression. The language is carefully designed
to allow efficient evaluation. In particular, an expression can be evaluated in time proportional to the size
of the expression.’

The most important type of expression is a record expression (sometimes called a “classad”), which is
a set of name/value pairs. The “value” in each pair may be an arbitrarily complex expression, including
nested record expressions and lists of expressions. An example is

L
type = "gizmo";
components = {
[ type = "widget"; part_number
[ type = "widget"; part_number

12394 1],
92348 ]

};

1 Actually, this statement is only true if each function call completes within a time bound proportional to the length of its
arguments. All “built-in” functions have this property.




main_component = components[0];
main_part = main_component.part_number;

]

ClassAd expressions are strongly but dynamically typed. Supported types include integer and floating-
point numbers, Boolean values (true and false), character strings, timestamps, and time intervals. Dur-
ing the evaluation, invalid sub-expressions evaluate to the value error. For example, 1/0, 3 * "abc",
{1, 2, 3}[5], and 27[5] all evaluate to error. Attribute references (occurrences of identifiers on the right-
hand side of attribute definitions) are replaced by their definitions. Attribute names with no definition or
circular definitions evaluate to undefined. Attribute lookup is “block structured”: An attribute reference is
resolved by searching all record expressions containing the reference, from innermost outward, for a matching
definition (this matching is case-insensitive). For example, the expression

[
a=1; b =c;
d=[f=g;i=a; j=c; k=1; a=2;1]
1 =4d.k; c = 3;

]

evaluates to

[
a=1; b= 3;
d = [ £ = undefined; i = 2; j = 3; k = undefined; a = 2; ]
1 = undefined; c = 3

]

There are currently two implementations of the ClassAd language, one in C++ and one in Java. Both
implementations should have identical external behavior conforming to this specification.? In both imple-
mentations, ClassAd expressions are tree-structured objects. Fach implementation provides methods for
constructing expressions, navigating through them, and evaluating them, as well as methods for translating
between the internal data structures and character strings using either of two concrete syntazes, the “native
representation” used in the examples above and XML [4].

An important application of ClassAds is matchmaking. Matchmaking is applied to a pair A, B of
record expressions, each of which is expected to have a “top-level” definition of the attribute Requirements.
The Requirements attribute of A is evaluated in an environment in which the attribute reference other
evaluates to B, and B.Requirements is evaluated in an environment in which other evaluates to A, If
both Requirements attributes evaluate to the specific value true (not undefined, error, or a value of
some non-Boolean type), the expressions A and B are said to match. In Condor, matchmaking is used to
match job and machine ads. A machine ad describes the characteristics and current state of a machine.
It also has a Requirements attribute to restrict the set of jobs it is willing to run and a Rank attribute to
indicate how much it “likes” an individual job. Rank should evaluate to a non-negative integer, with higher
values indicating preferred jobs. Similarly, a job ad has descriptive attributes, a Requirements attribute
to constrain the set of acceptable machines, and a Rank attribute to express preferences. The Condor
matchmaker uses these attributes to match jobs with machines.

20f course, this is an idealized goal. As of this writing, there are several ways in which the two implementations differ from
each other and from this specification. An effort is underway to improve conformance.



2 Basic Concepts

An expression is either atomic, consisting of a literal constant or attribute reference, or it is a composite
expression, composed of an operator applied to one or more operands. A literal constant is an integer, real,
string, absolute time, or relative time literal, or one of the values true, false, error, or undefined. An
attribute reference has an associated character string, such as size or n123, called an attribute name. Op-
erators include the familiar arithmetic, logical, and comparison operators of C, C++, or Java (such as +, &&,
and <=), calls to functions (such as substring(x, 1, 3) or member(x,1)), operators for constructing lists:
{expry,...,expry }, and records: [name; = expry;...;name, = expry], the subscript operator: expri[exprs],
and the attribute-selection operator: expr.name.

3 Syntax

The ClassAd language has both an abstract syntax and several concrete syntaxes. The abstract syntax
describes each expression as an abstract data structure called its internal form. Each concrete syntax
maps an expression to a string of ASCII characters called its external form or representation. There are
currently three concrete syntaxes defined: the native syntax, the old classad syntax, and the xml syntax.
Each implementation should provide an application programming-language interface (API) for manipulating
internal-form expressions as data structures in the host programming language and converting between
representations: parsing to convert from external to internal form, and unparsing to convert from internal
to external form.
Figure 1 shows a sample expression in abstract, native, and XML syntaxes.

3.1 Abstract Syntax

An internal-form expression is an ordered tree: Each node is either a leaf or an internal node with a sequence
of child nodes. There is a unique root node; every other node has a unique parent. The leaves of an expression
tree are literal constants and references. Each internal node contains an operator. Its children are called
operands.

A literal constant is an integer, real, string, boolean, absolute time, relative time, error, or undefined. All
literal constants have values as indicated in Table 1. The value of an error literal is the unique value error
of type Error. An error literal also has an annotation, which is a sequence of zero or more non-null ASCII
characters meant for human consumption. Similarly, an undefined literal has the value undefined and an
annotation. Two literals are equivalent if and only if they have the same value.

A reference contains an attribute name, which is a sequence of zero or more non-null characters, or the
reserved word parent. Two attribute names match if the character sequences are the same length and
corresponding characters are the same except for differences in case. The following words are reserved,
meaning that they may not be used as attribute names.

3Character values are currently limited to the range 1 — 255 (decimal). Future versions of this specification may use Unicode
for representing attribute names and string literals.

4This document does not specify the precision or range of values supported by absolute time literals. The Java implementation
currently stores the time as a signed, 64-bit offset in milliseconds from the epoch, while the C++ implementation uses an signed
32-bit offset in seconds (though this may be platform-dependent). Both implementations use an epoch of 00:00, January 1,
1970, Universal Coordinated Time. The time zone is recorded as an offset from UTC.

5This document does not specify the precision or range of values supported by relative time literals. The Java implementation
currently stores relative times as signed, 64-bit integer indicating milliseconds, while the C4++ implementation uses a signed
32-bit offset indicating seconds.
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(a) Abstract Syntax
[a=1; b=a+1.5; c=9a, "xxx" }; d =c[3] ]
(b) Native Syntax

<c><a name="a"><i>1</i></a>
<a name="b"><e>a+1.5</e></a>
<a name="c"><1><e>a<e><s>xxx</s></1></a>
<a name="d"><e>c[3]</e></a></c>

(¢) XML Syntax
Figure 1: Example ClassAd Expression

error false is isnt parent true undefined

Recognition of reserved words is independent of case. For example, false, FALSE, and False are all reserved
words.

An internal node consists of an operator and a sequence of child nodes called its operands. Each operator
has an arity constraining the number of operands it may have. Operators are classified as unary (one
operand), binary (two operands), ternary (three operands), or warargs (any number of operands). The
operators and their arities are listed in the Table 2. Table 2 also indicates the symbol used to represent each
operator in the native syntax described in the following section.

With the exception of the binary operator SELECT and the varags operators RECORD and FUNC-
TION_CALL, the operands may be arbitrary expressions.® The second operand of the SELECT operator,
called the selector, is an attribute name. The first operand of the FUNCTION_CALL operator, the function
name, is a non-empty sequence of letters, digits, and underscores not starting with a digit; the remaining
operands are called actual parameters. Section 4.3.9 lists a set of built-in functions that must be provided
by all implementations.” The RECORD operator has zero or more operands, called attribute definitions.
Each attribute definition is an ordered pair consisting of an attribute name and an arbitrary expression. The
attribute names must be distinct (ignoring case)® We say that the attribute definition N = E defines the

6The ClassAd language is a dynamically typed language. Mis-typed expressions such as 3/"foo" are allowed by the syntax,
but will evaluate to error.

7Other functions may be provided by an extension mechanism to be defined in a subsequent version of this specification.

8The set of attribute names in a RECORD expression is logically a set of distinct case-independent strings, but the original
ordering and case may be retained by an implementation so that the “unparsing” of an parsed expression more closely resembles



Type Value or annotation

Integer 32-bit signed, two’s complement integer

Real 64-bit IEEE 754 double-precision floating point number
String Zero or more non-null characters®

Boolean The value true or false

AbsTime  An indication of an instant in time and the time zone where this
time was measured*

RelTime Interval between two absolute times

Error Zero or more non-null ASCII characters providing a human-
readable explanation

Undefined Zero or more non-null ASCII characters providing a human-
readable explanation
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Table 1: Literal Constants

attribute name N’ if N and N’ match.

3.2 Escaped Strings

Each of the concrete syntaxes represents an attribute name or string literal as a sequence of printable
ASCII characters (characters with values in the range 32 — 126 inclusive).” The translation from concrete
to abstract form (parsing) and from abstract to concrete form (unparsing) in each case shares the following
two algorithms.

In the concrete representation, a backslash may be followed by one of the characters

b tn f r "™ >\ 01 2 3 45 67

In the value of the resulting String or attribute name, the backslash and one or more following characters
are replaced by a single ASCII character as indicated by Table 3.

If the character following the backslash is an octal digit, the octal constant consists of three digits if the
first digit is 0, 1, 2, or 3 and two digits otherwise. However, the constant is terminated by the first character
that is not an octal digit. The string is ill-formed if a backslash is followed by any character other than those
listed in Table 3, or if the value of an octal constant following a backslash is zero.

Multiple canonical representations may parse to the sequence of characters, any of which may be consid-
ered an “unparsing” of that sequence. The canonical unparsing of a sequence of characters is defined relative
to an optional delimiter chararacter, which may be quote (34), apostrophe (39), or neither. Printable ASCII
characters (in the range 32 — 126 inclusive) are represented as themselves, with the exception that each
backslash (92) or delimiter character (if any) is preceded by an extra backslash. Each character with the
value 8, 9, 10, 12, or 13 is replaced by a backslash followed by the character b, t, n, £, or r, respectively.
Any other character is replaced by a backslash followed by a three-digit octal representation of its value.

For example, the strings

a’\n
a\’\n

the original.
91n this section, all characters codes are given in decimal.




Arity | Symbol | Name Arity | Symbol Name
1 + UPLUS 2 >= GREATER._EQ
1 - UMINUS 2 << LEFT_SHIFT
1 BIT_ COMPLEMENT 2 >> RIGHT_SHIFT
1 ! NOT 2 >>> URIGHT_SHIFT
2 [l OR 2 + PLUS
2 && AND 2 - MINUS
2 | BITOR 2 * TIMES
2 " BITXOR 2 / DIV
2 & BITAND 2 yA MOD
2 == EQUAL 2 td SUBSCRIPT
2 1= NOT_EQUAL 2 . SELECT
2 is SAME 3 7 COND
2 isnt DIFFERENT var {...% LIST
2 < LESS var [...]1] RECORD
2 > GREATER var name(...) | FUNCTION_CALL
2 <= LESS_EQ
Table 2: Operators

Escape Sequence  Value (decimal)

\b 8 (Backspace)

\t 9 (Horizontal Tab)

\n 10 (Linefeed)

\f 12 (Formfeed)

\r 13 (Carriage Return)

\\ 92 (Backslash)

\" 34 (Quote)

\’ 39 (Apostrophe)

\octal_digit™ value of octal constant

Table 3: Backslash escapes
a\47\012
\141\047\012

all parse to the three-character sequence consisting of a lower-case a, an apostrophe, and a newline (97, 39,
10 decimal). The canonical unparsing is the second of these if apostrophe is the delimiter, and the first
otherwise.

3.3 Native Syntax.

The native syntax of the ClassAd language is quite similar to C, C++, or Java. The external representation
of an expression consists of a sequence of tokens separated by optional white space and/or comments.
Comments are as in C++ or Java: The string // introduces a comment that continues until the end of the



current line, and /* introduces a comment that continues until the next occurrence of */ (such comments
do not nest).

3.3.1 Tokens.

Tokens include reserved words, integer, floating-point, and string literals, attribute names, operators, and
the additional lexical tokens equal sign (=), parentheses (( )), braces ({ }), brackets ([ 1), comma (,),
and semicolon (;). The operators are shown in Table 2 in the previous section. The syntax of literals and
attribute names is shown in Table 4.

token n=  attribute_name | literal | operator | punctuation | reserved_word
attribute_name unquoted_name | quoted_name
literal n=  integer_literal

| floating_point_literal

| string_literal

punctuation ==y Y
unquoted_name = ( letter |'_") ( letter | decimal_-digit | '_" )*
quoted_name n= "'( non_quote |7 )t/

integer_literal n=  nonzero_digit decimal_digit*

| ‘0" octal_digit*
70" ( 'x" |''X")  hex_digit™
floating_point_literal = digit™ ') digit* exponent’
| 7/ digitt  exponent’
| digitt exponent
exponent s= (e IE) (' 1= )T decimal_digitT
string_literal ™ non_quote | 27 )* 7
letter $ e I A4
non_quote m= '\' escaped_char
| '\' octal_digit  octal_digit”
[\ ( 70..73" ) octal_digit octal_digit
| other_character
escaped_char s= o' L LY e e N

decimal_digit = 0.9
nonzero_digit = 1.9
octal_digit = 0.7
hex_digit = decimal_digit | 'a’../£" | 'A.F

Table 4: Names and Literals

In Table 4, parentheses are used for grouping, literal characters are enclosed in single quotes, and the
postfix meta-operators *, 4+, and 7 are used to denote zero or more repetitions, one or more repetitions,
and zero or one repetitions, respectively. The name other_character denotes any ASCII character other
than Quote (34)19 apostrophe (39), backslash (92), linefeed (10), carriage-return (13), or null (0). The name
reserved_word denotes any of the strings

101n this section, all characters codes are given in decimal.



error false is isnt parent true undefined

in any combination of upper or lower case letters.

A ClassAd expression consists of a sequence of tokens, separated by whitespace. Whitespace consists of
one or more occurrences of the ASCII characters Space (32), Horizontal Tab (9), Linefeed (10), Vertical Tab
(11), Formfeed (12), or Carriage Return (13).}! Whitespace is only required between two tokens if the first
character of the second token could be construed as an extension of the first token according to the rules in
Table 4. Two consecutive string literals separated by whitespace are equivalent to a single literal whose
value is the concatenation of the values of the two literals.

A string_literal or quoted_name is parsed according to the common rules for Escaped Strings in
Section 3.2. The quoted_name syntax allows an attribute name to be any sequence of non-null ASCII
characters. If the sequence conforms to the syntax of unquoted_name, the attribute name may be represented
using either syntax. For example, the following are three representations in the native syntax of the same
attribute name:

_abc > _abc’ ’_ab\143’

3.3.2 Grammar.

The native syntax is defined by the context-free grammar in Table 5.

To simplify the grammar, productions enforcing the precedence of operators have been omitted. The
actual precedences are indicated by the order in which operators are listed. Operators are listed in order of
increasing precedence (most tightly binding last), with operators on the same line having equal precedence.
All binary operators are left-associative. Unary operators have higher precedence than binary operators other
than subscripting and attribute selection. The meta-syntactic symbols ()+7 are used as in the definition in
the previous section. A complete YACC grammar for the ClassAd language is contained in Appendix A.

3.3.3 Unparsing.

Parsing associates with each expression, binary_expression, prefiz_expression, or suffiz_expression a node in
the internal representation of an expression. For example, a binary_ezpression of the form expry + exprs
parses to an internal expression with operator PLUS and operands that are the results of parsing expry
and expry. Multiple distinct strings may parse to the same internal form, due to presence of optional
comments, whitespace, and parentheses. To support certain built-in functions such as string, we define for
each expression a canonical unparsing, which parses to that expression.

The canonical unparsing of an expression is completely parenthesized and has no comments and no
whitespace outside of string literals or attribute names. For example, the strings “-x + 3 * (y + 1)” and
“((=x)+(3*(y+1)))” both parse to the same internal form. The second string is the canonical unparsing.

The canonical unparsing of an attribute name is simply the name itself if it conforms to the syntax of
unquoted_name in Table 4. Otherwise, an attribute name is unparsed using the quoted_name syntax. A
string literal is unparsed as a string. Inside a quoted_name or string, the unparsing uses the rules defined in
Section 3.2, with apostrophe as the delimiter for a quoted_name and quote as the delimter for a string.

1 This definition of whitespace corresponds to the C and C++ programming languages. The Java Language Specification
(Second Edition) defines whitespace similarly, but omits Vertical Tab. The latter definition also corresponds to the (deprecated)
method Character.isSpace in the standard Java API. The API documentation recommends replacing Character.isSpace with
Character.isWhitespace, which adds Vertical Tab as well as characters with codes 28-31 decimal (FS, GS, RS, and US) and
several Unicode characters with codes greater than 256.



expression n=  binary_expression
| binary_expression '? expression ':' expression
binary_expression n=  binary_expression binary_operator prefir_erpression
| prefiz_expression
!/ | | !/
/&&/

/|/

!/

binary_operator =

|
|
| I~/

| /&I

| '=="| 1=’ | ’is’ | 'isnt’
| 1<’ | >t | k=l | >

| << IS s>

|

|

R
/*I | I// I I%I
prefix_expression n=  suffix_expression
| unary_operator suffix_expression
unary_operator = I
suffiz_expression n= atom

| suffiz_expression '.” attribute_name

| suffiz_expression '[ expression ']’
atom n=  attribute_name
| ‘error’ | 'false’ | 'true’ | 'undefined’ | 'parent’
| integer_literal
| floating_point_literal
| string_literal™
| list_expression
| record_expression
| function_call
| /(" expression ')’

list_expression = {"( expression (' expression )* '/ ) '}
record_expression c= [ ( attribute_definition ( '; attribute_definition )*';* )" ')
attribute_definition ::=  attribute_name '=" expression

function_call n=  unquoted_name '(' (expression (') expression )* )* ')

Table 5: Native Expression Grammar

The literals true, false, undefined, and error unparse to true, false, undefined, and error, respec-
tively. The annotation of an Error or Undefined literal is not included in the canonical unparsing.

The canonical unparsing of an integer literal is the decimal representation of its value, with no leading
zeros unless the value is exactly zero and no sign unless the value is negative.

The canonical unparsing of a real literal is one of the strings 0.0, -0.0, real ("INF"), real ("-INF"), or
real ("NaN"), or a normalized “scientific” representation such as 6.02E24 or 3.14159265E0, with one non-
zero digit before the decimal point and as many digits following the decimal point as necessary to represent
the value exactly (but at least one digit must follow the decimal point). For details, see Section 3.5 on the



XML representation for details.

The canonical unparsing of an absolute time literal has the form absTime ("yyyy-mm-ddThh:mm:ss+zz:zz")
where the argument is a string representation of the time and date in ISO 8601 syntax, including the local
time zone as hours and minutes from the prime meridian (negative for west). The canonical unparsing of a
relative time has the form relTime("d+hh:mm:ss.mmm") where the argument is a string representation of
the duration in days, hours, minutes, seconds, and milliseconds.'? The suffix .mmm is omitted if the number
of milliseconds is zero, and leading fields are omitted, together with the following punctuation, if their values
are zero. Leading digits of the first non-zero field are also omitted. The string begins with a minus sign
if the value is negative. Examples are absTime ("1949-03-11T08:17:00-06:00"), relTime("-5:00"), and
relTime("0").

The canonical unparsing of a list or record expression omits the optional comma or semicolon following
the last item. In particular, the empty record unparses as [1 and the empty list unparses as {7}.

3.4 Old ClassAd Syntax

The so-called “old” classad syntax is used in some versions of Condor to transmit classads (Record Expres-
sions) over a network connection. It is deprecated. Not all expressions can be represented in the old syntax.
To be so represented, an expression must satisfy the following conditions.'?

e The operator at the root node of the tree is RECORD.

e The root node has two attribute definitions that define attribute names MyType and TargetType
(ignoring case).

e All attribute names conform to the syntax of unquoted_name in Table 4.

If the root RECORD node has N children, the representation consists of 4 bytes representing the binary
value N, most significant byte first, followed by N strings of ASCII characters, each terminated by a null
character. The last two strings are representations, in the native syntax, of the expressions in the attribute
definitions corresponding to attribute names MyType and TargetType, in that order. The remaining N — 2
strings correspond to the other N —2 operands of the RECORD operator. Each of these strings has the form
"name = expr", where name is the attribute name of the definition, and expr is a representation, using the
native syntax, of the corresponding expression.

3.5 XML Syntax

A Document Type Definition (DTD) for the XML representation may be found in Appendix B, and a schema
definition compliant with the XML Schema standarad [5] is in Appendix C.

In the following paragraphs, zml_escape(string) denotes a string of printing ASCII characters that results
from the following two steps, excuted in order. First, the string is replaced by its canonical unparsing, as
defined in Section 3.2. Then, each occurrence of <, &, or > is replaced by &1t ;, &amp;, or &gt ;, respectively.
The function aml_escape_attr is defined similarly, except that in the second step, " is also replaced by &quot ;.

I2For this conversion, leap seconds and daylight savings time transitions are not taken into account. Every minute is 60
seconds, and every day is 24 hours.

13The “old”” classad language had many more restrictions than those listed here. An expression that meets these conditions
can be represented in the Old syntax for transmission over a connection, but it may not be intelligible to a legacy application
receiving the transmission.

10



The canonical XML representation of an expression depends on the operator at the root of the ex-
pression. All “simple” (atomic) values conform to types defined in XML Schema Part 2: Datatypes [3].
In this section, these types are referenced as if they were in the namespace xsd, e.g., xsd:string, where
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema. A complete XML Schema is provided in Appendix C.

A string literal is represented as <s>xmi_escape(s)</s>, where s is the value of the literal. The content
of an <s> element has type xsd:string.

An integer literal is represented as <i>dddd</i>, where dddd is the decimal representation of its value,
with no excess leading zeros (that is, the first digit is zero if and only if the value is zero), preceded by a
minus sign if the value is negative. The content of an <i> element has type xsd:int.

A real literal is represented as <r>s</r>, where s is the representation of the value of the literal in
“scientific” notation, for example, <r>3.141592653589793E+00</r>. More specifically

e The values positive and negative infinity and not-a-number are represented by INF, -INF, and NaN,
respectively.

e Any other value is represented by the concatenation of the the following strings, with no characters
between them:

— an optional leading minus sign (omitted if the value is positive),

— a “mantissa” of the form d.f, where d is a digit and f is a sequence of 15 digits,
— an upper-case letter E,

— a plus or minus sign, and

— an integer exponent of two or three digits.

The first digit of the mantissa must be non-zero unless the value being represented is zero. If the
exponent is three digits, the first digit must not be zero. Note that a sign is required in the exponent.

The content of an <i> element has type xsd:double. Except for the representations for positive and negative
infinity and not-a-number, which conform to the specification of xsd:double, this representation is meant
to conform to the printf format %1.15E.

A true or false boolean literal is represented by <b v="t"/> or <b v="f"/>, respectively.

An Error literal with non-empty annotation a is represented by the string <er a="annot"/>, where annot
is zml_escape_attr(a). If the annotation is empty, the representation is <er/>.

An Undefined literal with non-empty annotation a is represented by the string <un a="annot"/>, where
annot is zml_escape_attr(a). If the annotation is empty, the representation is <un/>.

An absolute time literal is represented as <at>yyyy-mm-ddThh:mm:ss+zz:zz</at>, where the element
content is a string representation of the time and date in a restricted ISO 8601 syntax, including the local
time zone as hours and minutes from the prime meridian (negative for west). The content of an <at> element
has type xsd:dateTime. An example is <at>2003-01-25T09:00:00-06:00</at>.

A relative time literal is represented as <rt>sPnDTnHnMn.mmmS</rt>, where s is - for negative values
and omitted for positive values, each n is a non-negative integer, representing days, hours, minutes, and
seconds, mmm represents a number of milliseconds, and the letters PDTHMS are included verbatim. The suffixes
represent scale factors: DT for days (24*60*60), H for hours (60*60), M for minutes (60) and S for seconds
(1). A field (including its following scale factor) may be omitted if its value is zero. If the value is an
integral number of seconds, the number of milliseconds, along with the preceding decimal point, may be
omitted, but if present, it must be represented as exactly three digits. Finally, the letter T is omitted if the

11



H, M, and S fields are all omitted. Note that these rules permit multiple representation of the same value.
For example, <rt>PT1H2S</rt>, <rt>PT60M2S</rt>, and <rt>PT3602.0008</rt> represent the same value.
The canonical representation is defined by the limitation that the number of hours is less than 24, and the
numbers of minutes and seconds are each less than 60. Moreover, each field (including milliseonds) is omitted
if its value is zero. However as a special case, the value zero is represented as <rt>PT0S</rt>. Thus the
first of the three examples above is the canonical representation of a duration of 3602 seconds. The content
of an <rt> element has type xsd:duration.

If the root operator is LIST, the XML representation consists of the string <1> followed by the concate-
nation of the representations of its operands (in order), followed by the string </1>. The content of an <1>
element is a sequence of elements of any the types listed in this section except <a>.

If the root operator is RECORD, the XML representation consists of the string <c> followed by the
concatenation of the representations of its constituent definitions, followed by the string </c>. The repre-
sentation of an attribute definition name = expr consists of the string <a n = "zml_escape_attr(name)">
followed by the XML representation of expr followed by the string </a>. The content of a <c> element is
a sequence of <a> elements. The content of an <a> element is an element of any of the types listed in this
section except <a>.

In all other cases, the XML representation of an expression consists of <e>zml_escape(s)</e>, where s
is the canonical unparsing of the expression in the native syntax. The content of an <e> element has type
xsd:string.

Non-canonical XML representations may differ from the canonical representation in the following ways:

e Additional whitespace may be added to all elements other <s> or <r> elements, provided the results
are syntactically valid. (For example, spaces may not be placed between the digits of an <i> element.)

e Additional whitespace may be added to tags, but not inside attributes in tags.

e The content of an <r> element may use an unnormalized representation (more or fewer digits before
or after the decimal point), the E and the following exponent may be omitted (implying an exponent
of zero), the decimal point may be omitted if the fractional part of the mantissa is empty, and any
combination of upper and lower case letters may be used for the strings E, INF, and NaN.

e The content of an <at> element may be any string which is a valid argument to the absTime built-in
function.

e The content of an <rt> element may be any string which is a valid argument to the relTime built-in
function.

e Any expression e may be represented by <e>zml_escape(s) </e>, where s is any string that parses to e
according to the native syntax.

For example,

<c><a n="the value"><e>b</e></a><a n="b"><r>3.14E0<\r></a><c>
<c>
<a n="the value"> <e> Db</e> </a>
<a n="b"> <e>3.14</e> </a>
<c>
<e>[ ’the value’ = b; b = 3.14 ]1</e>

are three XML representations of the same expression; the first is the canonical representation.
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4 Evaluation

This section defines the semantics of the ClassAd language by explaining how to evaluate an expression.In
this section, “expression” means an internal-form expression tree. In general, a composite expression is
evaluated by recursively evaluating its component sub-expressions and then using its top-level operator to
combine the results. However, there are situations in which evaluation of an expression E depends on parts
of a context, which is an expression containing F as a sub-expression. For example, in the expression

[a=3; b=[c=al]]l,

the second occurrence of a (an attribute reference) is evaluated by searching the two containing Record
expressions for a definition of a, yielding the constant 3.

More formally, an expression in context (EIC) is a pair (E, C) consisting of an expression C' (the context)
and a designated occurrence of a sub-expression E of C'. The semantics of the ClassAd language is defined
by a recursive function eval from EICs to EICs. A top-level EIC is an EIC of the form (E, F). For brevity,
we will occasionally abbreviate the top-level EIC (E, E) as F, particularly when E is a literal constant. For
example, the EIC (error, error) may be written as error. An expression E is evaluated by computing
eval(E, E) and extracting the sub-expression from the resulting EIC.

The set of EICs with context C is partially ordered by the relation =, defined by (E,C) C (E’,C) iff E is
a sub-expression of /. When we speak of the “minimal” EIC with a given property, we mean the one that
is minimal with respect to C. An EIC (E, C) is called a scope if the top-level operator of F is RECORD.

Define lookup(s, (E, C)), where s is a string and (E, C) is an EIC, to be the EIC (E’,C"), where

e If s matches'® the string "parent" and there is a scope (E,,C) such that (E,C) C (E,,C), then
(E',C") = (E,,C), where (E,,C) is the minimal such scope.

e Otherwise, if there is a scope (E4, C) such that (E,C) C (Ey4,C) and E; contains a definition ¢t = F;
such that ¢ matches s, let ¢ = F; be the definition in the minimal such scope. Then (E’,C") = (E}, C).

e Otherwise, (E',C") = (undefined, undefined).
For example, let C' be the expression
la=x; b=la=y;c=2al;d=al,

and let R denote the inner Record expression. C' contains two occurrences of the attribute-reference expres-
sion a. Let E denote the occurrence inside R and E» the other occurrence. Then (Fy,C) C (R, C) C (C, C),
(E9,C) C (C,C), lookup(a, (E1,C)) = (y,C), lookup(a, (E2,C)) = (z,C), lookup(c, (E1,C)) = (E1,C), and
lookup(c, (F2,C)) = (undefined, undefined).

4.1 Types, Undefined, and Error

Each expression has a type, which is one of Integer, Real, String, Boolean, AbsTime, RelTime, Undefined,
Error, List, or Record. The types Integer and Real are collectively called numeric types. The types AbsTime
and RelTime are collectively called timestamp types. Each operator imposes constraints on the types of its
operands. If these constraints are not met, the value returned by the operator is error.

An attribute reference with attribute name N evaluates to undefined if the reference is not contained
in any scope that defines N. It may also evaluate to undefined in the presence of loops, as in

14We are using the term “match” here as defined in Section 3.1: Two strings match if they are identical except for differences
in case.
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Most operators are “strict” with respect to undefined and error. The only exceptions are the Boolean
operators described in Section 4.3.1, the operators is and isnt described in Section 4.3.2, and the LIST and
RECORD constructors described in Section 4.3.8. Strict evaluation obeys the following ordered sequence of
rules.

e If the operands do not obey the type restrictions imposed by the operator, the result of the evaluation
is error. The following sections list all combinations of types accepted by each operator. None of the
strict operators accept operands of type Error, so this rule implies that if any sub-expression evaluates
to error, the expression evaluates to error. This rule also catches “type errors” such as "foo" / 3.

e Otherwise, if any operand of a strict operator is undefined, the result is undefined.

e Otherwise, the result is computed from the operands as described in the following sections.

4.2 Atomic Expressions

A literal constant evaluates to itself. More precisely, if ¢ is an occurrence of a literal constant, then eval(c,
C) = (c, ).

If z is an attribute reference with attribute name N, then eval(z, C) = eval(lookup(N, (z, C))). In
particular, (z, C) evaluates to undefined if there is no scope (R, C) containing the indicated occurrence of
x such that R defines N. If this recursive definition leads directly or indirectly to a call eval(z, C), the result
is undefined.

4.3 Composite Expressions

List and Record expressions evaluate to themselves. More precisely, if F is an expression whose root operator
is LIST or RECORD, eval(E, C) = (E, C). The operators SELECT and SUBSCRIPT are discussed below.
For all other operators, evaluation is “bottom-up” and the result is a “pure value”. More precisely, if ® is a
binary operator other than SELECT, or SUBSCRIPT, then

eval(Ey @ Es,C) = (¢, ¢)

where
eval(Ey, C) = (B, CY),

eval(Ey, C) = (EY, C3),

and c is the (literal constant) result of applying operator ® to the expressions F] and E}, as defined in the
following sections. Similar rules apply to unary and ternary operators.

The operators found in C, C++, or Java are generally evaluated according to the rules of those languages.
In cases where the specifications of those languages differ, the ClassAd language follows the Java semantics
because it is more precise (the C and C++ specifications occasionally say the results are “undefined” or
“implementation defined” in unusual situations). The only deviations from Java semantics involve exceptions.
In cases where Java specifies that evaluation throws an exception, the ClassAd language returns the constant
error. The constants error and undefined also require special treatment when supplied as arguments to
operators.

14



4.3.1 Boolean Operators

The Boolean operators && and | | and the ternary operator _7_:_ are evaluated “left to right” with respect
to error, and “optimistically” with respect to undefined. For example,

true || z = true

false && x = false
undefined || true = true
true ? val : x = val

false ? x : val = val

even if x evaluates to error or undefined.
The Boolean operators treat Boolean true, false, and undefined as a three-element lattice with

false < undefined < true.

With respect to this lattice, && returns the minimum of its operands, || returns the maximum, and !
interchanges true and false.
The complete definition of the operators &&, &&, !, and _7_:_ is given by the tables

& | FUTDO Il Il FUTO v 7
———te——————— ——— Fmm—————— ——t— —————-
F|I|FFFF FIFUTE FI|T F| expr3
UIFUUE UIUUTE UIU Ul U
TIFUTE TITTTT TI|F T/ expr2
Ol EEEE OIEEEE OI|E 01| E

In these tables, the letters T, F, U, and E stand for the constants true, false, undefined, and error,
respectively; 0 stands for any expression other than true, false, or undefined (including error); and expr2
and expr3 represent the second and third operands of the expression expry 7 expre : exprs.

4.3.2 is and isnt

The expression expr; is exprs evaluates to true if expr; and expry evaluate to “identical” values and false
otherwise. The expression expr; isnt exprs evaluates to the negation of expr; is expre. These operators
are most commonly used to test for undefined or error as in

result = (expr is undefined) ? O : (expr + 1);

but they can be used to compare arbitrary values.
For the purposes of this section, the relationship “identical” is defined as follows.

e Expressions of different types are never identical. Thus (3 is 3.0) (3 is "3") and (undefined is
error) all evaluate to false.

e Two values of type Integer, Real, or RelTime are identical if and only if they are numerically equal
constants.

e Two values of type AbsTime are identical if they represent the same instant in time and the same
offset from UTC.
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e Two values of type Boolean are identical if and only if they are both true or both false.

e Two values of type Undefined or two values of type Error are identical. Thus ((3 * "x") is error)
evaluates to true.

e Two values of type String are identical if and only if they are identical character by character. Case is
significant. Thus ("One" == "one") and ("One" isnt "one") both evaluate to true.

e Two values of type List or Record are identical if and only if they are created by the same instance of
a LIST or RECORD constructor operator. For example, if R is the expression

[a=4{1,2}b={{1,2}; c=aisb;d=ais al,

then R.c evaluates to false, while R.d evaluates to true.

Note that the is and isnt operators always evaluate to true or false, never undefined or error.

4.3.3 Comparison Operators

For the six comparison operators <, <=, ==, !=, >= and >, both operands must be numeric (Integer or Real),
both String, both AbsTime, or both RelTime. Otherwise, the result is error. If one operand is Integer and
the other is Real, the Integer argument is first converted to Real. The results are calculated as in Java [6].
If the operands are Strings, they are converted to lower case and compared lexicographically.
If the operands are AbsTimes, they are equal if they correspond to the same instant (according to UTC).
Otherwise, the earlier time is less than the later one. If the operands are RelTimes, they are compared as
signed integers.

4.3.4 Arithmetic Operators

The unary operators +, -, and binary operators +, -, *, /, %, take numeric operands.'® The results are
calculated as in Java [6],'6 with one exception: Integer division or remainder when the second operand is
zero throws an ArithmeticException in Java, but returns error in the ClassAd language. In particular, if
operands are Integers, the result is an Integer, and if one operand of a binary operation is an Integer and the
other is a Real, the Integer operand is converted to a Real and the result is computed using 64-bit floating
point arithmetic. The integral / operation truncates the result towards zero, and the integral % operation
generally returns a result with the same sign as the dividend (the left operand). See the Java language
specification [6] for details.

The unary and binary operators + and - are also defined for certain timestamp operands. The unary
+ operator is applicable to both AbsTime and RelTime operands and returns the value of its operand
unchanged. The unary - operator is applicable only to RelTime operands and returns the RelTime value
with the same magnitude and opposite sign.

The rules for binary operators are summarized in Table 6. If the result of an expression is an AbsTime,
its time zone is the same as the time zone of the AbsTime argument.

15Unlike Java, the + operator is not overloaded to accept String operands.

16The % operator is defined for floating point operands according to the Java programming language specification, not
according C. Some C implementations may not support % with floating point operands, so users concerned with portability
should avoid this special case until all implementations are brought into compliance.
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Ezpression Result type  Result value
AbsTime + AbsTime error
AbsTime + RelTime  AbsTime The AbsTime operand offset by the amount of the RelTime

operand

RelTime + AbsTime  AbsTime The AbsTime operand offset by the amount of the RelTime
operand

RelTime + RelTime  RelTime The numeric sum of the two operands

AbsTime - AbsTime RelTime The numeric difference of the two operands

AbsTime - RelTime  AbsTime The AbsTime operand offset by the negative of the RelTime
operand

RelTime - AbsTime error

RelTime - RelTime  RelTime The numeric difference of the two operands

Table 6: Date and Time Arithmetic

4.3.5 Bitwise Boolean Operators

The bitwise logical unary operator ~ and binary operators |, =, and & are defined only for Integer and
Boolean operands. They are defined to return the same results as the corresponding operators in Java [6].

4.3.6 Shift Operators

The shift operators << (left shift), >> (right shift with sign extension), and >>> (right shift with zero fill)
are defined only for Integer operands.!” They are defined to return the same results as the corresponding
operators in Java [6].

4.3.7 Select and Subscript

The SELECT operator has two operands, the base and the selector, where the selector is syntactically
constrained to be an attribute name. In the native syntax, it is written base.selector. It is semantically
equivalent to base["selector"]. That is, an instance of SUBSCRIPT operator where the subscript is the
string value corresponding to the attribute name. For example,

[ rec = [ One = 1; Two = 2 ]; val = rec.one ].val
and
[ rec = [ One = 1; Two = 2 ]; val = rec["one"] ].val

both evaluate to 1. The SELECT syntax is more concise, but the SUBSCRIPT syntax is more flexible,
because it allows the selector to be computed rather than requiring a literal string.

The SUBSCRIPT operator has two operands, the base and the subscript. In the native syntax, it is
written base [subscript]. The subscript expression must have type Integer or String. If the subscript is an
Integer i, the base expression must have type List and the result is the i*" element of the list, counting from
zero. If the subscript is a String s, the base expression must be a Record or List. If the base expression

7Note that C and C++ have no >>> operator. These languages perform a similar operation when the operands are declared
to be unsigned. There are no unsigned types in Java or the ClassAd language.
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has type Record, the result is computed by searching the base and its containing scopes for an attribute
definition matching the attribute name s. If the base expression is a List, the SUBSCRIPT operator is
applied to each member of the list and the result is a new “top-level” list of the results. In all other cases,
the result is error.

More precisely,
eval(Ey[Es),C) = (E', C"),

where £’ and C’ are defined as follows. Let
eval(Ey, C) = (E;,C})

and
eval(Es,C) = (EL, CY).

e If E! is an Integer with value ¢ and Ej is a list {Ey, ..., E,—1} with n > ¢ members, then (E’,C") =
(E;, C}).

e If E/ is a String with value s and Ej} is a Record expression, then (E’,C") = eval(lookup(s, (E;,C}))).

o If 5 is a String with value s and Ej is a list {Ep,...,E,—1}, then E’ is the list {E{,...,E,_,},
where eval(E;[s],C}) = (E},C!) and C’ = E’ (that is, the result is a “top-level” EIC). Note that the
environments C! returned by the recursive calls to eval are discarded.

e In all other cases, the result is error.

4.3.8 List and Record Constructors

The LIST operator takes as operands an arbitrary sequence of values of arbitrary types. The RECORD
operator takes as operands a sequence of definitions of the form name; = value;, where the value; are
arbitrary values. The result is the Record

[nameg = valuey; ... ; name,_1 = value, 1]

List and Record expressions evaluate to themselves. That is, eval(E, C) = (E, C) if E is of type List or
Record.

4.3.9 Function Calls

The FUNC_CALL operator takes a function name and zero or more operands. Function names are matched
regardless of case, so that substr("abc",2), SubStr("abc",2), and SUBSTR("abc",2) all invoke the same
function.

Currently, all functions are strict with respect to error and undefined, unless otherwise specified. In
other words, if any argument evaluates to error or undefined, the result is error or undefined, respectively.
If arguments of both types are present, the result is error.

Currently, all functions return “top-level” values that are independent of the the context of the call. That
is eval(f(En, ..., En),C) = (V,V), where eval(E;,C) = E} for i = 1,...,n and V is a value computed from

1, ..., E, as described in the following table.

The following table lists all functions required by the current version of this specification; others may be

added in future versions. The description of each function is preceded by a prototype indicating restrictions
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on the number and types of arguments and indicating the type of the result returned. If the restrictions
are violated, the result is error. In the prototypes, “const” stands for any literal constant of type Integer,
Real, String, Boolean, AbsTime, or RelTime (but not Undefined, Error, List, or Record), and “any” means
any expression. A type followed by an asterisk indicates any number of arguments of the indicated type,
including none. Square brackets are used to indicate optional arguments.

isUndefined(any a) returns boolean. Returns true is a is the undefined value, otherwise returns false.
This function is not strict.

isError(any a) returns boolean. Returns true is a is the error value, otherwise returns false. This
function is not strict.

isString(any a) returns boolean. Returns true is a is a string value, otherwise returns false. This
function is not strict.

isInteger(any a) returns boolean. Returns true is a is an integer value, otherwise returns false. This
function is not strict.

isReal(any a) returns boolean. Returns true is a is a real value, otherwise returns false. This function
is not strict.

isList(any a) returns boolean. Returns true is a is a list value, otherwise returns false. This function
is not strict.

isClassad(any a) returns boolean. Returns true is a is a record value, otherwise returns false. This
function is not strict.

isBoolean(any a) returns boolean. Returns true is a is a boolean value, otherwise returns false. This
function is not strict.

isAbstime(any a) returns boolean. Returns true is a is an AbsTime value, otherwise returns false.
This function is not strict.

isReltime(any a) returns boolean. Returns true is a is a RelTime value, otherwise returns false. This
function is not strict.

int(const z) returns int. The result is z converted to an Integer. If z is an Integer, the result is z. If z
is a Real, it is truncated (towards zero) to an integer. If z is true the result is 1. If z is false the
result is 0. If z is an AbsTime, it it converted to the number of seconds since the epoch, UTC. If x
is a RelTime, it it converted to a number of seconds. If z is a String, it is parsed according to the
native syntax for integer_literal or floating_point_literal as in Table 4 and then converted to an Integer
as above. If z is a String that does not represent a valid integer or floating-point literal, the result is
error.

real(const x) returns real. The result is = converted to a Real. If z is a Real, the result is z. If z is
an Integer, it is converted to Real. If z is true the result is 1.0. If z is false the result is 0.0. If z
is an AbsTime, it it converted to the number of seconds since the epoch, UTC. If z is a RelTime, it
it converted to a number of seconds. If z is a String, it is parsed according to the native syntax for
integer_literal or floating_point_literal as in Table 4 and then converted to a Real as above. In addition,
the strings INF, -INF and NaN (in any combination of upper and lower case) are recognized as
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representing the IEEE754 values for positive and negative infinity and not-a-number, respectively. If x
is a String that does not represent a valid integer or floating-point literal, the result is error. For any
other type, z is converted to an Integer as if by “int”, and the result is converted to a Real (or error
if the conversion to Integer fails).

string(any x) returns string. If z is a String, the result is z. Otherwise, the result is the canonical
unparsing of = (see Section 3.3.3).

floor(const x) returns int. If z is an Integer, the result is x. Otherwise, z is converted to a real by the
function “real” above, and the result is the largest integer not greater than that value (or error if the
conversion fails).

ceiling(const x) returns int. If z is an integer, the result is 2. Otherwise, z is converted to a real by the
function “real” above, and the result is the smallest integer not less than that value (or error if the
conversion fails).

round(const x) returns int. If z is an integer, the result is z. Otherwise, z is converted to a real y by the
function “real” above, and the result is the nearest integer to y. If y is midway between two integers,
the even integer is returned. The result is error if the conversion fails or the resulting integer does not
fit in 32 bits.

random(number x) returns int. If z is an integer, the result is an integer random number 7 in the range
0 <=r < z. If z is a real number, the result is a real random number in the same range.If x is anything
else, the result is an error.

strcat(any*) returns string. Each argument is converted to a string by the function “string” above. The
result is the concatenation of the strings.

substr(string s, int offset [, int length |) returns string. The result is the substring of s starting at
the position indicated by offset with the length indicated by length. The first character of s is at offset
0. If offset is negative, it is replaced by length(s) — offset. If length is omitted, the substring extends
to the end of s. If length is negative, an intermediate result is computed as if length were omitted,
and then —length characters are deleted from the right end of the result. If the resulting substring lies
partially outside the limits of s, the part that lies withing s is returned. If the substring lies entirely
outside s or has negative length (because of a negative length argument), the result is the null string.
[Note: This function is the same as the substr function of Perl.]

strcmp(any a, any b) returns int. The operands are converted to strings by the “string” function above.
The result is an integer less than, equal to, or greater than zero according to whether a is lexicograph-
ically less than, equal to, or greater than b. Note that case is significant in the comparison.

stricmp(any a, any b) returns int. The same as strcmp except that upper and lower case letters are
considered equivalent.

toUpper(string s) returns string. The operands are converted to strings by the “string” function above.
The result is a string that is identical to s except that all lowercase letters in s will be converted to
uppercase.
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toLower(string s) returns string. The operands are converted to strings by the “string” function above.
The result is a string that is identical to s except that all uppercase letters in s will be converted to
lowercase.

member(const x, string l) returns boolean. If z is not a constant or [ is not a list, then the result is
an error. Otherwise, if any of the elements is equal to x in the sense of the == operator, then the result
is true, otherwise it is false.

regexp(string pattern, string target, string options) returns boolean. If the regular expression pat-
tern matches the target, this function returns true, but otherwise returns false.

Unfortunately, the allowed patterns and options cannot be precisely defined at this time because
different ClassAd implementations use different underlying libraries to implement regular expression
matching. The Java implementation uses Sun’s regular expression implementation, which is Perl-like.
The C++ implementation uses either POSIX or Perl-compatible regular expressions, depending on
what is available at compilation time. This dichotomy is unfortunate, and we hope to resolve it in the
future. For now, you must either know details about your ClassAd implementation, or you must use
a subset of regular expressions that are POSIX- and Perl- compatible.

The options are specified as a string of letters in any order. Each letter indicates a single option.
For POSIX regular expression matching, the only option is “i” for case-insensitive matching. For
Perl-compatible regular expressions, there are four options: “i” for case-insensitive matching, “m” for
multiline matching, “x” for extended syntax, and “s” to cause the dot character (.) to match all
characters, including newlines.

identicalMember(const x, string 1) returns boolean. If x is not a constant or [ is not a list, then the
result is an error. Otherwise, if any of the elements is equal to x in the sense of the is operator, then
the result is true, otherwise it is false.

time() returns int. Returns the current Coordinated Universal Time, in seconds since midnight January
1, 1970.

interval(int t) returns string. The operand ¢ is treated as a number of seconds. The result is a string
of the form days+hh:mm:ss. Leading components are omitted if they are zero. For example, if the
operand is 1472523 = 17 %24 % 60 * 60 4 1 % 60 * 60 + 2 % 60 + 3 (seventeen days, one hour, two minutes,
and three seconds), the result is "17+1:02:03"; if the operand is 67, the result is "1:07".

absTime(string s) returns AbsTime. The operand s is parsed as a specification of an instant in time
(date and time). This function accepts the canonical native representation of AbsTime values, but
minor variations in format are allowed.

The default format is yyyy-mm-ddThh:mm: sszzzzz where zzzzz is a time zone in the format +hh:mm or
~hh:mm, but variations are allowed.
e Each separator character -, :, or T may be omitted or replaced by any sequence of non-digits.
Note, however, that the - in a time zone of the form -hh:mm may not be omitted.
e The colon between hh and mm in the time zone may be omitted.
e An arbitrary sequence of non-digit characters may precede zzzzz or yyyy.

e The zone may be replaced by the character z or Z, which is equivalent to -00:00.
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e The zone may be omitted, in which case the local time zone is used. If the string ends with +dddd,
-dddd, z, or Z, where each d is a digit, this suffix is considered to be the time zone indication.
For example, in 2003+1030, the suffix 1030 is interpreted as a time zone 10 hours and 30 minutes
east, rather than as October 30.

e The fields ss, mm, hh, etc. may be omitted (from right to left), in which case the omitted fields
are assumed to be zero.

More precisely, the string must match the regular expression
D* dddd [D* dd [D* dd [D* dd [D* dd [D* dd D*]]]1]1] [-dd[:]dd|+dd[:]ddlz|Z]

Where d stands for a digit and D stands for a non-digit.

For example, in the United States central time zone, an AbsTime corresponding to “9 am Jan 25, 2003
CST” may be created by any of the function calls

2003-01-25T09:00:00-06:00 // canonical
2003-01-25 09:00:00 -0600 // different separators

20030125090000-0600 // compact format

2003-01-25 16:00:00 +01:00  // different time zone

2003-01-25 15:00Z // omitted seconds, UTC time zone
2003-01-25 09:00:00 // default time zone (local)
2003-01-25 09 // omitted minutes and seconds

and AbsTimes corresponding to “Jan 25, 2003” (implicitly midnight, UTC) may be written
2003-01-24T18:00:00-06:00 // canonical

2003-01-25T00:00:00 // default time zone: UTC
2003-01-25 // omitted time of day
2003/01/25 // different separators
20030125 // compact format

The strings 2003-01-25T09:00:00-06:00 and 2003-01-25 15:00Z represent the same instant in time,
but measured in different time zones.

The following strings are invalid.

2003-01-25T09:00:00-06 // incomplete time zone
2003-01-25T09:00:00- 0600 // space in time zone
2003-1-25 // missing digit in dd field

absTime([const t[, int z] ) returns AbsTime.]

Creates an AbsTime value corresponding to time ¢ an time-zone offset z. If ¢ is a String, then z must
be omitted, and ¢ is parsed as a specification as described above. If ¢t and z are both omitted, the result
is an AbsTime value representing the time and place where the function call is evaluated. Otherwise,
t is converted to a real by the function “real” above, and treated as a number of seconds from the
epoch, Midnight January 1, 1970 UTC. If z is specified, it is treated as a number of seconds east of
Greenwich. Otherwise, the offset is calculated from ¢ according to the local rules for the place where
the function is evaluated.
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relTime(const t) returns RelTime. If the operand ¢ is a String, it is parsed as a specification of a
time interval. This function accepts the canonical native representation of RelTime values, but minor
variations in format are allowed.

Otherwise, t is converted to a real by the function “real” above, and treated as a number of seconds.

The default string format is [-]days+hh:mm:ss.fff, where leading components and the fraction .fff
are omitted if they are zero. In the default syntax, days is a sequence of digits starting with a non-zero
digit, hh, mm, and ss are strings of exactly two digits (padded on the left with zeros if necessary) with
values less than 24, 60, and 60, respectively and ££f is a string of exactly three digits. In the relaxed
syntax,

e Whitespace may be added anywhere except inside the numeric fields days, hh, etc.
e Numeric fields may have any number of digits and any non-negative value.

e The + may be replaced by d or D.

e The first : may be replaced by h or H.

e The second : may be replaced by m or M.

e The letter s or S may follow the last numeric field.

e If field 7 is terminated with one of the letters dDhHmMsS and the value of field ¢ — 1 is zero, field
i — 1, together with its terminating field name (+, :, h; etc.) may be omitted even if field i — 2 is
not omitted.

e The fraction .fff may have any number of digits. If it has no digits, the preceding decimal point
may be omitted.

For example, one day, two minutes and three milliseconds may have any of the forms

1+00:02:00.003 // the result of relTimeToString
1d0h2m0.003s // similar to ISO 8601

1d 2m 0.003s // add spaces, omit hours field

1d 00:02:00.003  // mixed representations

1d 00:00:120.003 // number of seconds greater than 59
86520.002991 // seconds, excess precision in fraction

splitTime(RelTime) returns ClassAd. Creates a ClassAd with each component of the time as an ele-
ment of the ClassAd. The ClassAd has five attributes:

Type // “RelativeTime”
Days // the number of days
Hours // the number hours

Minutes // the number of minutes
Seconds // the number of seconds

splitTime(AbsTime) returns ClassAd. Creates a ClassAd with each component of the time as an ele-
ment of the ClassAd. The ClassAd has five attributes:
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Type
Year
Month
Day
Hours
Minutes
Seconds
Offset

// “AbsoluteTime”

// the year

// the month, from 1 (January) through 12 (December)
// the day, from 1 through 31

// the number of hours

// the number of minutes

// the number of seconds

// the timezone offset in seconds

formatTime(AbsTime t[, string s ) returns string.]

This function creates a formatted string that is a representation of the absolute time t.

The string is similar to the ANSI C strftime function. It consists of arbitary text plus placeholders for
elements of the time. These placeholders are percent signs (%) followed by a single letter. To have a
percent sign in your output, you must use a double percent sign (%%).

Because an implementation may use strftime() to implement this, and some versions implement extra,
non-ANSI C options, the exact options available to an implementation may vary. An implementation
is only required to implement the ANSI C options, which are:

%a  // abbreviated weekday name

%A // full weekday name

%b  // abbreviated month name

%B  // full month name

%c  // local date and time representation
%d  // day of the month (01-31)

%H // hour in the 24-hour clock (0-23)
%I // hour in the 12-hour clock (01-12)
%j  // day of the year (001-366)

%m  // month (01-12)

%M // minute (00-59)

%p  // local equivalent of AM or PM

%S // second (00-59)

%U /] week number of the year (Sunday as first day of week) (00-53)
%w // weekday (0-6, Sunday is 0)

%W  // week number of the year (Monday as first day of week) (00-53)
%x  // local date representation

%X // local time representation

%y // year without century (00-99)

%Y // year with century

%Z  // time zone name, if any

% /] %

Note that names may be locale-dependent, if the underlying operating system supports locales. Also
note that some ClassAd implementations may have difficulty with time zone names for non-local time
zones, since the names may vary.

formatTime(int i[, string s ) returns string.]
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This version of formatTime converts 7 to an absolute time, then behaves identically to the other version
of formatTime.

5 Acknowledgments

The ClassAd language was originally developed by Wieru Cai, Miron Livny, and James Pryne as part of
the Condor [2, 7, 8] project at the University of Wisconsin—Madison [10]. Under the leadership of Rajesh
Raman, the language was made substantially more powerful (including such features as lists, arbitrary
nesting of lists and records, and the Boolean, AbsTime and RelTime data types), while at the same time,
the specification was made substantially simpler and more regular. In particular, the specification of the
language was separated from details of its use in Condor. See Raman’s Ph. D. dissertation [9] for a more
readable introduction to the language and its design goals and a discussion of implementation issues, and a
related conference paper [11] for a discussion of the use of ClassAds and Matchmaking in resource allocation.
Raman is also the author of the current C++ implementation. Marvin Solomon is the author of the Java
implementation.

Currently, the language is being maintained and developed by Alain Roy and Marvin Solomon, with
input from other members of the Condor team. For the latest information about ClassAds, please see the
ClassAd home page [1].

References

[1] Classified Advertisements. Available online at http://www.cs.wisc.edu/condor/classad.
[2] Condor: High Throughput Computing. Available online at http://www.cs.wisc.edu/condor.

[3] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes, 2001. Available online at
http://www.w3.org/TR/xmlschema-2.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Language (XML)
1.0 (second edition), 2000. Available online at http://www.w3.org/TR/REC-xml.

[5] David C. Fallside. XML Schema Part O: Primer, 2001. Available online at
http://www.w3.org/TR/xmlschema-0.

[6] Bill Joy (Editor), Guy Steele, James Gosling, and Gilad Bracha. The Java Language
Specification  (Second Edition). Addison-Wesley Pub Co., 2000. Available online at
http://www.java.sun.com/docs/books/jls/index.html.

[7] M. J. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. IEEE Workshop
on Experimental Distributed Systems, 1990.

[8] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—A Hunter of Idle Workstations. In Proc. of the
8th Int’l Conf. on Distributed Computing Systems, pages 104—111, 1988.

[9] Rajesh Raman. Matchmaking — Frameworks — for  Distributed  Resource  Management.
PhD thesis, University of Wisconsin—Madision, October 2000. Available online at
http://www.cs.wisc.edu/condor/doc/rajesh.dissert.pdf.

25



[10] Rajesh Raman, Miron Livny, James Pruyne, and Wieru Cai. Classified Advertisements: Official Speci-
fication Version Alpha, April 1997. Unpublished Manuscript.

[11] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking:  Distributed resource
management for high throughput computing. In Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Distributed Computing, July 1998. Available online at
http://www.cs.wisc.edu/condor/doc/hpdc98.ps.

A YACC Grammar

%token ERROR
%token FALSE
%token IDENTIFIER
%token INTEGER
%token LEX_ERROR
%token REAL
%token STRING
%token TRUE
%token UNDEFINED

%left OP_LOR

%left OP_LAND

%left ’|°

%left ’°?

%left &’

%left OP_EQ OP_NE OP_IS OP_ISNT
%left ’<’ ’>’ OP_LE OP_GE
%left OP_SHL OP_SHR OP_SHRR
%left 2+ =2

%left x> 2/ 2P

%left UNARY

Dot

Expression
: Expr
| Expr ’7’ Expression ’:’ Expression
Expr
Expr OP_LOR Expr
Expr OP_LAND Expr
Expr ’|’ Expr
Expr ’°’ Expr
Expr ’&’ Expr
Expr OP_EQ Expr
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)

Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr

OP_NE Expr
OP_IS Expr
OP_ISNT Expr
’<’ Expr

’>’ Expr
OP_LE Expr
OP_GE Expr
OP_SHL Expr
OP_SHR Expr
OP_SHRR Expr
’+’> Expr

’=’ Expr

’x’ Expr

’/’ Expr

*%’ Expr

PrefixExpr

PrefixExpr
SuffixExpr

’

>+’ PrefixExpr
’-?> PrefixExpr
’17 PrefixExpr
’7? PrefixExpr

SuffixExpr
: Atom

| SuffixExpr ’.°
| SuffixExpr ’[’

)

Atom

List
|

’

Identifier
Literal

List

Record

Call

>(’ Expression ’)’

’{’> ListBody ListEnd

’{’ ListEnd

ListEnd

J}J

ListBody

%prec
%prec
%prec
%prec

UNARY
UNARY
UNARY
UNARY

Identifier
Expression ’]°
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: Expression
| ListBody ’,’ Expression
Record
>[’ DefinitionList RecordEnd
Expr e = (Expr) i.next();
if (r.lookup(n) != null)
| >[’> RecordEnd

’

RecordEnd
’]
| J;J J]J
DefinitionList
Identifier ’=’ Expression
| DefinitionList ’;’ Identifier ’=’ Expression
Call

Identifier ’(’ ListBody ’)’
| Identifier >(° )’
Literal
: REAL
| Strings
| INTEGER
| TRUE
| FALSE
| UNDEFINED
| ERROR
Strings
STRING
| Strings STRING
Identifier
IDENTIFIER

B XML Document Type Definition (DTD)

<!-- Document Type Definition for ClassAds (Classified Advertisements, as used
in Condor. See http://www.cs.wisc.edu/condor for more information. -->
<!-- Root element: a sequence of ClassAd elements -->

<IELEMENT classads (i | r | s |l e |l bl at | rt | un | er | 1 | c)*>
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<!-- A ClassAd (Classified Advertisement): A set of "attributes". -->
<I!ELEMENT c (a)* >

<!-- An "attribute" contains a named element -->
<!ELEMENT a Glrlslelblatlzrt|luler | 1] c)>
<IATTLIST a n CDATA #REQUIRED>

<!-- Numbers -->

<!ELEMENT i (#PCDATA)> <!-- An integer (sequence of digits) -->
<!ELEMENT r (#PCDATA)> <!-- A real number in "scientific" notation -->
<!-- Strings -—>

<!ELEMENT s (#PCDATA) >

<!-- Sub-expressions in native syntax -->

<!ELEMENT e (#PCDATA)>

<!-- Booleans: no content, but one mandatory attribute v=t or v=f -->
<!ELEMENT b EMPTY>

<IATTLIST b v (t | £) #REQUIRED >

<!-- Timestamps ——>
<!ELEMENT at (#PCDATA)> <!-- Absoute time, e.g. 2003-01-25T09:00:00-06:00 -->
<!ELEMENT rt (#PCDATA)> <!-- Relative time, e.g. P1H15M13.257S -->

<!-- Undefined and error -->

<!ELEMENT un (#PCDATA)> <!-- Undefined; content, if any, is "annotation" -->
<!ELEMENT er (#PCDATA)> <!-- Error; content, if any, is "annotation" -->
<!-- A List: a sequence of ClassAd elements -->

<!ELEMENT 1 G lrlslelblatlzrt]|unl er | 1| c)*>

C XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:annotation><xsd:documentation xml:lang="en">
Schema for Classified Advertisements (classads) as used in the
Condor High Throughput Computing progject.
</xsd:documentation></xsd:annotation>

<xsd:element name='"classads">
<xsd:annotation><xsd:documentation xml:lang="en">
The root document element. It is identical to an "1" element
except for the tag: Its content is simply a sequence of
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expressions.
</xsd:documentation></xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="c"/>
<xsd:element ref="1"/>
<xsd:element ref="e"/>
<xsd:element ref="s"/>
<xsd:element ref="i"/>
<xsd:element ref="r"/>
<xsd:element ref="b"/>
<xsd:element ref="er"/>
<xsd:element ref="un"/>
<xsd:element ref="at"/>
<xsd:element ref="rt"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="s" type="xsd:string">
<xsd:annotation><xsd:documentation xml:lang="en">
A string literal.
Content is the string itself. It may contain character entities,
such as &amp;lt;. It may also contain backslash escapes, which
are interpreted by the application.
</xsd:documentation></xsd:annotation>
</xsd:element>

<xsd:element name="i" type="xsd:int">
<xsd:annotation><xsd:documentation xml:lang="en">
An integer literal.
Content is the value, as a sequence of digits.
</xsd:documentation></xsd:annotation>
</xsd:element>

<xsd:element name="r">
<xsd:annotation><xsd:documentation xml:lang="en">
A real (double-precision floating point) literal.
Content is the value in "scientific" notation corresponding to
the printf %1.5E format, or one of the special values INF, -INF, or NaN.
</xsd:documentation></xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:double">
<xsd:pattern value="-7INF|NaN|-?\d\.\d{156}E(\+|\-)\d{2,3}"/>
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</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="b">
<xsd:annotation><xsd:documentation xml:lang="en">

A boolean literal. Represented as an element with empty content

and required attribute v="t" or v="f".

Content must be empty.
</xsd:documentation></xsd:annotation>
<xsd:complexType>

<xsd:attribute name="v">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="t"/>
<xsd:enumeration value="f"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

</xsd:element>

<xsd:element name="er">
<xsd:annotation><xsd:documentation xml:lang="en">
An error value. The "a" attribute, if present, is an annotation
(reason for the error).
Content must be empty.
</xsd:documentation></xsd:annotation>
<xsd:complexType>
<xsd:attribute name="a" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="un">
<xsd:annotation><xsd:documentation xml:lang="en">
An undefined value. The "a" attribute, if present, is an
annotation (perhaps the name of the classad attribute that was
undefined) .
Content must be empty.
</xsd:documentation></xsd:annotation>
<xsd:complexType>
<xsd:attribute name="a" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="at">
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<xsd:annotation><xsd:documentation xml:lang="en">
An absolute time literal.
Content is yyyy:mm:ddThh:mm:ssphh:mm where p is + or -, other
lower-case letter represent arbitrary digits, and the remaining
characters must appear exactly as shown.
Note that the time zone is required and it contains a colon.
</xsd:documentation></xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:dateTime">
<xsd:pattern value=
"\d{4}-\d\d-\d\dT\d\d:\d\d:\d\d [+\-]1\d\d:\d\d"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

<xsd:element name="rt">

<xsd:annotation><xsd:documentation xml:lang="en">
A relative time literal.
Content is -PnDTnHnMn.dddS where "n" represents one or more digits
and "d" represents one digit. The leading sign and individual
components (uD, nH, etc.) may be omitted, but if present, they
must appear in the order indicated. The ’T’ is omitted if nD is the
only field. The fractional seconds, together with the decimal
point, may be omitted, but if present there must be exactly three
digits. Note, the pattern below does not completely specify all the
constraints. For example, the T must be omitted if and only if the
H, M, and S fields are all omitted, and the attribute may not be
completely empty.

</xsd:documentation></xsd:annotation>

<xsd:simpleType>
<xsd:restriction base="xsd:duration">

<xsd:pattern value="-7P(\d+D) ?T? (\d+H) 7 (\d+M) ? (\d+(\.\d\d\d) ?5)?" />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="e" type="xsd:string">
<xsd:annotation><xsd:documentation xml:lang="en">
An expression.
Content is an arbitrary classad expression in the "native syntax".
This element should not be used for literals or if the "top-level
operator" is list or classad.
</xsd:documentation></xsd:annotation>
</xsd:element>

<xsd:element name="1">
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<xsd:annotation><xsd:documentation xml:lang="en">
A list. Content is a sequence of arbitrary expressions.
</xsd:documentation></xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="c"/>
<xsd:element ref="1"/>
<xsd:element ref="e"/>
<xsd:element ref="s"/>
<xsd:element ref="i"/>
<xsd:element ref="r"/>
<xsd:element ref="b"/>
<xsd:element ref="er"/>
<xsd:element ref="un"/>
<xsd:element ref="at"/>
<xsd:element ref="rt"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="c">
<xsd:annotation><xsd:documentation xml:lang="en">
A "classad" (a record). Content is a sequence of
</xsd:documentation></xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="a" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:choice>
<xsd:element ref="c"/>
<xsd:element ref="1"/>
<xsd:element ref="e"/>

a" elements.

<xsd:element ref="s"/>
<xsd:element ref="i"/>
<xsd:element ref="r"/>
<xsd:element ref="b"/>
<xsd:element ref="er"/>
<xsd:element ref="un"/>
<xsd:element ref="at"/>
<xsd:element ref="rt"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="n" type="xsd:string"/>
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</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:unique name="dummy">
<xsd:selector xpath="a"/>
<xsd:field xpath="@n"/>
</xsd:unique>
</xsd:element>

</xsd:schema>
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