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Chapter 1

Introduction

1.1 Overview

Within a community or organization, each member has rights and responsibilities with

respect to the other members and the community as a whole. When a community is small,

and members know one another, these rights and responsibilities are informal and enforce-

ment is ad hoc. As a community increases in size, and as community members interact

with members of other communities, measures to formalize rights and responsibilities and to

ensure consistent enforcement can strengthen the community and relationships with other

communities.

This is as true for communities formed to share resources used for batch computing as it is

for other communities. Within batch computing communities, there are three requirements

that must be met for mechanisms to succeed with formalizing rights and responsibilities and

ensuring consistent enforcement:

1. The mechanisms must be implemented end-to-end to be effective. When two entities

interact, the content of the messages they send each other must be inalterable by and

perhaps unreadable to other entities within the community.

2. Users must be able to express policy about where their tasks may be run and how their

credentials may be used. Credentials must be issued at the level of tasks rather than

solely to users, so that different tasks can have different policies.

3. The mechanisms must not negatively affect the performance of the system.
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To achieve the goals of formalizing the rights and responsibilities and enforcing policies,

we propose a framework of security mechanisms based on digitally signing messages about

the rights and responsibilities of the participants. This thesis describes and analyzes the

design and implementation of this framework. The framework consists of a set of security

mechanisms that, when used together, can address security concerns for three classes of

participants in distributed batch computing: task submitters, resource owners, and infras-

tructure administrators. For each of these classes of users, the framework may meet more

stringent security requirements than present systems permit, and may result in increased

cooperation between sites as a result of decreased risks.

The framework is designed to provide end-to-end security: that is, to achieve integrity

and confidentiality requirements for the communication between the task submitter and the

execution host, and to protect the task from alteration and the user’s credentials from misuse.

In addition, we permit users who submit jobs to specify policy regarding where their jobs

can run and how any accompanying credentials can be used: this policy is enforced by the

trusted endpoints and framework-aware resources that are used by the task as it executes

remotely. The framework relies on digital signatures: For example, signatures link submitted

jobs to the users that submitted them, link credential chains with the jobs that use them,

and link jobs with the hosts where they are running. Analysis shows that the performance

impact of the security mechanisms is insignificant, and that in some cases performance is

improved.

1.2 Motivation

Distributed batch computing systems are often organized into groups: We term a group

of users and resources managed by a single entity an administrative domain. For exam-

ple, a particular research project or department within a corporation or university might

be an administrative domain. Interoperation between domains occurs between projects or

departments. Trust within a domain is high; as the number of interoperating administrative



3

domains increases, the level of trust between any two domains is likely to decline, reducing

the trust each participant has in the system as a whole.

A tension exists in the operation of distributed batch computing systems between the

number of participating administrative domains and the trust the participants have of the

system. On one hand, an increase in the number of participants can result in increased

utilization of existing resources, resulting in greater return on investment in computing

resources. On the other hand, number of participants grows, so does the amount of risk

involved in participating in the system.

In concert with mechanisms to facilitate interoperation, distributed batch computing sys-

tems need security mechanisms that can reduce this tension; mechanisms that can reduce

the risks produced by resource sharing between administrative domains. These mechanisms

need to address the real risks faced by users and administrators of these systems. In addi-

tion, they must be easy to use, easy to adopt, and not affect performance. Finally, every

stakeholder who must make changes in order for the mechanisms to be adopted must have

an incentive to make those changes.

When the security infrastructures of systems used for distributed batch computing were

designed, the submitting user, the infrastructure managing their tasks, and the hosts on

which tasks executed were all part of the same administrative domain, and the design of

security mechanisms for these systems reflected this.

Over time, features were added to facilitate sharing between administrative domains,

and security mechanisms were developed to support these features. Building systems by

aggregating the resources of multiple administrative domains was termed “Grid” computing,

and a security infrastructure for Grid computing was proposed and adopted [39]. This

security infrastructure is the foundation on which our framework of mechanisms is built.

Although this infrastructure is an excellent foundation, there are several opportunities to

reduce risks and make the infrastructure more responsive to the needs of the stakeholders:

• There are no mechanisms for end-to-end integrity and confidentiality.
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• It has no way for users to specify policies about the confidentiality and integrity of

their jobs or the use of their credentials, except at a very coarse level.

• It requires that submitting users as well as resource owners have a high degree of trust

in the infrastructure components.

Mechanisms for enforcing user-specified policies may be particularly useful when users

are paying for compute time (often termed “Cloud” computing, e.g. Amazon’s EC2).

1.3 Security Objectives

Our goal is to protect:

1. Job submitters :

The task input and output data: The task itself, the input data to the task, and the

output produced by the task should not be alterable (or alteration should be detectable)

while the task is in transit. In addition, it should be possible to keep this data secret

while in transit.

Data unrelated to the task : Delegated credentials can be used by the job to read and

write data on storage elements and access other resources. Credential delegation should

not put data unrelated to the task at risk. Any credentials carried by the task should be

usable only on a worker node deemed acceptable by the task submitter, and it should

be possible to limit the use of a particular credential to a subset of the resources a user

can access.

2. The operating environment of the worker node: The worker node and subsequent users

need to be protected from the task and attackers who might modify it, and be able to

determine the origins of tasks for audit.
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3. The intermediaries : Because attackers can copy or alter jobs and results and steal

credentials by compromising an intermediary, they are attractive targets. If the re-

quirement that intermediaries must be trusted can be relaxed, attackers have less

incentive to attack them.

1.4 Research Contributions

This dissertation explores ways of addressing the threats facing stakeholders in distributed

batch computing systems. As these systems continue to mature and evolve, security mech-

anisms are required to permit sharing between administrative domains which do not have

implicit trust relationships. The thesis that this dissertation supports is the following:

Pervasive use of digital signatures can augment existing mechanisms in

distributed batch computing systems to meet security and scalability re-

quirements by reducing the scope of trust assumptions.

The contributions of this thesis include:

• Analysis of the risks in existing distributed batch computing systems.

Commonly used systems, including Condor and GSI, make up an infrastructure for

scientific computing that is being used in ways that were infeasible when the systems

were designed. We examine the risks of using these systems in the context of trends

in distributed batch computing towards increased interoperation between sites and

increased adoption of commodity utility computing.

When a user submits a job, the user must explicitly trust intermediaries that handle

their job. This results in risk to the user, the resource that executes their job, and the

intermediaries that can become targets of attack.

• The design and implementation of a framework of security mechanisms.

Our framework of security mechanisms provides:

– Mechanisms permitting credential transformation.
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– Mechanisms to permit end-to-end confidentiality and integrity for jobs, input data

and results.

– A mechanism to link tasks, credentials, and policies.

– Mechanisms to permit users to specify policies about where jobs can run and how

credentials can be used.

– Mechanisms to enforce user policies.

Each of the mechanisms address a particular risk present in distributed batch comput-

ing systems. Together the mechanisms can permit us to relax the trust assumptions

required for operating distributed batch computing systems.

These mechanisms have been implemented within Condor. Some if not all of the

mechanisms will be included in released versions of Condor. The features are easy to

use and configure, and users can select from among the features as needed.

• Analysis of the security and performance consequences of the framework.

We analyze the security of the system by assembling a list of security requirements

from various sources including those proposed in the context of other frameworks for

delegation, and comparing the frameworks with respect to how they meet those re-

quirements. The requirements are described in detail as are the differences between

the ways the frameworks meet or fail to meet the requirements. We conclude that our

framework meets a wider range of requirements than the frameworks we compare it

with.

We analyze the performance of the framework by comparing the performance of Con-

dor with and without the framework mechanisms, including various combinations of

mechanisms and various workloads. We compare the relative overhead of various sizes

of job run-time and data size. Finally, we compare the performance of a Condor

daemon when processing a large number of messages using authenticated messages

vs. authenticated sessions. We conclude that the performance overhead is generally
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quite low when reasonable assumptions are made about job characteristics and that

performance can actually be better in some cases.

1.5 Organization of the Dissertation

This thesis is organized into three main sections. The first section introduces the frame-

work (this chapter), describes our approach (Chapter 2), and provides necessary background

information (Chapter 3). The next section describes the framework in detail, covering the

components individually (Chapter 4), how they fit together and within the Condor system

(Chapter 5), and how they are implemented (Chapter 6). The third section analyzes the

system, beginning with an analysis of framework performance (Chapter 7, continuing with

an analysis of security requirements and a comparison with other frameworks (Chapter 8)

and notes about related work (Chapter 9). The final chapter (Chapter 10) summarizes our

results, describes lessons learned, and discusses future work.
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Chapter 2

Approach

2.1 Handwritten Signatures and Digital Signatures

Digital signatures, in the form of signed ClassAds and in the form of certificates, form the

foundation of much of the work described in this thesis. This section discusses the meanings

and usage of digital signatures in detail.

Imagine if one day you woke up and were unable to sign your name. You would be unable

to write checks or use a credit card in person, express your opinions through petitions, form

contracts, or, if you were a member of a faculty committee, sign important documents such

as dissertation warrants. Credit cards are “not valid unless signed,” and signatures appear on

currency, driver’s licenses, campus identification cards, and contracts. When I was married,

and the marriage was not valid until the marriage certificate was signed by the officiant, my

wife and me, and witnesses.

However, handwritten signatures are very rarely checked, and very accurate forgeries

are possible. A forged check, credit card receipt, petition, contract, warrant or marriage

certificate is unlikely to be honored in the long term in the face of repudiation by the signers.

As Ueli Maurer points out, the presence of a signature actually corresponds to the awareness

of a human performing a “conscious and willful act” [66]. However good the forgeries, my

signed dissertation warrant would not long be considered valid without the recollection of

my committee that they signed it.
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Digital signatures resemble handwritten signatures in many ways, but they also differ in

many ways. A technical description of digital signatures and their properties is available in

Section 3.4; the key properties are as follows:

1. A digital signature is the cryptographic hash of a piece of data, encrypted with the

private (secret) part of a public/private key pair.

2. Digital signatures are easy to produce automatically, but difficult to forge.

3. Given a signature, some data, and a public key, it is very easy easy to determine

whether or not the corresponding private key was used with the data to produce the

signature.

Analogies are often used to explain technical concepts, with varying degrees of accuracy and

appropriateness. It is an easy mistake to make to take the digital signature analogy too

seriously, and assume that digital signatures are identical in their properties to handwritten

signatures. They are not. Specifically, it is much easier to verify a digital signature than a

handwritten one, and much easier to determine whether or not a digitally signed document

has been altered.

2.2 Economics, Risks and Threats

Designing secure systems is challenging, in part because there are many techniques avail-

able. A key point to remember is that attacks occur because the attacker has some incentive

to attack: something they want to obtain by attacking the system. Effective security systems

are effective because they change the attackers’ incentives. [11, 90]

Consider for example robbing a bank. People would rob banks more frequently if they

were not concerned about the consequences of getting caught.

Bank vaults are protected by very strong locks, which take skills and time to break, and

they are only opened quickly for customers or employees or customers who authenticate

themselves through a variety of methods. Armed guards and/or active alarm systems may
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be in place to detect a robbery in progress and prevent the robber from getting in or getting

away. Police are quickly summoned, even by automated systems at night. So the clever bank

robber realizes that the best chance to get at the money is during the day, when the vault

is open and the robbery can proceed quickly. They distract or disable the guard, or find a

bank that doesn’t have a guard, and pull a gun on the teller. The teller loads all the money

into the bag, and the attacker runs away.

Actually, banks employ methods that are aimed at reducing the incentives attackers have

of performing this type of attack as well, incentives which continue to function even after the

money has left the bank. Tellers and customers can identify the robbers, and cameras are in

place in the bank (thus the stereotype of a bank robber with panty hose on their head or a

ski mask). Banks can include numbered or marked bills, which may help police to track the

robber. Tellers can put a time delay gas and dye bomb in the bag with the money, which

may cause the money, and the robber, to be easier to locate.

Most of the work proposed here is similar in theory to this latter category of protection

mechanism. If cryptography is like a vault and authentication is like a lock and keys, audit

systems are like cameras, marked bills, and dye bombs. The goal is to be able to identify

exactly where in the system the attack originated.

2.3 Security Goals and Threats in Distributed Batch Computing

In this section we discuss the particular security goals and threats in distributed batch

computing systems.

2.3.1 Distributed Batch Computing

A key insight in the design of secure systems for distributed batch computing is that there

are differences between these systems and traditional client-server systems. Specifically, in

distributed batch computing, or “grid” systems, several parties participate in computation,

parties whose interests may conflict or between whom trust relationships may not exist or

may change over time. In many ways, grid systems are similar to the network infrastructure
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over which client-server communications occur. However, in addition to network resources,

grid systems provide storage and computation resources as well, resulting in different security

challenges. Designers of grid systems must be aware of how these differences affect design

options and available trade-offs, and make appropriate design decisions.

Designers of grid systems have several goals in addition to security. Security, efficiency,

scalability, fault tolerance, and simplicity are all goals of a grid system. Designing a system

involves characterizing the trade-offs between each of these goals and trying to find ways

that administrators of the system can use the system to suit their particular needs.

A key question for system designers whose systems must run in an untrusted or par-

tially trusted environment is how existing security technologies can be used to address the

particular security goals which arise in grid systems. In particular:

1. How can we characterize the difference between grid systems and client–server systems

with respect to security?

2. How can we make use of cryptographic and other security techniques used in client-

server systems to account for these differences?

3. What other security techniques do we need to incorporate?

To characterize the design goals of a system, first we must understand the risks inherent

in the system. A middleware system such as Condor [101] manages grid resources and

user tasks which are configured both by administrators and users, interacts with a large

number of other systems, and can affect infrastructure at many levels. The security design

of such a system needs to include security mechanisms that will protect the interests of users

and administrators, including administrators of sites which submit tasks and administrators

of sites which perform tasks as well as nonparticipants. This design must be guided by

an accurate assessment of what security policies might be desirable, what attacks might

occur, and what defenses against these attacks might be practical. In other words, we must

understand the threats.
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2.3.2 Threats

When we use the word threats we mean identification of the attacks most likely to sig-

nificantly:

A. Violate our security goals, and/or

B. Be likely to occur.

Several details need elaboration. No system can completely eliminate all threats, so the

goal in some sense is to identify the worst ones. “Worst” in this context is two-pronged:

some threats are unlikely but significant (such as an attacker who is willing to break into

a machine room to get access to a cluster), while others are likely but insignificant (such

as users who misconfigure their submission scripts to submit millions of useless jobs). The

goal is to balance these two: a threat that is significant but unlikely may be worse than one

that is moderately significant and moderately likely. In this analysis, we do not attempt to

quantify threats. The assignment of likelihoods and consequences is hard to do objectively;

fallible human judgment is involved, especially in cases where infrequent events (such as

attacks not yet observed) are involved.

Finding threats seems like a simple task, and in some application domains it is, however

several authors have touched on it, often either completely outside the realm of computer

security [38], or through examples outside it [11, 90]. Risk assessment and economic ap-

proaches to computer security have been applied especially among researchers concerned

with complex systems [10, 44, 6].

Grid systems are appropriately complex, in part because of the number of stakeholders

with differing goals. Since security means different things to different participants in the

distributed environments we address, first we must specify the stakeholders and their goals, as

well as the goals and strategies that might be used by an attacker to attain those goals. From

the perspective of a given stakeholder, however, other stakeholders are potential attackers.

For example, from the perspective of a user submitting compute jobs to the system, a

misconfiguration by an administrator of a computing resource which causes files to remain
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on the compute resource after task completion might be considered an attack. It certainly

allows violation of the confidentiality of the user’s data. Similarly, if an attacker A can

submit jobs which appear to come from a particular user B, and does so very rapidly, then

A can create a denial of service situation in which user B is blamed, and perhaps charged

or banned from the system.

The goals and expectations of the users of a deployed system tend to line up with what

the system does rather than what it could do. This can cause problems when using the

expectations as a guide for adding security mechanisms: since the users don’t expect the

system to be secure, there’s no need to make it secure. The best security systems are ones

that allow you to do things you didn’t consider before. As a result, we are interested in

security goals that may exceed current expectations.

2.3.3 Stakeholders

Stakeholders include:

• Submitters, interactive users who submit tasks to the system. In general, their

expectations and goals include getting work done quickly, preventing unauthorized

users from altering or reading their programs, input, and output. They also suppose

that their use of the distributed system will not compromise the security protections

they enjoy in the absence of that use.

• Local administrators of sites whose users submit jobs. Their primary goal is that

use of the grid will not affect the security of their system. Specifically they do not want

the mechanisms that are used to allow a remotely running task to access resources that

they administer (such as the file servers where their users’ data is stored) to be used

against them.

• Resource administrators of sites that accept jobs. Sites make resources available to

outsiders for a variety of reasons, and the administrators of these sites generally want

to make sure that their sites continue to be available when the tasks are complete.
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They want to make sure that outsiders are adequately sandboxed, that their clusters

are not altered by these outsiders. Obviously, they provide the resources so that

they can be used, but in addition to providing correct, reliable, and secure resources

for customers, their three main concerns are that their cycles and storage resources

continue to be available, that their machines are not used for attacks against others, and

that the accounting rules are enforced. For completeness, this category also includes

administrators of sites which accept jobs, and then re-direct them to other sites.

2.3.3.1 Submitters

The job submitter is primarily concerned with the data security (availability, integrity,

and confidentiality) of their input, code, and output. They may be secondarily concerned

with the security of audit and accounting data concerning their use of the system, but in

general they have no control over this information. In many current grid applications, sub-

mitter data confidentiality is not assumed and may not be a high priority, since there’s an

assumption that in order to get work done on someone else’s resources, confidentiality must

be sacrificed. However, if some level of confidentiality were provided, users who needed this

protection and were otherwise unable to make use of grid resources might be able to do so.

For example, the many physicists who use grid resources currently have few confidential-

ity requirements, but a higher level of confidentiality may be required for pharmaceutical

industry researchers.

In many installations, a level of trust (perhaps defined as a financial incentive to cooper-

ate) exists between the resource administrators and the local administrators (and by proxy

with the submitters). If such trust exists, it can provide the basis for confidence that the se-

curity requirements of the cooperating parties are in fact met. Obviously the strongest trust

occurs when the remote administrators and the local administrators are the same, or part

of the same management hierarchy. However, the fundamental promise of grid technologies

comes from the reduced costs that can occur as a result of increased resource utilization

and reduced response time when resources are shared across administrative boundaries. In
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many resource sharing arrangements, the resource administrators have some organizational

affiliation with the local administrators, such as being part of the same university, or funded

on the same grant or through the same agencies, providing a basis for trust.

In some sense, the security problem can be viewed as one of determining responsibility

to violations of the security policy. When the same organization manages all the resources

that participate in a transaction, and a security policy violation occurs, it’s clear that that

organization is the one responsible. In a collaboration in which two participants have no basis

for trust, neither party has an incentive to respect the security policy of the other. Security

systems for collaborations can handle this in two ways: by transforming the computation

so that collaborators can not affect the security policy, or by leveraging the existing trust

relationships by explicitly determining responsibility.

The same reasoning applies regarding the integrity and availability concerns of submitters,

primarily with the output of computation (although this may be extended to input in cases

where a pipeline takes output from one computation and uses it as input for another). Some

solutions, more efficient than probabilistic checking, exist for the problem of integrity [46, 97].

It is important to note that data integrity compromises can occur as a result of malfunction

as well as attack, and that protections against malfunction (such as bits flipped in memory

or communications) must be considered as well. Solutions for the prevention or detection

of these problems exist (such as error detecting or correcting memory and checksums for

packets), but may be inadequate or simply not propagated in a distributed environment.

It is easier to detect violations of data availability, although, again, an important issue is

determining responsibility.

2.3.3.2 Local Administrators

Local administrators are also concerned with confidentiality, integrity, and availability,

but regarding different data. Attacks of most concern to these administrators are those that

affect their infrastructure, including the data of the submitters and other users of the system,

as well as the non-data resources they manage. The most significant scenario is that the grid
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infrastructure could become the conduit for an attack that extends beyond the compromise

of a submitter’s account. A poor security design would allow a remotely running task access

to the same level of privilege available to the submitter: access to all their files, and the

ability to execute code (or write executable files which will subsequently be executed) as

that user.

2.3.3.3 Resource Administrators

Remote administrators are responsible for the management of resources used by the

submitters. In that capacity, their goal is to make the resources available and effective.

These resources generally consist of compute cycles and storage, but also include the grid

infrastructure itself. Attacks against this infrastructure may be more significant (for example,

a denial of service attack against a machine that matches jobs to available machines may

result in no machines being available).

In many cases, resource administrators are also local administrators for groups of users

and resources are provided so that other administrators will provide resources in turn. Much

of the original design of Condor was for recovery of idle cycles on user desktops during periods

when these desktops are not in use. Obviously these desktops have their own security

mechanisms in place; however, additional vulnerabilities can be introduced through the

addition of grid infrastructure.

Whether or not resource administrators have users of their own to protect, they also

are presumed to be able to prevent submitters from attacking one another, or third parties,

through their resources. Examples of attacks that might take this form are submitters who

are able to prevent other users from obtaining a “fair share” of computational resources, or

who are able to manipulate the accounting system in their favor.
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2.3.4 Attackers

Another player in the system, who does not really count as a stakeholder, is the attacker.

Attacker goals may include the following; no claims are made regarding the relative likelihood

(or frequency) of these goals or their significance for a particular organization:

• obtain input / code / output

As discussed above, many current grid users are not concerned with the confidentiality

of their data. However, this does not mean that all potential users of high throughput

computing are not interested in confidentiality. Simulations, data mining, biological

applications, etc. may use sensitive data and/or proprietary code, be easily paralleliz-

able, and could benefit from taking advantage of grid technology. The attractiveness

of this goal to an attacker is relative to the sensitivity of the data.

• vandalism / script kiddie

“Script kiddies” is jargon used by security administrators to describe attackers who

have little technical skill other than the ability to download and run an exploit against

a system. Generously, these (presumably young) attackers are interested in gaining

experience and learning about security. This is a bit like gaining experience as a

marksman by playing with guns.

Although it’s easy to joke about this motivation for attack, the ease of it, combined

with the number of people on the Internet with little technical skill and questionable

judgment, makes it quite likely that sites vulnerable to this type of attack will succumb.

Fortunately, grid infrastructure itself is unlikely to be widely distributed enough to

excite much attention from this community of attacker.

Similarly, attackers motivated by the “fame” they get from vandalizing web sites are

unlikely to be drawn to grid environments unless they are able to find some aspect of

the environment that is visible (like a web page) to deface.
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• affect reputation of pool management, ownership, submitter, or deny correct service

(grudge).

A disgruntled former (or current) employee (or student) may be motivated to attack

a pool of resources out of revenge, and attempt to do something which would affect

the reputation of the owners or management of that pool. If grid resource become

a commodity, this could increase as a cause for concern. Attackers may have inside

knowledge or access. A denial of service attack against the infrastructure may have

the consequence of preventing tasks from being executed. Similarly, a compromised

site which frequently returned corrupted data or incorrect results would suffer a loss

of reputation, could easily go undetected for long periods of time, and could result in

the invalidation of research effort.

Similarly, an attacker specifically determined to do damage to an individual researcher,

a research group, or a sponsoring organization by affecting results, manipulating soft-

ware so that it behaves badly either within the grid infrastructure (for example sub-

mitting jobs at a high rate) or performs attacks against external resources.

Science has political ramifications; attackers may be motivated to prevent it from being

performed. This is particularly true of controversial research, for example, stem cell

biology, military simulation. Similarly, an attacker able to return incorrect results

might be able to less obviously and more effectively disrupt research.

• obtain CPU time / obtain storage

Attackers who do not have access to grid infrastructure may be motivated to obtain

that access, in order to perform computation (such as cracking captured passwords)

or storing data (such as pirated software or media). Clusters with fast machines and

large disks might be particular targets.

• use hosts to perform additional attacks
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Compromised machines are often used to perform additional attacks; in particular,

centrally managed clusters might be efficiently used as part of a denial of service

attack.

2.4 Summary

There are several characteristics of grid systems which distinguish them from conventional

systems with respect to security, and are particularly relevant for assessing threats and

designing security mechanisms.

• A larger number of participants can be involved in individual transactions.

• Participants may not know who they are trusting.

• Participants may have less basis for trust.

• Because a grid is a large and complex distributed system, there are more individual

points of attack.

Attackers often leverage access obtained on one insecure system to gain access to another

system. While this is true in all systems, it is particularly relevant in grid systems because

of the large number of participants.

Design goals for security in grid systems which are different than in traditional client–

server systems include the following:

• Detection that an attack has occurred, and where in the system it occurred, is necessary

in large grid systems, and it is a key part of an overall prevention strategy. Determining

precisely where in the system the attack occurred is equally important but may be

easier, and therefore more likely to be taken for granted, outside of the grid setting.

• It is important to detect problems in order to keep them from propagating through

the system. It is important to be able to determine where the problems occurred in

order to be able to prevent the problems from reoccurring.
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• Additional attack prevention mechanisms are needed.

• There is a fundamental difference with respect to security between the interactive user

of a host and the submitter of a batch job which runs on that host. Both need to be

protected from the other, and this should be reflected in the system design.
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Chapter 3

Background

This chapter presents background material describing the systems that the framework

described in subsequent sections relies on and extends.

The framework is built upon the Condor high throughput computing system, developed

at the University of Wisconsin–Madison and widely used in scientific and business computing.

The first section describes Condor and how it works, including a history of the features of

Condor related to security. Section 3.2 describes ClassAds, a language permitting expression

evaluation used widely in Condor. Sections 3.4 and 3.5 describe the cryptography behind the

security mechanisms introduced here. Section 3.6 introduces the Grid Security Infrastructure

(GSI), an extension of X.509 PKI for job delegation in the Grid environment, which the

framework extends and builds on.

3.1 Condor

Condor is a distributed batch computing system that has become widely used. Although

it has been developed over a long period of time, it has recently been released in source form,

with an Apache license, contributing to the popularity of the system.

Condor permits users to submit batch jobs to a centrally coordinated network of sched-

ulers, which assume responsibility for the job, finding and scheduling resources, transferring

files, and rescheduling as necessary when jobs do not complete successfully.

Condor installations are organized into groups of schedulers and execute machines called

“pools.” Advanced features permit inter-pool communication and job and resource sharing.
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However, initially, the system was designed and implemented in the context of a university

department, combining the resources and workload contributed by different research groups.

Generally, each research group had a sequence of deadlines for conference and journal sub-

missions, and a spike in computational demand in the weeks before each deadline. Because

often these spikes did not completely overlap, the availability of other groups’ resources

permitted each group to reduce the amount of resources they would need to purchase and

maintain.

3.1.1 Components

The central components of the Condor system, and the core of every Condor pool, are the

condor_collector and condor_negotiator daemons. These components often run on the

same server, although they can be run on separate servers, and can be made fault tolerant by

running copies across several servers, through the use of a special high availability daemon

condor_had. Together we call these central components, however they are configured, the

Central Manager (CM) (the term is used even when multiple servers are employed).

In addition to the CM there are two other machine roles that are essential to the use of

the system, the scheduler and execute roles. These roles are performed by the condor_sched

and condor_startd respectively. The scheduler daemon accept jobs from users (and other

schedulers when Condor-C is configured) and manage them on behalf of the user. The sched-

uler process is responsible for spooling input, intermediate, and output files and monitoring

the job status as it executes. condor_startd process manages the direct execution of the

tasks by providing a sandbox environment and spawning processes to manage execution.

The condor_starter process is responsible for spawning, monitoring, and killing the tasks

themselves.

3.1.2 History of Development

When it was first designed, Condor was used in a setting where machines, including work-

stations and servers, and user accounts were centrally administered by a single group [101].
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As a result, security mechanisms were designed to suit this setting: users authenticated to

an existing centralized system to obtain access to interactive machines and other resources

such as filers and printers, so Condor used this existing authentication mechanism as an im-

plicit authentication. For example, at the Computer Sciences department at the University

of Wisconsin–Madison, Kerberos is used to authenticate interactive users; once users at this

site are logged in to a workstation or server they can submit Condor jobs.

Later, explicit mechanisms were added to Condor; however this design persisted: the

mechanisms within the distributed system responsible for managing jobs and resources,

finding matches and starting jobs, are all presumed to be trusted by the system. This

assumption, which was appropriate for the environment in which early versions of Condor

were developed, is no longer appropriate when Condor is used in environments consisting of

multiple administrative domains.

The Condor system has increasingly incorporated features that make it able to work in

more complex environments which span administrative domains [101]. For example, flocking

and Condor-C are mechanisms for moving jobs from one administrative domain to another.

With flocking, schedulers from one administrative domain that have more queued jobs than

available resources advertize those jobs to the central manager of another domain. Condor-

C is a mechanism for moving jobs from one scheduler to another. In fact, because of its

flexibility and reliability, Condor is often used to connect other systems, such as commercial

batch queueing systems and Globus Toolkit. However, although these mechanisms exist, the

underlying assumption that all parties trust the administrators persists.

3.2 ClassAds

The ClassAd language is a simple language used within Condor and other systems to

store metadata for tasks and resources. ClassAds are sets of name-value pairs; the values

can contain expressions that can refer to names within the ClassAd, as well as names in

other ClassAds. The ClassAd language defines the structure of ClassAds and the rules for

expression evaluation. An example ClassAd is shown in Figure 3.1.
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ClassAds are the lingua franca of the Condor system: every resource and task has an

associated ClassAd which describes it in detail. At present, ClassAds are not explicitly

protected; in the proposed system, ClassAds can be digitally signed. Digital signatures can

be used to detect and deter tampering. For example, when a host receives a task to be

executed, it can verify for itself who submitted the task and that it is unaltered.

Cmd = /full/path/to/executable;

TransferInputFiles = this_file.txt,that...;

Requirements = (Arch == "INTEL") && ...

Figure 3.1 An example ClassAd. Note that the Requirements attribute specifies an
expression.

3.3 CEDAR

Point-to-point authentication, session key establishment, and session integrity and con-

fidentiality are handled in Condor by CEDAR, a library that permits two communicating

processes to negotiate security settings such as authentication methods and cryptographic

algorithms. CEDAR is similar to SASL [68].

Integrity is provided via MD5 [82]; support for stronger checksum algorithms is planned

but not currently implemented. The following encryption algorithms are implemented:

• Blowfish [89]

• Triple-DES [1]

• AES-128, AES-192, AES-256 (implemented but not yet released in Condor) [30]

The following authentication methods are implemented:

• Claim-to-be - a stand-in method for testing connectivity. Not intended for use in

production environments.
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• Kerberos [96]

• SSL [33] - see below.

• GSI [39] - see below.

• Password - communicating parties must have established a shared secret before authen-

ticating. The implementation of this method is based on the AKEP2 protocol [67, 22].

• Microsoft’s SSPI [2]

3.4 Cryptographic Primitives

The work presented in this thesis draws on the existing cryptographic primitives including

cryptographic hash functions, symmetric encryption, and public key cryptography. This

section describes the usage of these primitives, introduces notation, and describes basic

functions (such as digital signatures and certificates) based on these primitives. The notation

is summarized in Table 3.1.

For each function, the complexity of the function in terms of the size of the input messages

is included as well. I assume that the key size and the algorithms used are fixed. Section 3.6

describes the algorithms and key sizes used in Condor and GSI.

Using similar notation, the sections of Chapter 4 describe the functions introduced in

this thesis.

3.4.1 Cryptographic Hash Function

A cryptographic hash function is a function

H = hash(M),

that takes a sequence of bits M , and produces a fixed-size bit string H, and has the following

properties:

• Given H, it is not feasible to find Mor any substring of M .
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Symbol Meaning

H A cryptographic hash

M A message or string of bits

E An encrypted message or string of bits

S A secret key

P The public portion of a keypair

K The private portion of a keypair

B A fixed size block of text

D A digital signature

Table 3.1 Notation for cryptographic primitives.

• Given M , it is not feasible to find a collision (i.e. a different string M ′ that hashes to

the same string H).

• The hash can be computed in O(|M |).

3.4.2 Symmetric Encryption

A symmetric encryption algorithm provides a pair of functions, encrypt and decrypt :

E = encrypt(M,S)

and

M = decrypt(E, S)

The encryption function takes as input two strings, one an arbitrary length message M ,

and the other a fixed size key S, and produces an encrypted message E, approximately the

same size as M . A symmetric encryption algorithm has the following properties:

• Given E, it is not feasible to find Mwithout knowing S.

• The message can be encrypted and decrypted in O(|M |).
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3.4.3 Public Key Encryption

A public key encryption algorithm also provides functions encrypt and decrypt, but in-

stead of using a symmetric key S, they take a keypair 〈P,K〉, where the private portion of

the key is known only the holder but the public portion can be published widely:

E = encrypt(B,P )

and

B = decrypt(E,K)

Because the public key encryption and decryption functions are so much more expensive to

calculate than the symmetric equivalents, these functions are usually performed on small

messages (represented here as B). When larger messages need to be encrypted using public

key encryption, they are usually encrypted using a symmetric key which is then encrypted

using the public key.

E = 〈encryptpub(S, P ), encryptsym(M,S)〉

and

S = decryptpub(E1, K)

M = decryptsym(E2, S)

Public key encryption algorithms are also used for digital signatures, by reversing the

usage of the keys: the private portion of the keypair is used to encrypt a block; anyone in

possession of the public portion, along with the block and the encrypted block, can verify that

the result was encrypted by the holder of the private portion by decrypting the encrypting

block and directly comparing with the unencrypted block:

D = encrypt(B,K)

and

B = decrypt(D,P )
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By combining these functions with hashing, the following sign and verify functions are ob-

tained:

D = sign(M,K) = encrypt(hash(M), K)

and the boolean

verify(〈M,D〉, P ) = hash(M) ≡ decrypt(D,P )

3.5 Public Key Infrastructure

A Public Key Infrastructure (PKI) is a system for identifying users and processes based on

public key cryptography. X.509 is a widely used standard for implementing a PKI. An X.509

PKI is based around a set of hierarchies of certificates each of which identifies a principal,

or end-entity. Support for X.509 PKIs is implemented in Condor in the form of support for

GSI and SSL authentication methods.

3.5.1 Certificates

An X.509 certificate is a binding between a keypair and a name, permitting the principal

holding the private key portion of the keypair to identify themselves to others. The binding

itself is in the form of a signature by a third party explicitly trusted by the recipient of the

certificate to authoritatively identify the key holder.

A certificate is a digitally signed message with a specific structure; the signed message

includes the subject name and their public key, along with fields identifying the signer and

indicating the validity period of the certificate. The X.509v3 standard describes a set of

required fields and includes an extension mechanism that permits additional fields to be

included. An issuer of certificates is called a Certificate Authority (CA).

For example, a certificate linking the name “A. User” with a particular keypair, issued

by a CA with the name “B. CA” would be:

CA. User,B. CA = sign(〈Sub:A. User, Sub Key:PA. User, Issuer:B. CA, . . .〉, KB. CA)
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One field within a certificate indicates whether the certificate is permitted to be used

to issue other certificates: the CA bit. If the CA bit is set, then the certificate identifies a

CA. When a certificate is signed by the private key that forms a keypair with the public key

contained in the certificate, the certificate is said to be self-signed. If a certificate does not

have the CA bit set, it is called an end-entity certificate.

To verify a certificate, the issuer must also be verified and trusted. The signature on the

certificate itself is checked using the public key from the certificate of the issuer. The issuer’s

certificate may be a self-signed CA root certificate explicitly trusted by the verifier, or an

intermediate certificate. A certificate chain consists of a sequence of one or more certificates

each signed by the next. In other words, for a certificate to be valid, it must begin a chain

of one or more certificates for which the following conditions are met:

1. The signature on the certificate must be valid.

2. The signature on the certificate must have been made by the issuer.

3. The issuer certificate must be a valid certificate.

4. The last certificate in the chain must be a CA root certificate explicitly trusted by the

verifier.

Since CAs themselves are identified by certificates, trees of hierarchies are formed, with

CA root certificates at the root, end-entity certificates as the leaves, and intermediate CA

certificates in the middle.

The protocol for issuing certificates does not require that the certificate holder expose

the private part of the certified keypair to the CA. Instead the holder prepares a certificate

signing request (CSR) which contains the public key, the proposed subject name, and is

signed with the private key. It is the CAs responsibility to authenticate that the entity

presenting the CSR is in fact the entity identified by the subject name in the CSR. The

mechanisms for performing this authentication are not specified and vary widely in practice,

depending on the requirements of the PKI.
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3.6 The Grid Security Infrastructure

Note that within an X.509 PKI, end-entity certificates may not be used to sign other

certificates.

The Grid Security Infrastructure (GSI) extends the PKI concept to include proxy creden-

tials, intended to allow tasks in Grid environments to authenticate on behalf of the users who

have submitted the tasks [39]. This is accomplished by relaxing the restriction on end-entity

certificates so that they may issue proxy certificates, in effect acting as CAs. In addition,

proxy certificates may also issue further proxy certificates, except when they are explicitly

restricted from doing so.

Proxy certificates are intended for use by processes acting on behalf of a particular user,

so that the process (i.e. jobs submitted to a batch computing system) can authenticate

with the credentials of the user without risking exposure of the user’s X.509 private key.

In practice, proxy certificates are limited in validity time in order to make the increased

possibility of exposure of the proxy private keys an acceptable risk.

The process of issuing proxy certificates is much the same as the process of issuing

regular X.509 certificates: the recipient is not required to expose their private key to the

issuing process (whether that process holds an end-entity certificate or a proxy certificate).

3.7 The Task Pathway

In this section we describe a simplified task pathway, shown in Figure 3.2, including the

components of the Condor system that handle a task as it moves through the system and

the interactions between these components. We describe the security mechanisms in place

(without the contributions in this thesis) and the trust assumptions that are made.

3.7.1 Roles

The Condor system consists of several processes distributed across a network of machines;

each process plays a specific role within the infrastructure. For simplicity, we consider a
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limited set of roles, where each role may be performed by a set of interacting processes. The

basic roles are:

• The submitter. This is the process the user uses to submit tasks. At this stage in the

task workflow, the executable programs, arguments, and input files are specified.

• The scheduler. This role includes a process for matchmaking, used to match tasks

to resources, a process for collecting information about tasks and resources, and a

process for receiving tasks and distributing them to resources. Within Condor, when

a task crosses administrative boundaries, it moves from a scheduler in one domain to

a scheduler in another.

• The worker node (WN). This is where tasks are performed.

• The storage element (SE). Often worker nodes access storage elements to obtain input

data or store output.

3.7.2 Actions

1

We assume that point-to-point communications occur over a secure channel provided

by CEDAR, a mechanism in Condor that provides mutual authentication, integrity, and

confidentiality. Although Condor supports several authentication methods, we assume that

a PKI has been established: that the GSI authentication method [39] is used between all

communicating processes, and that a certificate authority (CA) has been used to generate

certificates for each process and user.

There are three types of actions that can occur on behalf of or to transfer a task:

• A forwarding step occurs when a task moves between a submitter and a scheduler,

between schedulers, or between a scheduler and a WN.

• An execute step occurs when a WN executes a task.
1TODO: This needs to be changed to reflect the transparent credential transformation section.
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• An access step occurs when a worker node accesses a storage element to read or write

data.

Figure 3.2 The task pathway. Regions represent potentially different administrative
domains. One or more schedulers may handle the task between submission and execution.

3.7.3 Checks

When a request for service from one process to another is made, several checks are

made regarding the permissibility of the request. In particular, the mutual authentication

performed between communicating parties includes some implicit authorization: if commu-

nicating parties are unable to authenticate each other, the request is dropped.

In Condor, when a process authenticates with another process, each identifies the other

using a canonical identifying string of the form user@host.domain. Per-process coarse-

grained authorization policies specify a set of identities that can read or write (i.e., make

requests that read or write data) from the process.

• submit : The submitter explicitly selects the scheduler to which they submit their

job. The scheduler is authenticated using the certificate chain trusted root certificates
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configured by the user and can be additionally limited by the GSI_DAEMON_NAME config-

uration variable, which specifies a list of acceptable daemon DNs. The user implicitly

trusts the scheduler it contacts and any schedulers and WNs that it may choose to

forward the job to.

• forwarding from scheduler to scheduler: The submitter may explicitly specify a destina-

tion scheduler, or the administrator determines a set of potential recipient schedulers;

selection is performed by the matchmaking process. The scheduler who forwards the

job authenticates with the delegated credentials of the submitting user while the re-

cipient authenticates with its service credentials; another delegation step is performed.

When the execute step below completes, the recipient scheduler returns the data pro-

duced in that step to the originating scheduler.

• forwarding from scheduler to WN: The scheduler selects the worker node as part of

the matchmaking process, which takes into account requirements specified by both the

worker node and the submitting user and finds matches between the two. In order to

facilitate access control based on the scheduler (in addition to the user) at this point

the scheduler authenticates to the WN with its service credentials rather than with the

credentials of the user. A delegation step is performed with the proxy credentials of

the user so the WN can impersonate the user. When the task is complete, the results

are returned to the scheduler.

• execute: The WN performs this step internally; no additional delegation step is per-

formed. At this point, the WN checks the authorization of the user before executing

the task.

• access : File reads and writes are explicitly under the control of the task, and therefore

assumed to be under the control of the submitter. The worker node authenticates to

storage elements using the delegated proxy credentials of the submitting user.
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3.7.4 Analysis

The security protections described in this section inadequately protect the three sets

of data described in the introduction: the task input and output data, the operating en-

vironment of the worker node, and data unrelated to the task, such as that stored on an

SE.

We assume that the submitters (i.e. all of the processes directly controlled by the sub-

mitter) are trustworthy; in addition we assume that each submitter is able to specify a set

of worker nodes and additional resources such as storage elements they trust.

In our threat model, attackers can control processes within the infrastructure and will

use this control to perform attacks on other processes in the infrastructure and to attempt

to obtain unauthorized access to data. We are primarily concerned with integrity and confi-

dentiality, since attacks on availability are relatively easy to detect in the Grid environment.

Despite the security protections in place in the task pathway, the design of the existing

security mechanisms violates the principle of least privilege [87]: “Every program and every

user of the system should operate using the least set of privileges necessary to complete

the job.” The system design assumes that each user considers each process in the system

to be completely trustworthy: that each process will protect task availability, integrity, and

confidentiality, and that the user’s credentials will not be exposed or misused to obtain access

beyond the usage required for the task submitted by the user.

For example, if a scheduler is not trustworthy, it can read and copy task data or results,

or alter the contents of the task. The altered task could be used to attack the worker node,

or to read or write any data that the user’s delegated credential is authorized to access on

storage elements. The only limit on the usage of the delegated credentials is the lifetime of

the proxy. Even if the task makes it unaltered to a worker node, the results can be altered

while they return to the submitter.
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Chapter 4

Framework Components

In this section, each of the mechanisms used to enforce policy within the framework are

described in detail. In the next section, the protocols used to integrate these mechanisms

are discussed.

4.1 Overview

The framework consists of a set of mechanisms which work together to enforce policies.

These mechanisms include:

• The application of digital signatures to task data and metadata.

• The use of proxy certificates that are cryptographically bound to individual tasks and

services.

• A policy language with clear evaluation rules that allows users to specify how their

tasks and credentials may be used.

• A service for producing the type of authentication tokens on which our system relies

(GSI proxy certificates) for installations which use alternative authentication mecha-

nisms such as Kerberos, SSL, shared passwords, or SSPI / NTLM.

• Techniques for providing confidentiality for tasks while in transit.

In order to facilitate adoption, these mechanisms work by adding information to existing

task metadata and by extending proxy certificates. As a result, existing systems which
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are not aware of the mechanisms continue to work as they do now, permitting incremental

deployment. These mechanisms have been implemented in the Condor system [100].

Although the framework is described in the context of Condor, it could readily be im-

plemented and deployed a more general Grid environment. The chapter covering implemen-

tation describes the steps required to achieve this in greater detail; see Chapter 6. Condor

(and related components, such as ClassAds) are described in more detail in Section 3.

A key mechanism on which several other mechanisms rely on is per-task credentials. In

existing systems, credentials are issued to individual users and to daemons or hosts. By

permitting users to link delegated credentials to a specific task, this technique allows users

to specify policies associated with the individual tasks they submit, and restricts the ability

to misuse user credentials for other tasks.

The result of linking credentials directly to tasks is a reduced need for the endpoints to

rely on the central infrastructure. In existing systems, the central infrastructure is trusted

to provide integrity for task data (both results and input data, including the task executable

itself) and to maintain the association between tasks and authenticated users.

Another mechanism we introduce is a certificate which is part of one delegation chain but

also includes information linking it to another certificate. This service-specific proxy certifi-

cate is used to identify both the user who submitted the delegated task as well as the host

on which their task is running. As a part of the framework, service-specific proxy certificates

allow a process running on a particular host on behalf of a particular user to authenticate as

such when communicating with a file server or other resource that is configured to enforce

the user’s policy regarding where their jobs can be run.

Drawing on the end-to-end principle [86] and the principle of least privilege [87], the

framework is intended to reduce the amount of trust that participants (job submitters and

resource owners) must be willing to grant to other participants.

The framework is intended to permit users to safely submit tasks to a distributed system

in which they trust only a subset of resource owners by providing users with the ability to

specify where their jobs can run and to verify that their policies have been followed. The
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ultimate goals of this work are to both help to secure existing deployed systems and to permit

sharing in contexts where sharing is not currently possible.

The framework consists of the following independent mechanisms:

• Signed ClassAds

• Task-specific proxy credentials

• Action authorization expressions

• Service-specific proxy credentials

• Transparent credential transformation

• Secure key storage service

4.2 Signed ClassAds

A ClassAd is a set of attributes and associated values. The ClassAd language defines a

syntax for ClassAds and rules for expression evaluation. ClassAds are used within Condor

to specify attributes associated with tasks, resources and processes. ClassAds are described

in more detail in Section 3.2.

Signed ClassAds extend ClassAds by adding support for applying and verifying digital

signatures using X.509 private keys and certificates. Signed ClassAds provide integrity ver-

ification capability within the framework. In addition, signed ClassAds can play a role in

authentication and authorization, and can assist audit capability.

Signed ClassAds are implemented by applying basic digital signature techniques to string

representations of ClassAds. See Section 3.4 for a detailed description of digital signatures

and cryptography. The signature value is a ClassAd attribute with the name SignedClas-

sAd and the value containing the entire text to be signed, followed by the cryptographic

checksum of that text encrypted with the private key of the signer. See Chapter 6 for more

details regarding the specifics of the cryprograpic techinques employed, the format of the
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SignedClassAd attribute, and the methods provided for creating signatures, validating the

results, and obtaining the original signed data.

Conceptually, a signed ClassAd is simply a ClassAd which has a subset of attributes that

have been digitally signed using a private key. This key is associated with an X.509 or GSI

end-entity certificate or a GSI proxy certificate. (X.509 and GSI credentials are described in

more detail in Sections 3.5 and 3.6, respectively), and the meaning of the signature is that

the entity named in the certificate (the holder of the private key) is linked to the contents

of the ClassAd: that the contents of the ClassAd are accurate according to the signer at the

time of signing.

In practice, the role of the signer dictates the meaning of the signature; for example,

a signature on a job ClassAd links the signer with the specific task, while a signature on

a machine ClassAd links the specifics of a particular resource offering (such as available

memory) with a particular offering party (the entity controlling the machine). However, in

the same way that the ClassAd language describes a format for sets of attribute-value pairs,

an expression language and semantic rules for evaluating those expressions in the context of

pairs of ClassAds, these meanings are not inherent in the mechanism, they are inherent in

the use of the mechanism within the framework. See Chapter 5 for more detail on how this

mechanism is used in Condor and integrated with the framework we introduce.

A recipient of a signed ClassAd in possession of nothing more than a Certificate Authority

(CA) root certificate should be able to verify whether or not the ClassAd was signed by a

credential issued by, or delegated from, that root certificate, and whether or not the ClassAd

had been altered. A recipient without a CA root certificate should be able to tell whether

the ClassAd has been altered.

File references (in the form of a filename and a cryptographic hash of the file contents)

can also be included within the data that is signed, so external files such as executables and

input files can be included in the signature.

An example signed ClassAd is shown in Figure 4.1.
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Cmd = /full/path/to/executable

Cmd_Sha1Sum = "97a3e984d6..."

TransferInputFiles = this_file.txt,that...

TransferInputFiles_Sha1Sum = "8a552f...",...

Requirements = (Arch == "INTEL") && ...

Args = -rf

SignedClassAd = "[Cmd ...-rf],b70a6..."

Figure 4.1 An example signed ClassAd.

Signed ClassAds can play a role in authentication, authorization, and audit mechanisms:

they make it possible to establish a cryptographic link between the authentication informa-

tion accompanying the ClassAd and the actual contents of the ClassAd as received. Autho-

rization should fail if relevant contents have been altered. Because authorization information

specified by the signer can be included in the signed ClassAd (see Section 4.4), policy enforce-

ment points can use signed ClassAds to make authorization decisions on behalf of the signer.

Audit mechanisms are strengthened by explicit association between a task and information

about its origin, and between resources and the tasks they perform.

4.3 Task Specific Proxy Certificates

A task-specific proxy credential is a key pair consisting of a private key and a GSI

proxy certificate with a signed job ClassAd embedded into it, linking the credential and the

job. The proxy certificate includes the signed job ClassAd within the policy section of the

certificate. The X.509 proxy certificate standard includes support for a section containing

policy; this section includes a policy identifier and a variable length string of bytes containing

the policy itself [103]. The standard requires that an entity authenticating a proxy containing

a policy must be able to interpret the policy and that it should refuse to accept the proxy if

the policy language can not be interpreted and enforced by subsequent authorization steps.
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Figure 4.2 The task-specific proxy
certificate.

The policy language is specified as OID; we have

registered an OID arc for the Condor project

(1.3.6.1.4.1.214.102) and have designated an

OID specifically for task-specific proxy certifi-

cates (1.3.6.1.4.1.214.102.1), and service-specific

proxy certificates (1.3.6.1.4.1.214.102.2), de-

scribed below.

Before submitting a task, the submitter cre-

ates a proxy credential specifically associated

with that task by embedding a signed job

ClassAd within the proxy certificate, creating a

task specific proxy certificate. The steps in cre-

ating a task-specific proxy certificate are shown

in Figure 4.2. First, the user creates a proxy cer-

tificate from their end-entity certificate (EEC)

as they normally would. Then, for each job they

submit, they first create a signed ClassAd, containing any policy restrictions (see Section 4.4,

below) and the names and checksums of any files such as executables or input files. This

ClassAd is signed by the proxy certificate. Then, they perform a delegation step, creating

the keypair locally, but including the ClassAd within the policy field within the delegated

proxy certificate.

While, in theory, it would be possible to create a task-specific proxy certificate directly

from the EEC, this would require a user to type their password for every distinct task they

submit. A task specific proxy certificate must be issued by the first proxy in the chain (and

the signed ClassAd it contains must also be signed by that proxy).

Task-specific proxy certificates were introduced in [7].

Although we doubly sign the ClassAd (once as described above, in Section 4.2, and once

by embedding it in a certificate), this is merely because these signatures are used by different



41

components at different times; if analysis showed that the overhead is too great, we could

merge these signatures. As described in Section 5.5, the presence of the text of the ClassAd

in the credential chain permits the policies there to be used to perform authorization without

transferring additional data beyond the certificate chain already used for authentication.

Task specific proxy credential chains (credential chains which contains task specific proxy

certificates) are intended for use by WNs to verify the integrity of the associated task before

execution, or for use by the task to access external resources. However, a scheduler can

safely ignore the embedded policy; in this sense the certificate expands rather than restricts

what the certificate can be used for. Enforcement is provided by the trusted components

aware of the protection mechanisms within the system including trusted worker nodes, the

submitter, and trusted storage elements. See Section 5 for details about how enforcement is

performed.

4.4 Action Authorization Expressions

An action authorization expression is an expression in the ClassAd language that ex-

presses policy determining whether a particular action should be performed. In combination

with task-specific proxy credentials, these expressions permit users who submit tasks to

specify policy about the disposition of their jobs.

The submitting user can specify conditions on the execute and access actions described

above in Section 3.7.2 The conditions are specified as expressions in the ClassAd language

and are enforced by the trusted components: the submitter, the WN, and the SE. The

expressions limit which actions can be performed on which objects by which principals.

These policy expressions are Boolean expressions that evaluate to true or false: if (given the

action and environment) a expression evaluates to true, the action can proceed.

To support these expressions, information about the identities of the participants (and

in the case of the access action, details about the objects being accessed) will be added to

the ClassAd by the enforcing process before the expression is evaluated. For example, the
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distinguished names of the WN and the issuer of the WN’s certificate are available through

attributes.

The execute action expression is used to specify the set of trusted certificate holders that

the user accepts as trustworthy to perform the computation correctly when given a valid

task, to preserve the integrity of the task input data, executable, and output data, and

to preserve the confidentiality and integrity of data manipulated through resources such as

SEs on behalf of the submitting user. A trusted WN is defined as a WN for which this

expression evaluates to true, but we do not rely solely on WNs to enforce this policy: the

policy is enforced at the submitter and on any resources the task attempts to access; see

Section 5 for details. For example, a simple expression specifying acceptable execution hosts

is shown in Figure 4.3.

regexp("/O=Fermi...", AAE_execute_issuer_DN) || regexp("/O=UW...", AAE_execute_DN)

Figure 4.3 An execute action expression.

The access action expression specifies a set of acceptable data accesses. The attributes

supplied at enforcement time include paths to the objects being accessed and the access type

(read or write). Complex expressions are supported given the expressiveness of the ClassAd

language; often simple expressions are adequate. The signed access policy contained in the

proxy chain acts as a distributed capability which is interpreted in conjunction with any

access control lists stored within the resource to perform authorization and access control

decisions.

4.5 Service-Specific Proxy Certificates

A service-specific proxy credential is a key pair consisting of a private key and a GSI

proxy certificate with a signed machine ClassAd embedded into it. This credential is part of

a chain can be used to identify the user submitting the task, the task itself, and the service

associated with the machine ClassAd.
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A service-specific proxy certificate is similar to a task specific proxy certificate described

above in Section 4.3, but instead of identifying a particular task associated with the cre-

dential, it includes information about a key held by the service which controls the proxy

certificate. When a task running on a trusted WN authenticates to a resource to perform

an access, the resource often wants to be able to identify both the submitting user as well

as the WN on which the task is running. However, authentication is performed using only

one credential, and the task does not have access to the private key used to authenticate the

WN. In order to identify the WN in a cryptographically strong way, we get the WN to use

its private key to sign a piece of information which uniquely identifies the proxy certificate,

and then include this signature in the proxy certificate.

When a WN receives a proxy delegation from a scheduler, the WN first creates a keypair

to be used as the next credential in the proxy chain. The WN then creates an additional

attribute that it inserts into the certificate signing request it gives to the scheduler, consisting

of the public key of the keypair it just created, signed by the service or host key of the WN.

By including a signature on the public key part of the keypair in the newly created proxy

certificate, the WN claims control over the associated private key. In this way, the service-

specific proxy credential is delegated by both the user and the host on which the credential

is generated.

In order for this credential to meaningfully identify both the user and the WN, neither

must expose the private key part of the delegated credential. The WN ensures that this will

not occur by protecting it when it has control of it, and by making sure that the delegated

credential is used only by processes explicitly signed by the submitting user: it is up to the

submitting user to ensure that their task does not compromise the confidentiality of their

delegated private key (since this mechanism protects their task and data).
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4.6 Transparent Credential Transformation

Transparent credential transformation permits the other mechanisms which rely on PKI

to be used for users who authenticate using other systems, by issuing PKI credentials at user

request or without user involvement, depending on configuration.

One of the most flexible mechanisms within the Condor system is its authentication

system. Users can authenticate themselves when they submit a job using GSI (X.509 certifi-

cates), Kerberos, Windows NTSSPI, SSL and simple passwords. Credential transformation

is a mechanism for allowing the use of mechanisms which rely on GSI authentication and

delegated proxy certificates to be used when users authenticate using other authentication

types which do not directly support delegation, such as filesystem, password, SSL, NTSSPI

or Kerberos (delegation using Kerberos is possible but not supported in Condor). The basic

mechanism is simple: users authenticate to a daemon that issues them a GSI credential,

which is then used in place of their existing credential when they submit a job or communi-

cate with other components of the Condor infrastructure.

In order to digitally sign something, the signer must have a private key, and the verifier

must have the associated public key. In order to provide this functionality while continuing

to support a broad set of authentication mechanisms, we have implemented a certificate

requesting client and online CA (certificate authority) service. Users can request a PKI

certificate after authenticating using another of the supported authentication mechanisms.

In essence, the certificate produced by an online CA certifies that the holder authenticated

at a particular time using a particular method. This allows a user who has authenticated

using Kerberos, for example, which does not use keypairs and would be difficult to use for

digital signatures, to sign their jobs. In addition, the certificate provided by the online CA

attests their username and identity provider, and therefore a service such as condor_sched

which trusts the CA can retrieve attributes about the user with confidence that the attributes

they’re retrieving actually apply to the submitter of the job they have.
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4.7 Confidential Data and the Secure Key Storage Service

Protecting the confidentiality of a task in a Grid computing environment is a difficult

problem, because worker nodes must have access to task contents in order to execute the

task. One way to achieve confidence that a worker node is trustworthy is to require that

it use Trusted Computing [64, 63]. We assume that each user has confidence that some

set of worker nodes are trustworthy; our focus is on protecting confidentiality from other

infrastructure components.

Submitters can include an encrypted payload with the tasks they submit. The payload is

encrypted with a randomly generated symmetric key that is not included with the task, but

rather stored with an agent of the submitter, the condor_credd process. When a worker

node receives an encrypted payload, it contacts the agent directly and authenticates using

its SSPC. The key is returned via an encrypted CEDAR session to the worker node.

Because the condor_credd authenticates using the delegation chain terminating in the

SSPC and the TSPC, it is able to evaluate the AAEs contained in the chain to verify that

releasing the key is appropriate and that the host on which the job is running is acceptable

to the submitter.

Encrypted payloads provide the confidentiality component of the framework. If the cost

of encryption outweighs the need for confidentiality, encrypted payloads need not be used.

In addition, depending on file-staging requirements, confidentiality can be achieved by trans-

ferring sensitive files directly between storage elements and worker nodes over an encrypted

connection. Although we have not implemented this in the context of this thesis, it would be

possible to outfit a storage element with the framework SSPC/AAE verification mechanism

just as we have done with the condor_credd.

The confidentiality of encrypted payloads and direct transfer depends on the ability of the

framework to help the submitter, the credential agent, and the storage element distinguish

between trusted worker nodes and other infrastructure processes.
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To permit maximum flexibility, we do not explicitly encrypt payloads directly in the

code we implement; rather, we implement mechanisms that can be used to distribute the

shared secrets used to encrypt the payloads. In addition to reducing the complexity of

the implementation, this permits the users to choose the implementation of the encryption

mechanisms to best suit their needs.

There are a number of reasons why this may be more desirable. A user may choose to

encrypt more sensitive portions of their task with more expensive encryption algorithms and

less sensitive portions with less expensive algorithms or none at all. A user who is submitting

a set of related tasks may choose to encrypt a portion of each task with a task-specific secret

while encrypting the rest of each task with a secret common to the set.

This mirrors the flexibility permitted in the built-in point-to-point encryption mecha-

nisms included in Condor, and permits a variety of performance/security choices for end-to-

end confidentiality
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Chapter 5

Framework Integration

This chapter describes the changes to the task pathway and how the framework mecha-

nisms described in Chapter 4 are integrated into the task pathway and with each other. In

order to illustrate the integration, an example showing the use of the confidentiality mech-

anism is given. The confidentiality mechanism is illustrative because the it takes advantage

of most of the other mechanisms, including signed ClassAds, task-specific proxy certificates,

service-specific proxy certificates and action authorization expressions. For completeness, we

also show how transparent credential transformation would be integrated into this workflow.

In the example, the following security policy is implemented: a job may only be run on a

set of machines whose host certificates were issued by a particular Certificate Authority (CA).

The intermediaries may be untrusted so the job should be encrypted before submission, and

hosts which execute the task should verify the integrity of the jobs they receive before they

execute them. The encryption key must be provided to the jobs so that they can run, but

should only be provided to jobs that can demonstrate that they are running on a host which

is in possession of a credential issued by this CA. When the job is complete, the submitter

will reject it if the result is not signed by a host identified by this credential. The submitting

user is logged in to the system they will submit from using Kerberos credentials and does

not have GSI credentials.

In other words, the user trusts the key infrastructure, the submit machine, a set of execute

machines, and the condor_credd host, and not the other components of the system; attacks

on availability (e.g. denial of service) are not considered.
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The remainder of this chapter shows how each of the framework components contribute

to the implementation of this policy. Chapter 7 provides detailed performance analysis of

the example described here.

At a high level, the user uses the MiniCA (transparent credential transformation) to

obtain GSI credentials, invokes grid-proxy-init to obtain a base user-specific proxy cer-

tificate, encrypts their job as necessary, and invokes condor_submit configured to provide

signed job ClassAds and task-specific proxy credentials and store the secret used to encrypt

the job for confidentiality. The condor_starter process on the execute host verifies the

task-specific credential and the signature on the job (and that the two match), and issues a

service-specific proxy credential which it provides to the job wrapper. The job wrapper uses

the SSPC to authenticate to the condor_credd to obtain the secret, decrypts the job and

runs it. The job wrapper then encrypts the results before exiting. When the job is complete,

condor_starter signs the results of the job. The user retrieves the results and checks the

signature and the identity of the host credential signing the job.

5.1 Transparent Credential Transformation

In order to demonstrate all of the components of the framework, we assume that the user

does not have a GSI credential (an EEC) and will use a transparent credential transformation

daemon to obtain one. The transparent credential daemon process is known as the MiniCA

and is condor_minica. Although other components of the framework require credentials

such as those issued by the MiniCA, there are other ways to obtain those credentials. (See

Section 3.6 for more information about GSI.) This step is essentially independent of the

other steps and occurs only once when new GSI credentials are needed. Any of a number

of authentication methods could be used; we illustrate with the Kerberos authentication

method, already included in Condor.

For brevity, we do not describe here the complete process for setting up a MiniCA but the

setup is simple: a script creates a self-signed root key, directory structure and configuration

files. The CA is based on the simple CA included with OpenSSL. It is important to secure
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the host on which the MiniCA daemon runs appropriately, since the confidentiality of the

CA root key is an essential requirement.

While condor_minica uses standard Condor authentication methods, it uses a special

authorization mechanism permitting administrators to configure which users can obtain cre-

dentials based on how they authenticate and who they are.

The user runs the following command to obtain credentials from the MiniCA:

condor_minica_client -C alderman@cs.wisc.edu -f minica/alderman

The client uses the condor_config file to determine the location of a custom OpenSSL

configuration file prepared by the administrator. The client first creates a keypair with

a private key and a certificate signing request. The certificate signing request for a user

certificate is constructed with the Common Name portion of the DN set to the user’s login

name and the UID_DOMAIN from the condor_config file, in the form uid@domain.edu. Then

it contacts the condor_collector to determine the address of the condor_minica daemon,

then connects to that daemon. The client authenticates with the daemon using Kerberos (any

authentication method supported by Condor can be used here). The result of the exchange

with the MiniCA is a keypair consisting of a private key and an end entity certificate (EEC)

signed by the MiniCA. In our example, the DN takes the form:

C=US, ST=WI, O=Condor, OU=Research, CN=alderman@cs.wisc.edu

5.2 At the Submitter

The user prepares to submit the task by creating a proxy certificate. The first proxy

certificate that is created is a normal (i.e. not task specific) proxy certificate, and may be

used to submit more than one task. This is produced using the GSI tool grid-proxy-init.

The following steps are performed at submit time in this order:

1. The user creates a secret key for encrypting the job.
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2. The user encrypts the job. A simple wrapper script is generated that (when run on an

appropriate WN) accesses the condor_credd process and decrypts and execs the real

job. This simple script replaces the real job.

3. The user invokes condor_submit. This tool performs the following steps:

(a) Create and sign the job d with the user’s proxy credential.

(b) Create the task-specific proxy credential from the user’s proxy, and the signed

ClassAd.

(c) Contact the condor_credd to register the secret key used to encrypt the job.

(d) The task-specific proxy credential is used to actually submit the job.

The configuration file used by the submitter contains the following entries:

Controlling signing:

SIGN_CLASSADS = True

SIGN_JOB_CLASSAD_ATTRIBUTES = "Owner, CondorVersion, CondorPlatform, \

Iwd, JobUniverse, CmdHash, CmdHashType, Arguments, ExecutionHostAAE"

CLASSAD_SIGNATURE_CREDENTIAL_TYPE = GSI

Controlling hashing:

CMD_HASH = True

CMD_HASH_TYPE = sha1

To generate the TSPC:

ADD_TASK_POLICY = True

In the submit file (usually managed by the submitting user), or in the configuration

file used by condor_submit (usually managed by an administrator), action authorization
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expressions are included defining the policies for running the job. As described in the intro-

duction to this chapter, for this example, these expressions are intended to limit the set of

machines that can execute this task. Specifically, we want to limit the set of machines to

those possessing host credentials with a DN that matches the regular expression:

ˆC=US/ST=WI/O=Condor/OU=Research/CN=glow-s\d\d\d\.cs\.wisc\.edu$

When the ClassAd for the task is generated, the user specifies action authorization ex-

pressions for the execute, and access actions. (These policies can default to values set by

the site administrator.) To implement the limit described above, the following line would be

added to the submit file:

+ExecutionHostAAE = regexp("regex above ", ExecutionHost)

When this expression is validated, the ExecutionHost attribute will be instantiated by

the verifier, and will be undefined if the host certificate used to sign the policy field of the

SSPC descends from one of the trust roots configured at the verifier. For more on SSPC

verification see Section 5.5.

Techniques may be developed to automatically generate these expressions from a more

general policy language and to automatically update other relevant ClassAd settings, such

as the requirements expression. The action authorization expressions are included in the

task ClassAd along with references to, and checksums for, any external files that are to

accompany the task, including input data and the task executable.

When submitter process contacts the scheduler to submit the task, mutual authentication

is performed; the submitter authenticates using the task-specific proxy certificate and the

scheduler authenticates using its process credentials. If authentication and authorization (as

described in Section 3.7.3) is successful, delegation proceeds.

5.3 At a Scheduler

Once the task is received by the scheduler, the regular matchmaking process can begin

and proceed as normal. When a match is found, the authentication, authorization, and

delegation sequence repeats. The scheduler ignores the policy contained in the TSPC.
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In our research implementation, the user has the responsibility of making sure that the

matching, controlled by the Requirements expression in the submit file, matches the policy

expressed in the TSPC. It is expected that subsequent refinements will permit users to specify

these restrictions in one place and have both policies match.

5.4 At a Worker Node

When a scheduler forwards a job to a WN, the delegation sequence will include service

specific information as described in Section 4.5, so that the proxy credential used by the task

when it executes identifies both the submitting user and the WN service credential. Before

executing the task, a WN verifies that the task was intended to be run on this node, by

evaluating the execute action expression in the TSPC. In addition, the WN is responsible

for checking that the credentials it possesses identify the task it is executing, checking the

signature on the task ClassAd, and verifying that any accompanying files are unaltered. If

any of these checks fail, the job will be rejected by the WN before it is run.

Example configuration file entries controlling verification:

VERIFY_SIGNED_CLASSADS = True

VERIFY_JOB_CLASSAD_ATTRIBUTES =Owner, JobUniverse, CmdHash, CmdHashType, \

Arguments, ExecutionHostAAE

While the job runs, it has access to the credential chain including the SSPC, and it can

use these credentials to authenticate to external sources such as a storage element or the

condor_credd, to obtain the symmetric key used to decrypt the job. In the next section,

we describe how the process retrieves its key from the condor_credd.

5.5 Accessing data using the SSPC chain

When a task running on a WN accesses the condor_credd, the condor_credd process

evaluates both the execute action expression to confirm that the WN it is communicating

with is authorized to execute the task, and the access expression to determine that the

task is authorized by the user to access the secret. All of this information is available to



53

the condor_credd within the proxy delegation chain used by the user’s process on the WN

when it authenticates: the policies are contained in the task specific proxy certificate, and

the information about the WN is included within the service specific proxy certificate.

If the authentication and authorization between the condor_credd and the job running

on the WN are successful, the job (a simple wrapper script) is able to obtain the secret key

used to encrypt the real job. The encrypted job is decrypted and runs.

The condor_credd stores the secret key in a hash table indexed by the SHA1 sum of the

TSPC.

Although our implementation does not include this, the wrapper script could, upon job

completion, encrypt the result using the same key.

5.6 Task Completion

When the task completes, a receipt is produced: the task ClassAd is signed, including

cryptographic checksums on output files that are to be returned to the submitter. If service-

specific proxy certificates are used, the signature here is made by the service-specific proxy

credential and is performed by the starter process after the job runs. If they are not, the

receipt is signed by the host certificate directly. This receipt and the results are returned

along the task pathway as is usual within Condor. When the submitter obtains the results,

they are able to confirm that the policies they specified were enforced by verifying the receipt:

the receipt is signed by a service-specific proxy credential or host credential identifying a WN

which satisfies the execute expression, and the signature is valid.
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Chapter 6

Implementation

This chapter describes the implementation of the framework and gives a description of

the underlying mechanisms and tools used by the components. In addition, an overview of

the software design is presented.

The implementation and tests performed in the following chapter include each component

of the framework. An example of how the framework components work together is presented

in Chapter 5, showing how each of the components work together at the various places within

the distributed system to provide end-to-end confidentiality for task input data and results.

The mechanisms were implemented entirely within the Condor code base, and rely on

and take advantage of the APIs provided by the Globus Toolkit and OpenSSL, which are

already linked with Condor. Essentially no code within these libraries was altered.1

6.1 Signed ClassAds

The following configuration file entries affect signing:

• SIGN_CLASSADS

If set to “True”, job ads within condor_submit, and machine ads within condor_startd

are signed. In the implementation described in this thesis, other ad types are not signed

but given the architecture and the way Condor uses the ClassAd library, it would be

easy to add signatures to other ClassAd types.
1We found a bug in Globus Toolkit’s handling of proxy policies, reported it to the Globus developers,

and fixed it in the copy that we tested with.
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• VERIFY_CLASSADS

If set to “True”, job ads are verified by condor_starter before jobs are executed.

• CLASSAD_SIGNATURE_CREDENTIAL_TYPE

Determines the credential type for signed ClassAds. Valid entries are “SSL” and “GSI”.

With respect to signing ClassAds, these types are equivalent; this configuration option

exists because so that the signing code knows which other configuration options to look

for to find credentials to be used for signing.

• AUTH_SSL_CLIENT_KEYFILE

AUTH_SSL_SERVER_KEYFILE

AUTH_SSL_CLIENT_CERTFILE

AUTH_SSL_SERVER_CERTFILE

AUTH_SSL_SERVER_CAFILE

AUTH_SSL_CLIENT_CAFILE

Specifies the location for the SSL key file, certificate and trust root file when the SSL

credential type is specified. Role (i.e. client, server) is determined from context.

• GSI_DAEMON_KEY

GSI_DAEMON_CERT

GSI_DAEMON_TRUSTED_CA_DIR

Specifies the location for the GSI key file, certificate, and trust root directory when the

GSI credential type is specified. When signing job ClassAds (i.e. within condor_submit),

these attributes are ignored; instead the proxy credentials specified as X509UserProxy

in the submit file are used instead (see below).

• SIGN_[ClassAd type]_CLASSAD_ATTRIBUTES

When a ClassAd is signed, its type is determined and this configuration variable is

consulted to determine which attributes should be included in the signature.
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• VERIFY_[ClassAd type]_CLASSAD_ATTRIBUTES

When a signed ClassAd is verified, its type is determined and this configuration variable

is consulted to determine which attributes must be present in the signature and have

identical values to those present in the ClassAd in order for the verification to return

success.

For example, the following configuration file entries would used to sign and verify partic-

ular attributes in machine ClassAds:

SIGN_MACHINE_CLASSAD_ATTRIBUTES = Name, PublicNetworkIpAddr, CondorVersion, \

CondorPlatform, SlotID, VirtualMemory

VERIFY_MACHINE_CLASSAD_ATTRIBUTES = Name, PublicNetworkIpAddr, CondorVersion, \

CondorPlatform, SlotID, VirtualMemory

The following configuration file entries affect cryptographic checksumming of files; while

this is independent of signing, when used with signed ClassAds, these checksums can be used

to ensure end-to-end integrity.

• CMD_HASH

When this attribute is set to true, a cryptographic checksum or hash is computed for

the contents of the executable specified in the submit file by condor_submit. Note

that at the time of writing, only the executable (not any other files transferred such as

input files) is hashed; however, the Condor team has expressed interest in extending

this functionality to all transferred files.

• VERIFY_CMD_HASH

When this attribute is set to true, the cryptographic checksum identifying the exe-

cutable is checked by condor_starter before a job is executed. To ensure end-to-end

task integrity, set this configuration variable and include the “Cmd” attribute in the

list of attributes to sign and verify.
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• CMD_HASH_TYPE

This attribute determines the hashing algorithm. This option is passed directly to

OpenSSL’s EVP interface. The default is “sha1”.

The tool condor_advertise and condor_sign can be used to sign any ad type.

When condor_advertise and condor_sign are used, they ignore the SIGN_CLASSADS

attribute above: The condor_advertise command line option -sign turns on signing in

the tool (condor_sign always signs).

The following process is used to perform a signature:

1. The SIGN_CLASSADS configuration variable is consulted. If it is true, signing proceeds;

otherwise the signature routine returns an error.

2. The ClassAd type is determined from the ClassAd and the list of attributes used in

the signature are determined from the appropriate configuration variable (described

above). If this configuration variable is not present, the signature routine returns an

error.

3. The credential type is determined, and the signing key and associated certificate are

read. In the case of GSI credential types, these are determined through the configu-

ration file or the ClassAd itself; in the case of SSL credentials, they are determined

by the configuration file. If the necessary files are not readable, the signature routine

returns an error.

4. A new ClassAd object is produced which contains only the specified attributes. For

those following closely at this level of detail, there is some special handling of the

Arguments attribute, which is altered later in the submission process for (now unnec-

essary) backward compatibility reasons, and for caching relevant discarded attributes

between invocations of queue() in condor_submit. This special handling only affects

job ClassAds.
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5. The text of the certificate for the credential used for signing is inserted into this

ClassAd, along with a signature version. The attribute names are:

• ClassAdSignatureCertificate

• ClassAdSignatureVersion

6. This ClassAd object is canonicalized and serialized to a text string (the signed text).

7. The OpenSSL EVP interface for signing is applied to this text string with the key

found above. If EVP fails for some reason (e.g. a corrupted key) the signature routine

returns an error.

8. The resulting binary string is transformed into a text string (the signature string).

9. The serialized ClassAd text and the signature string is added to the original ClassAd

in the ClassAdSignatureText and ClassAdSignature attributes, respectively.

The following process is used to verify a signature:

1. The VERIFY_CLASSADS configuration variable is consulted. If it is true, verification

proceeds; otherwise the verification routine returns an error.

2. The ClassAd type is determined from the contents of the signed ClassAd, and the

appropriate configuration variable is consulted to determine which attributes should

be used to verify the ClassAd. Note that the list of attributes to verify may differ from

the list of attributes used at signature time; in particular, a subset of signed attributes

may be used for verification.

3. The signed text and the signature are extracted from the appropriate attributes in

the signed ClassAd: ClassAdSignatureText and ClassAdSignature, respectively. If

these attributes are not present, the verification routine returns an error.

4. The text signature is transformed into a binary representation; this reverses a similar

step in the signature process.
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5. The signed text is deserialized into a ClassAd.

6. The ClassAdSignatureCertificate and ClassAdSignatureVersion are extracted

from the certificate. At present, the only signature version that is supported is “1.0a”.

If an unsupported signature version is present, the verification routine returns an error.

The certificate extracted here will be used to actually verify the certificate.

7. The certificate is checked against the trust roots defined in the configuration file en-

tries (GSI_DAEMON_TRUSTED_CA_DIR or AUTH_SSL_[CLIENT|SERVER]_CAFILE). If the

certificate was not issued by one of the trust roots, the verification routine returns an

error.

8. The OpenSSL EVP interface for verifying is applied to the text string with the binary

signature string and the public key from the certificate. If EVP fails, the verification

routine returns an error.

9. The list of attributes to verify from step 2 above is consulted and an error is returned

if any of the attributes are either not present in the signed ClassAd or differ from the

corresponding attributes in the signed text.

Some practical considerations result from this signing mechanism:

1. The total size of the ClassAd increases; it will at most double in size (every attribute

in the ClassAd is included in the signature as well) and increase by a constant factor

(because the text of the certificate is included).

2. If a signature verification fails because an attribute required for verification is altered

but the signature verifies at the cryptographic level, it is possible to determine the

value of the attribute at the time of signing. The present implementation does not

make use of this but it would be possible to extend the implementation to do so.

6.2 Task-Specific Proxy Credentials

The following configuration file entries affect task-specific proxy credentials:
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• ADD_TASK_POLICY

If this configuration variable is set to true, when a job is submitted by condor_submit,

task-specific proxy credentials are generated and used as described below.

• CHECK_TASK_POLICY

If this configuration variable is set to true, when a job is executed by condor_starter,

task-specific proxy credentials are checked as described below.

The following process is used to create a task-specific proxy credential:

1. The task policy text is assembled after signing by concatenating attributes from the

job as follows: The job attribute ClassAdSignatureText, a semicolon (“;”), and the

job attributeClassAdSignature.

2. A “self-delegation” step is performed within the condor_submit process, using the

Globus GSI wrapper for the underlying OpenSSL cryptographic libraries. There is a

potential for a performance optimization here: the self-delegation step is not required

by the design or by the API for TSPC (although it is required by the API for SSPC

as described below).

The condor_submit process generates a keypair and follows the standard delegation

protocol steps with the following steps: the policy is included, and the certificate type

coerced to GLOBUS_GSI_CERT_UTILS_TYPE_RFC_RESTRICTED_PROXY.

The following process is used to authorize a task-specific proxy credential:

1. The job proxy certificate chain is authenticated normally, and the TSPC policy field

is identified by the policy callback. The authorization step (verifying that the job ad

signature is valid and identical to the policy) is not performed as part of the authen-

tication step, so this callback returns immediately.

2. The job ClassAd signature is verified as described above.
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3. The expected policy string is assembled by concatenating the ClassAdSignatureText

attribute, a semicolon (“;”), and the ClassAdSignature attribute.

4. The policy is extracted from the certificate chain. There must be exactly one policy

in the chain.

5. The expected policy string is compared with the actual policy. It must match exactly.

6.3 Action Authorization Expressions

Action authorization expressions (AAEs) are implemented as expressions in the ClassAd

language. At present, there are no configuration file entries affecting AAEs; the user directly

includes expressions in their submit file:

+ExecutionHostAAE = ...

The following action authorization expressions are evaluated in the condor_credd process

when a shared secret is retrieved (after the service-specific proxy credential is authenticated):

• ExecutionHostAAE: This expression must evaluate to true and may depend on these

attributes supplied by the condor_credd process based on the contents of the SSPC:

– ExecutionHost: This is set to the distinguished name (DN) from the service

certificate of the process which issued the SSPC. Note that this service certifi-

cate’s certificate chain is checked for validity and must originate with a CA root

certificate explicitly trusted by the condor_credd process.

– ExecutionHostIssuer: This is set to the DN of the issuer of the service certificate.

• AccessAAE: This expression must evaluate to true and may depend on the CreddAccess

attribute which is set by the condor_credd process to “get”.

The fields implemented here are a subset of the fields that could be extracted from the

service-specific proxy certificate or populated by the condor_credd. Additional fields could

easily be defined as use cases arise.
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6.4 Service-Specific Proxy Credentials

The service-specific proxy credential is a regular proxy certificate with additional infor-

mation in the policy field. This additional information takes the form of a signed ClassAd.

The policy ClassAd contains the following attributes:

• ProxyPublicKey: The public key of the proxy containing the policy.

• Assertion: The text of the assertion is: “Private key associated with ProxyPublicKey

is present on signing host.”

• HostCertificate: The certificate chain of the signing host.

This ClassAd is signed using the private key of the WN on which the job is to be run.

This private key corresponds to the one in the HostCertificate field.

To simplify the implementation, this ClassAd is re-delegated on the WN: instead of

being assembled and signed by the proxy certificate on the scheduler preceding the WN in

the delegation chain, a normal delegation step occurs between the scheduler and the WN,

followed by a re-delegation step on the WN.

In order to perform the authentication step for an SSPC chain, the certificate chain and

policy it contains is converted after verification into a certificate chain object. In particular,

this object contains the SSPC policy and the TSPC policy.

A number of steps occur to check the validity of the credential chain:

• The chain is checked for validity.

• The job ClassAd signature is checked as described above.

• The TSPC is checked as described above.

• The SSPC is checked as follows.

To check the SSPC, the verifier:
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• Extracts the policy from the SSPC. This policy is a signed ClassAd we’ll call the Host

Assertion ClassAd (HAC).

• Checks the signature on the HAC.

• Verifies that the public key in the ProxyPublicKey field is the same as the enclosing

proxy certificate.

• Checks the certificate chain on the HostCertificate.

• Matches the HostCertificate to the signature on the HAC.

• Checks that the assertion is the appropriate string: “Private key associated with Prox-

yPublicKey is present on signing host.”

6.5 Confidential Data and the Secure Key Storage Service

Given the infrastructure described above, the basic implementation of confidential tasks

is relatively straightforward.

• The confidential data is encrypted by the user before the job is submitted.

• The job itself is a wrapper script that first obtains the key from the condor_credd

using the SSPC.

• The job then decrypts the encrypted data and runs the “real” job.

• After completing the “real” job, the wrapper encrypts any sensitive data before exiting.

The secure key storage service, the condor_credd is a simple daemon that verifies TSPC

and SSPC certificate chains. Keys are stored in a simple hash table indexed by the SHA1

sum of the TSPC. Only SSPC credential chains with valid SSPC credentials are authorized to

attempt to get secret keys. Instead of requesting a secret key by index directly, the requester

just authenticates and requests a secret key. The condor_credd indexes by calculating the

SHA1 sum of the TSPC in the credential chain, and returns the
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Chapter 7

Performance Analysis

7.1 Introduction

For the security mechanisms described in this thesis to be useful, they must have a min-

imal negative (if not positive) effect on performance, and their performance characteristics

must be well understood. To show how the security mechanisms affect the performance of

Condor, we measure and compare the performance of Condor with and without the mecha-

nisms in place, vary the combinations of mechanisms, and vary the configuration of Condor

and the tasks we submit in testing. We conclude that the performance effect of these mech-

anisms can be positive, and when negative, is generally small.

Since the mechanisms are based on established cryptographic techniques such as digital

signatures, cryptographic hashing and encryption based on well studied standards such as

RSA, AES, MD5, and X.509, the analysis is based on measuring actual performance of the

Condor system submitting and running real jobs. Unsurprisingly, mechanisms based on

digital signatures, hashing and encryption scale in a manner that is roughly linear in the size

of the input; this is unsurprising because this is the behavior of the underlying cryptographic

primitives. The point of the analysis is to provide engineers with guidelines for forecasting

the actual performance impact of adopting these mechanisms in working systems relative to

the other components of the working system.

The performance analysis described in this chapter consists of three distinct sets of com-

parisons.
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In the first, the operations of the components of Condor into which the security mecha-

nisms are integrated are measured in detail. The operations of the security mechanisms are

isolated from the rest of the operations of the daemons, and the amount of time each stage

takes is shown while varying job characteristics, security mechanism settings, and framework

components. This permits a direct comparison of performance of the framework and non-

framework operations and how both are affected by various changes. In addition to showing

the performance of the framework within each component, this comparison shows exactly

where in the system the security mechanisms are implemented.

In the second, key characteristics of the workload, input size and job runtime, are varied

and the comparison is performed between the range of security framework options. The key

measurement here is the total amount of time spent processing the job from start to finish (the

time spent in queueing is omitted). This permits, for example, a direct comparison between

the time spent processing a 30 second job with 1 MB input data with full confidentiality

turned on vs. just signatures.

In the third, the performance of a component central to the scalability of the Condor

infrastructure, condor_collector, is measured under load. This component can become a

bottleneck in certain situations. Two approaches to addressing this bottleneck are described,

one based on signed ClassAds, and the advantages and disadvantages of each approach,

including performance, are discussed.

7.2 Phases of Execution

To measure performance, we added timestamps using gettimeofday to the Condor code

at the points where our security mechanisms are implemented. To minimize skew resulting

from the overhead of making this system call, we ensure that whenever we directly compare a

span of time between two different configurations, in each span, the same number of calls to

gettimeofday are performed. Each measurement we show is averaged over a large number

of invocations. Performance was measured on a Linux system with an Intel Core 2 Duo CPU

and Seagate ST3500630AS disk, running 64-bit CentOS 5.3.
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Timestamps were recorded at the beginning and ends of the following spans in (and

associated with) condor_submit:

1. from the invocation of condor_submit to when the process exits, including:

(a) when encryption is turned on, a wrapper for condor_submit encrypts the input

data

(b) condor_submit authenticates to the scheduler and obtain a job identifier

(c) hashing of the executable and other input data to be transferred

(d) signing the job classad

(e) creating the task-specific proxy certificate (TSPC)

(f) preparing the secret

(g) authenticating before transmitting the secret to the condor_credd

(h) completing the transaction with the condor_credd

(i) authenticating to condor_submit with the TSPC

(j) when proxy delegation occurs between condor_submit and condor_schedd

The following figures show the run times of the stages described above for condor_submit.

In Figure 7.1, the timing for both framework and non-framework stages are shown compar-

ing three different executables of different sizes. The bar graph at the top permits direct

comparison of each of the stages; note that the hashing phase in particular increases roughly

linearly with the size of the input and that the time taken to perform the framework stages

is not large compared to the other stages. The horizontal stacked bar graph on the bottom

shows a different perspective on the same data; the stages are shown laid end-to-end.

In Figure 7.2, the same chart type is used to show how the lengths of the stages vary

when different authentication methods are used.

Figure 7.3 shows how the lengths of the stages vary when different framework mechanisms

are employed.
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Stages of condor_submit, varying executable sizes
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Figure 7.1 Stages of condor_submit, comparing executable sizes. Three different
executable sizes are shown. The first executable, leftmost on the upper chart and lowest on
the lower chart, is a small script, 60 bytes. The second is a 12 MB binary, and the third is

a 24 MB binary
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Stages of condor_submit, varying authentication methods
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Figure 7.2 Stages of condor_submit, differing authentication methods. Three
different authentication methods are shown. The methods compared are password, GSI,

and the full framework including TSPC and secret sharing
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Stages of condor_submit, varying framework mechanisms
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Figure 7.3 Stages of condor_submit, differing framework components. Three
different framework components are shown. Hashing and signing is shown leftmost and

lowest, followed by TSPC and then full secret sharing to support encryption.
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Within condor_starter, timestamps were recorded at the beginning and end of the

following spans:

1. from the invocation of condor_starter to when the process exits, including:

(a) verifying the signed ClassAd

(b) checking the TSPC

(c) running the job

(d) checksumming the output data

(e) signing the receipt

Within condor_credd, timestamps were recorded at the beginning and end of the fol-

lowing spans:

1. the store session, including:

(a) authenticating to begin the store session

(b) the full store session: storing the TSPC and the secret

2. the get session, including:

(a) authenticating to begin the get session

(b) checking the SSPC

(c) evaluating the AAE

7.3 The Effect of Job Run Time and Input Size

The previous section shows where within Condor overhead from the security framework

occurs. This section quantifies the overhead relative to the factors that affect it most:

the framework mechanisms used, the amount of data involved, and the duration of the

computation performed on the data.
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We compute the overhead by calculating the time it takes to submit and start jobs and

the portion of time spent in the spans described above which comprise the the framework

mechanisms. The overhead is calculated as the portion of the total spent in framework

mechanisms.

To show the effect of a large range of data sizes in Figure 7.4, we measured the overhead

when transferring input data from 1 B to 512 MB, doubling the amount each time, so that

the X axis is log-scale. Each of the six graphs shows a different job run time. The log-scale X

axis shows the amount of input data (including the executable) for the computation and the

Y axis shows the percentage overhead for each of the framework components. Note that the

run time was simulated and idle run time added after the fact rather than actually executed

since it would have no meaningful effect on the results.

7.4 Authenticated Messages vs. Authenticated Sessions

One of the crucial features of the existing security mechanisms in Condor is that authen-

tication for communications is session based. When Condor daemons and tools authenticate,

they exchange a session key which is used for the rest of the communication between the dae-

mons. This is advantageous in situations where communications between daemons involves

transferring a large quantity of data, or is likely to resume quickly.

In contrast, authenticated messages are useful when there are many different sources

of messages each of which only needs to send a small number of messages. Instead of

authenticating, exchanging a session key, and then using the session key to provide integrity

guarantees, each message is individually signed, permitting the recipient to identify the

sender.

The condor_collector daemon is one which receives a messages from a large number

of distinct sources: each machine in a Condor pool sends a message to the collector on a

configurable periodic basis. The overhead of authenticating and establishing session keys

limits the rate at which new messages can be received by the collector, and so can limit the

size of the pools.
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Figure 7.4 Relative overhead. The relative overhead for a range of input data sizes and
job run-times.
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Signed ClassAds can be used as authenticated messages. Figure 7.5 shows the rates at

which the collector can process incoming messages using authenticated sessions vs authenti-

cated messages. The X-axis shows the number of client processes supplying ClassAds to the

collector daemon. The Y-axis shows the amount of time between when the processes start

and when they complete. Three configurations are compared: SCA, indicating ClassAds

that have an encrypted component and are signed, but for which there is no authenticated

session communication, GSI, indicating standard GSI authentication including a session key

providing encryption and integrity, and GSI-Thread, in which the same GSI authentication

protocol is employed but multiple threads are used.
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Chapter 8

Security Requirements Analysis

8.1 Introduction

This section analyzes the security of existing distributed batch computing systems by

describing the security requirements of these systems in detail, and comparing the extent to

which a variety of existing systems meet these requirements.

8.1.1 Security Principles and Terminology

This section describes some basic security terminology and gives examples of how these

terms relate to concrete topics in distributed batch computing. In particular, the term

security requirement is defined in terms of other terms that are more clearly defined in

security textbooks.

The operators of a particular system define a policy regarding who can access the system.

To achieve these policy goals they use various mechanisms. Attackers have incentives to pre-

vent these goals from being achieved. Vulnerabilities are ways that attackers can circumvent

the security mechanisms.

Often, the goals that a particular security mechanism is intended to achieve can be cate-

gorized into the overlapping goal areas availability, confidentiality and integrity.The property

of availability is whether or not a particular piece of data can be accessed. So, a mechanism

is said to protect availability if the mechanism can be used to prevent an attack that would

limit a valid user’s attempt to access data he is permitted to access. Similarly, a system

can be said to have a vulnerability affecting confidentiality if a user not permitted to read
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a particular piece of data can do so. Mechanisms protecting integrity are intended to keep

data from being altered.

By tradition, the mechanisms that can be used to achieve these goals are authentication,

authorization, and audit. Authentication is the process of determining who a particular user

or process is; Authorization is the process of determining what a particular user or process

is permitted to do. Authentication and authorization mechanisms can be separate although

they are often combined: a user who can authenticate to the system may be authorized to

do some basic operations, but other operations require additional authorization.

Audit mechanisms behave differently in that they exist so that it is possible to determine

what has happened. For example, if a piece of data has been altered, mechanisms protecting

the integrity of the data have failed. Audit mechanisms provide the system with a way of

determining that the integrity has been violated, so it will not be mistaken for valid data. In

distributed systems security, a great deal of attention has been paid to authentication and

authorization; this thesis emphasizes the value of audit mechanisms.

The security requirements of a system are the set of security policy goals that operators

of a given system might want the system implementation to support through security mech-

anisms. The requirements do not specify how these policies should be implemented, only

that they are likely to be the policy goals of some system operator.

8.1.2 Anonymity, Privacy and Confidentiality

The concepts of anonymity, privacy and confidentiality are related and often confused,

since they can have different definitions in different contexts. In the context of distributed

batch computing systems, we use the following definitions

Anonymity means that a user who submits a job can not be distinctly identified. The user

may have authenticated to some entity, and carry some credential indicating that they have

authenticated but as long as the anonymity property holds, the user can not be distinctly

identified.
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Privacy means that a user who submits a job can not be distinctly identified except by

the authentication system they use to enter the system. They may carry a credential; only

their local authentication system can identify them given this credential.

Finally, confidentiality refers to the secrecy of data that is part of a workflow, not the

identity of the users who submitted that workflow.

8.2 Requirements

This section describes requirements that are relevant to security within the scope of a dis-

tributed batch computing environment, particularly one which spans multiple administrative

domains.

The following requirements are paraphrased from requirements detailed in Broadfoot and

Lowe [25]:

1. Dynamic network: Users, machines, organizations and administrative domains must

be able to come and go from the environment.

2. Single sign-on: Users must be able to authenticate to the system once rather than

re-authenticating with each resource or intermediary they interact with.

3. Interoperation: Components of the system must be able to interoperate with different

organizations that have differing policies.

4. Scalability: The system must support large numbers of users, jobs and resources.

5. Restricted delegation: Users must be able to delegate their access rights to processes

that run on their behalf. Furthermore, users must be able to restrict the access rights

that are delegated.

6. Separation of authentication from authorization: Authentication mechanisms

must be separate from authorization mechanisms because they may occur in different

places at different times.
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7. Revocation: Administrators must be able to revoke user credentials and change access

control policies (both authorization and authentication); In some cases this revocation

must be instant.

8. Confidentiality: Users may have data that they require must not be revealed to other

users or resource or intermediary owners within the system.

9. Privacy: Some users or resources may require that the system not reveal their identity

to other components processing the workflow.

10. Trust relationships: Trust relationships must be explicit to support delegation.

11. Integrity: Integrity of data and code “must be beyond reproach”.

12. Integrity of delegated rights: In addition to integrity of data and code, rights

associated with delegated credentials must not be alterable.

13. Non-repudiation: Users must be able to determine that a resource agreed to run,

or ran, their jobs. Users and resources must be able to determine their rights and

responsibilities with respect to workflow transactions. 1

14. Freshness: System components must be able to determine credential freshness, espe-

cially with respect to authentication and authorization.

In addition to these requirements, I propose the following requirements:

15. Task-specific credentials: Users should be able to link delegated credentials with a

particular task so that the credentials may not be used for other tasks.

16. User-specified access control: Users need ways to express policy requirements

about where their jobs run and how they are handled.
1“Non-repudiation is concerned with the ability to prove that a given entity performed or agreed to

a particular task, even in the face of denial. This is particularly important in e-commerce where money
transactions take place. This is not a security aspect that has been considered in any detail within the grid,
but it will become important as the grid technology matures and is used by applications involving financial
exchanges. If accessing resources starts costing money, then both parties must be assured that the other
fulfills their duty; in cases where one party fails, proof of commitment is necessary to formally resolve the
dispute.” [25]
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17. Attribution and reproducibility: When the validity of some workflow results are

challenged (i.e. because a host or site are found to have been compromised), it may be

necessary to recalculate a subset of the results from the same inputs and verify that

the same results were produced.

18. Minimize trust: The number of processes that users and resources must trust should

be kept to a minimum.

8.3 Delegation Frameworks

This section describes the implementation of security mechanisms in several delegation

frameworks. This list is in no way exhaustive: the focus of study here are systems that sup-

port delegation chaining and thus appropriate for environments with multiple administrative

domains.

8.3.1 Delegation Chaining in DSSA

Gasser and McDermott introduced delegation chaining in the context of Digital’s Dis-

tributed System Security Architecture (DSSA) [43]. Along with Neuman’s work on restricted

proxy delegation [72], this work pioneered certificate-based delegation systems that are com-

mon today. Delegation chains are formed by repeated applications of the following delegation

protocol.

8.3.1.1 Delegation Protocol

In the following protocol, the delegator host Hn, in possession of a valid certificate as-

sociated with credential Cn (perhaps a proxy certificate), representing user U , extends the

delegation chain to a delegate host Hn+1 by issuing a proxy certificate. Note that this pro-

tocol is very similar to that used to form (non proxy) certificate chains as described in

Section 3.5.1.
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1. HostsHn andHn+1 mutually authenticate, using their long-term public key certificates,

and establish a secure channel.

2. Host Hn+1 creates a keypair Cn+1 and retains the private portion. The public portion

is sent to Hn.

3. Hn uses the private portion of Cn to sign a certificate that states that “Cn+1 as Hn+1

for U until T ” (where T is a time period). Hn then transfers this certificate to Hn+1.

If user U ’s certificate is assumed to be C0, the following chain is formed (in the notation

used here, X : Y is interpreted to mean that X signs statement Y ):

C0(U) : C1 as H1 for U until T1

C1 : C2 as H2 for U until T2

C2 : C3 as H3 for U until T3

. . .

Cn−1 : Cn as Hn for U until Tn

In order to authenticate as a delegate of user U , host Hn must present certificates C0

. . .Cn, and demonstrate that it possesses the private portion of Cn.

8.3.1.2 Roles and Restricted Delegation

In addition to the basic delegation protocol, DSSA included a number of refinements

intended to make it more practical and secure. In particular, they define ways that their

mechanisms could be extended to include support for roles and restricted delegation.

Roles in DSSA were simple groups and worked in concert with ACLs stored with the

objects credentials accessed. As a member of a group, a user could specify that a delegated
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credential’s access should be limited to the objects accessible by the group rather than the

complete set of rights granted to the user. This increases the burden on the verifier who must

now determine group membership. Many details of this mechanism were left unspecified.

While Gasser and McDermott argue that roles could meet much of the need for restricted

delegation, they discuss other ways that restricted delegation might be implemented but

conclude that those are impractical given the other characteristics of their system.

8.3.2 Foster

Foster [39] described an early version of GSI which did not support delegation chains

and instead involved direct communication between the user proxy and the resource proxy,

processes that ran in different administrative domains and serve to convey and convert

credentials from one administrative domain to another. As a result, this approach permits

delegation but is limited to only one effective level of delegation. The user proxy uses a

delegated credential signed by the user. When a resource request is issued, the user proxy

uses this credential to authenticate to the resource proxy to obtain access to the remote

resource. If additional services (i.e. access to a second resource) are required by the remote

process, the resource proxy communicates with the user proxy to request that the latter

authenticate directly with the second resource. The user proxy generates a credential that

the first resource can use to access the second.

Foster, et. al. note that this limits scalability, but argue that this limitation is required

in order to permit restricted delegation and prevent user credentials being compromised if a

security breach occurs on a resource.

8.3.3 GSI

Despite this, GSI was extended to support delegation chains [103, 104], and implemented

in the context of the Globus Toolkit. The delegation protocol is substantially the same as

that described by Gasser and McDermott, the key difference being that GSI is based on

X.509 certificates and standardized [104]. To enable restricted delegation, the format for
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proxy certificates was extended to include fields specifying a policy language identifier and

a policy. However, no specific policy language was defined. In practice, the limited lifetime

typically given to proxy certificates acts as the main limit on the usefulness of delegated

credentials.

8.3.4 Condor

Condor (without the additional mechanisms provided by the framework we describe in

this thesis) includes support for delegation chains through the GSI libraries provided by

the Globus Toolkit. In addition to GSI, Condor includes support for a variety of other

authentication mechanisms including Kerberos, but delegation is only supported when using

GSI. Condor’s architecture including security mechanisms is described in Chapter 3.

8.3.5 Our Framework

Our framework extends the delegation mechanisms present in GSI (and Condor) with

the aim of reducing the scope of trust required of users and resources.

8.4 Analysis

In this section, we discuss how mechanisms to meet each of the security requirements

described in Section 8.2 are implemented in the delegation frameworks described in Sec-

tion 8.3. This information is summarized in Table 8.1. The description of each requirement

is repeated here for readability.

1. Dynamic network: Users, machines, organizations and administrative domains must

be able to come and go from the environment.

Each of the frameworks permit users and machines to come and go, however, in the

Gasser, et.al. framework it’s not clear how multiple administrative domains are sup-

ported. Frameworks based on X.509 (all the others) support multiple administrative

domains by having each host and user explicitly list a set of X.509 trust roots.
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Gasser Foster GSI / Condor Condor + Framework

Dynamic Network N/A × × ×

SSO × × × ×

Interoperation N/A × × ×

Scalability N/A – × ×

Restricted Delegation – – – ×

Auth-N v. Auth-Z × × × ×

Revocation × – – –

Confidentiality – – – ×

Privacy – – – –

Explicit Trust × × – N/A

Integrity – – – ×

Unalterable Rights × × × ×

Non-repudiation – – – ×

Freshness × × × ×

Task-specific credentials – – – ×

User policies – – – ×

Reproducibility – – – ×

Minimize Trust – – – ×

Table 8.1 Security requirements. A comparison of delegation frameworks showing how
they can satisfy security requirements.
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2. Single sign-on: Users must be able to authenticate to the system once rather than

re-authenticating with each resource or intermediary they interact with.

This is a critical requirement for all of the frameworks.

3. Interoperation: Components of the system must be able to interoperate with different

organizations that have differing policies.

Again, it is not clear to what extent the Gasser, et.al. was implemented to support

multiple administrative domains.

4. Scalability: The system must support large numbers of users, jobs and resources.

The scalability of the Gasser, et.al. framework is unclear. The role of the directory

service is not made entirely clear, and the focus of this work is not on batch computing.

In addition, the relative computational cost of cryptographic operations on modern

hardware invalidates to some degree the discussion of scalability in this paper.

Foster, et.al. explicitly describe scalability as one of the issues with their delegation

scheme, due to the requirement that the user proxy handle delegation requests on behalf

of resources, in order to facilitate restricted delegation and limit the consequence of

security breaches revealing delegated credentials.

5. Restricted delegation: Users must be able to delegate their access rights to processes

that run on their behalf. Furthermore, users must be able to restrict the access rights

that are delegated.

Delegation is a fundamental requirement for all of the systems.

Gasser, et.al. discuss restricted delegation and reject it in favor of roles: users who are

members of groups can limit their delegated credentials to the subset of their rights

that are held by a group of which they are a member.

Foster, et.al. implement restricted delegation by limiting delegation chains and placing

the burden of determining whether a resource request should be satisfied on the user



85

proxy process. It is not clear how policy about restricted delegation is specified or en-

forced other than that the “decision” about whether to grant access is the responsibility

of the user proxy.

While restricted delegation is permitted in the GSI framework, there is no standard

policy language and in practice this mechanism is not used. For example, users of

Condor have no way of specifying policy restricting delegation.

In our framework, the delegated credentials are tied to a particular task via task-

specific proxy certificates and restrictions can be expressed using action authorization

expressions in the ClassAd language. Although the range of primitives available in

these expressions is somewhat limited, this range could easily be expanded as needed

in future releases.

6. Separation of authentication from authorization: Authentication mechanisms

must be separate from authorization mechanisms because they may occur in different

places at different times.

In each of the systems authentication is separated from authorization.

In Condor and GSI, efforts to standardize callouts to external authorization mecha-

nisms have been made and partially implemented, for example [41, 42].

7. Revocation: Administrators must be able to revoke user credentials and change access

control policies (both authorization and authentication); In some cases this revocation

must be instant.

Gasser, et.al. include a facility to permit users to revoke credentials immediately by

having each process involved in the delegation chain delete any associated private keys.

This may not meet all needs, however, since credentials must be revoked before any of

the systems holding delegated credentials are compromised.

8. Confidentiality: Users may have data that they require must not be revealed to other

users or resource or intermediary owners within the system.
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Short of Trusted Computing (see Section 9.4), we see no way to prevent systems running

code and processing data from revealing the code and data.

Confidentiality with respect to intermediaries is not a requirement any of the frame-

works but ours. However, by dispensing with intermediaries entirely, Foster, et.al.

could easily achieve confidentiality with respect to intermediaries; however, their stated

requirements explicitly dispensed with the need for confidentiality and their implemen-

tation uses SSL for authentication but not for transport.

9. Privacy: Some users or resources may require that the system not reveal their identity

to other components processing the workflow.

None of these frameworks have attempted to address privacy issues.

10. Trust relationships: Trust relationships must be explicit to support delegation.

In all of the frameworks but ours, trust relationships are either explicit or implicit

(if a process is assumed to be trusted, it is assumed that it will only give data and

credentials to other trusted processes). In our framework, neither explicit nor implicit

trust is required.

11. Integrity: Integrity of data and code “must be beyond reproach”.

Ours is the only framework explicitly providing integrity assurances other than via

point-to-point communications. Foster, et.al., provide integrity assurances for commu-

nications between user proxies and resource proxies because point-to-point communi-

cation is required. However, integrity checking is not explicitly performed other than

during communications.

12. Integrity of delegated rights: In addition to integrity of data and code, rights

associated with delegated credentials must not be alterable.

Each of the systems uses digital signatures to make delegated credentials unalterable.
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13. Non-repudiation: Users must be able to determine that a resource agreed to run,

or ran, their jobs. Users and resources must be able to determine their rights and

responsibilities with respect to workflow transactions.

Ours is the only system where this information is collected, signed, and stored. Receipts

in particular are used to link and record information about the specific results of a

computation and the host on which it was computed. Since this information is recorded

and stored with the results, it can be verified after the fact.

In addition, the signatures on both job and machine ClassAds in our framework provide

a basis for non-repudiation regarding responsibilities that form the basis of a match.

Finally, limitations on the use of credentials and tasks is explicitly included in the

delegation chain and available for resources to check.

14. Freshness: System components must be able to determine credential freshness, espe-

cially with respect to authentication and authorization.

Each of the systems requires loosely synchronized clocks and include time stamps in

delegated credentials limiting their validity periods.

15. Task-specific credentials: Users should be able to link delegated credentials with a

particular task so that the credentials may not be used for other tasks.

Our framework introduces task-specific credentials. Ours is the only system that links

delegated credentials with a specific task and provides a mechanism for enforcing that

link.

16. Attribution and reproducibility: When the validity of some workflow results are

challenged (i.e. because a host or site are found to have been compromised), it may be

necessary to recalculate a subset of the results from the same inputs and verify that the

same results were produced.
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Our framework explicitly records information about not only where a calculation was

performed but can match checksums for input and output data. This could be par-

ticularly valuable in a situation where a complex workflow included tasks that are

questionably valid, because it could limit the amount of recalculation required.

17. Minimize trust: The number of processes that users and resources must trust should

be kept to a minimum.

The goal of our framework is to limit the scope of processes that must be trusted.
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Chapter 9

Related Work

The framework described in this thesis draws on several sources: it extends Condor and

GSI and makes use of cryptographic primitives. Some of these sources are described in

detail in Chapter 3. While the emphasis of that chapter is on the background necessary to

understand our work, this chapter directly relates and contrasts our work to other work in

the recent and current literature.

9.1 Proxy-based Delegation

Proxy-based authorization, including restricted proxies, was first introduced by Gasser

and McDermott [43] and extended by Neuman [72]. Gasser and McDermott described a

system based on public key cryptography that could be used to form delegation chains. This

work is discussed below as well as in Chapter 8.

9.1.1 Restricted Delegation

When a delegation occurs, in the simplest case, the recipient of the delegation can im-

personate the delegator; in other words, any action that the issuing certificate can perform

can also be performed by the issued certificate. Many of the proxy-based authorization sys-

tems include mechanisms that could be used to further restrict the usage of the delegated

credentials.

• Gasser and McDermott mention that their system for using certificates to perform

delegation could include features that would permit restricted delegation but argue
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that their roles system could be used to achieve the same goals. They do not specify

a policy language for restricted delegation

• Neuman introduced the use of proxies as capabilities, permitting the use of hybrids

of capabilities and access control lists, described the use of restricted delegation for

authorization, and emphasized the use of proxies for accounting and audit in addi-

tion to authorization. Although Neuman’s description of proxies includes support for

restricted delegation and a scheme for proxies based on credentials using public-key

encryption, this scheme is not as flexible or powerful as one based on certificates. Neu-

man’s proposed policy language was a collection of typed fields, each field corresponding

to a different restriction.

• The RFC covering proxy certificates [103], is based on work introduced in GSI [39] and

extended to include support for delegation chains [104]. The proxy certificate standard

includes a field for restricting the usage of the certificate according to a policy, leaving

the policy language unspecified. Our framework builds on this foundation by specifying

a policy expression language and interpretation.

9.2 Attribute-Based Authorization

A number of systems use attribute-based authorization [15, 105, 106, 8, 29, 102, 16, 32, 74]

to determine what rights a user has in a Grid environment. These systems assume that the

assertion of the user that they have those rights is insufficient and that they must provide

evidence (or the resource must obtain evidence) that their attempts to access a resource are

authorized by a Virtual Organization (VO), a third party trusted by the resource. These

systems (in particular, CAS [75, 74, 26], VOMS [8, 9], and GridShib [15]) are complimentary

to our approach, because our approach allows the user to specify how the rights granted to

delegatees through these mechanisms should be limited.

Two versions of CAS are described in the literature. In the first version, resources trust

VOs to set policy for their users; users obtain proxy certificates issued by a VO describing
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their rights and use these as capabilities to obtain access to resources [75]. In the second

version, the “authorization assertion” information is embedded in the user’s proxy certificate

in a way similar to how we create a task-specific proxy certificate. Instead of using the policy

field in the proxy certificate, CAS uses a non-critical extension, permitting handling of the

certificate chain by components not aware of the CAS extensions [74]. The authorization

assertion itself is signed by the CAS server acting on behalf of the VO. The authorization

assertion lists the rights granted to the user by the VO and is signed. The authors write that

the assertion is in a proprietary format but that the authors are experimenting with SAML.

The purpose of CAS is to provide the local site administrators for each VO a way to

express policy about group membership and access control for resources. In the original

CAS implementation, capabilities in CAS are issued to “holder,” who impersonates the user.

In the second implementation, capabilities are bound to the proxy delegation chain, but

not to a particular task. In the CAS model, the user’s credential is enhanced rather than

restricted by the capability issued to them. Although the mechanism permits it, it is not

clear that the implementation could be used to limit or restrict delegated credentials – the

user does not appear to have a way of specifying limits on the capability they request.

Similarly, the attribute-based authorization system Virtual Organization Membership

Service (VOMS) permits users who authenticate to a local authority (a VOMS server) to

obtain a (signed) statement detailing their group membership for authorization purposes.

Their delegated credentials will then contain information that may factor in authorization

decisions as their jobs are executed and access resources. This information usually takes the

form of group membership, including any temporal roles than may expand access. This is

very similar to CAS but there are some differences. In CAS, the attributes describe rights

and are in a proprietary format but the VOMS server issues a statement of group membership

in the form of an Attribute Certificate (AC).

Attribute-based authorization more recently has turned toward adopting the federation

model as implemented in GridShib, based on GSI and Shibboleth [15, 88]. This is similar to

previous techniques (CAS and VOMS) in that attributes are included in the proxy delegation
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chain, and differs in the ways standards are used and interoperability is achieved. VOMS

in particular uses a proprietary protocol, server, and assertion format, while GridShib uses

SAML for the assertion format and Shibboleth services and protocols to transfer group

membership information.

9.2.1 On-Demand and Dynamic Delegation

On-demand restricted delegation and dynamic delegation describe systems that delegate

rights to perform actions, which are either not known or not specified when a task is sub-

mitted [5, 4, 95]. Ahsant, et. al., describe a system in which tasks perform “call-backs” to

delegation services to obtain required credentials [4]. This system has the advantage that

since the necessary credentials are obtained at runtime rather than at submission time, the

submitter has the opportunity to disable access once granted. In contrast, in the frame-

work described in this thesis, communication between the WN and another service are not

required to obtain restricted credentials. While it might be argued that this presents a

security risk because the submitter does not have the explicit ability to revoke credentials

(there’s no equivalent to certificate revocation lists for delegation chaining), the framework

includes mechanisms that make revocation unnecessary. Framework task-specific credentials

are already assumed to be in untrusted hands; framework mechanisms handle misuse without

revocation.

The UNICORE model [95] introduces the idea that in an environment where user’s

signature is required to run a job as that user; a server’s signature may be substituted when

explicitly permitted by the recipient. This work is similar to ours in that it describes a

method for digitally signing job descriptions in order to restrict delegation; however, there

is no support for expressing policy in the job description or associating job descriptions with

delegation chains.

The Fuzzy Trust and Delegation Model (FTDM) is a system in which a fuzzy inference

process is used to compute whether delegated access should be permitted [45].
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Jiang, et. al. [53, 52] propose a trust and reputation system for restricted delegation

using attribute certificates. In this system, every time a delegation step is performed, an

attribute certificate is generated which explicitly lists the delegated rights, the holder, and

the issuer. This system differs from ours in that here, restricted delegations occur between

communicating parties, rather than end-to-end; the delegation restrictions are not bound

to either the task description or the delegation chain. The emphasis of this paper is on

calculating trust and reputation metrics.

9.3 Mobile Agent Security

Tasks that move within a distributed batch computing system are similar to mobile

agents.Doug Thain argued persuasively (in the context of Condor) that tasks within dis-

tributed batch computing systems should be represented by agents [99] but this is a different

usage of the term agent. In Thain’s work, the agents are processes that provide services to

jobs in a distributed batch computing system. In the literature of mobile agents, agents are

processes that clone themselves and move around in a distributed system.

Although mobile agents are similar to jobs within a distributed batch computing sys-

tem, the security requirements for mobile agent systems differ significantly from those in

distributed batch computing, primarily because the agents differ in their capabilities and

responsiblities [61, 70]. In a mobile agent system, the agents actually execute on all the

“intermediaries” within the system, while in a distributed batch computing system the jobs

only execute on a specific set of worker nodes. Once jobs complete, they are not expected

to move or run again (obviously Condor’s facilities for checkpointing and migration are an

exception to this statement but the difference here is that with mobile agents, the goal of

the agents is to migrate whereas in Condor it is a side effect).

In a masters thesis and subsequent paper [77, 78], Subhashini Raghunathan describes

the design a mobile agent security system based on GSI that has some similarities to the

framework described in this thesis, but differs as a result of the differences between mobile
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agents and distributed batch computing jobs. Notably, agent code and data is cryptograph-

ically checksummed and included in the proxy delegation chain, and a mechanism exists for

preventing execution on untrusted hosts that is similar to service-specific proxy certificates.

Because of the differences between mobile agents and jobs, there are several mechanisms

described in this thesis that are not present in Raghunathan’s work, including references to

external data in signed ClassAds, action authorization expressions leveraging the ClassAd

language, and confidentiality mechanisms.

9.4 Trusted Computing

Trusted computing (TC) [65, 85, 76, 47, 58, 20, 40] provides one approach to securing

the execution host where jobs run. Our framework assumes that execution hosts are trusted,

but provides no mechanisms for providing trust guarantees. TC can provide assurances

that a particular host or service has not been tampered with, even by users with physical

access to the host. In particular, the Daonity project addresses the use of TC in Grid

computing [64, 63].

9.5 Audit and Provenance

There are similarities between the security requirements for jobs in a distributed batch

computing system and those described in the literature for provenance [93]. Provenance

issues have been explored before in the context of Condor [80, 81]. However, this work does

not address the issues related to secure provenance [48, 50, 49].

One approach to secure provenance within Grid environments is to abstract all Grid

operations as a Service Oriented Architecture (SOA): components take inputs and produce

outputs, and workflows compose these components [98]. In this approach, a p-assertion

is defined as a specific piece of information documenting the action of one component. A

provenance store is a repository holding p-assertions that can perform queries on data prove-

nance and return sets of p-assertions. There are several notable contributions here: access

control for process documentation, a trustworthiness or reputation metric for producers of
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p-assertions. One aspect that is similar to our approach is that services can digitally sign the

results of the work they perform, providing a link between the signer and the signed data.

This is similar to our receipts ; possibly they could be used as p-assertions, or extended to

include p-assertion data.

9.6 Performance

With regard to performance, Shirasuna, et. al. compare message-based security with

session-based security and conclude that the latter is faster [92]. Although this appar-

ently contradicts our performance results that describe a workload where message-based

security (in the form of signed ClassAds) can improve performance, in fact these results

are consistent with ours. Condor already relies extensively on session-based security. The

performance improvements resulting from message-based security described in Chapter 7

apply to a particular component within the distributed infrastructure, a heavily loaded

condor_collector daemon interacting with many different execute machines, and we do

not suggest that session-based security should be scrapped in Condor, merely that it should

be adopted in situations like this where it can improve performance. Furthermore, our system

does not suffer from the performance overheads associated with XML parsing that dominate

their measurements.
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Chapter 10

Conclusions and Future Work

Basic well-understood security mechanisms such as encryption and integrity checks are

not present end-to-end in many distributed batch computing systems. This could lead to

attacks which would bring the validity of many expensive and time-consuming scientific

calculations into question. Furthermore, existing systems don’t offer security mechanisms

that allow the user submitting jobs to specify constraints on how their tasks, data and

credentials may be used.

We have described a framework that addresses many of the risks present in these systems

and permits users to specify policy for their jobs and credentials; we have implemented this

framework and analyzed its performance, and analyzed it in comparison with other systems

providing security for distributed batch computing environments.

This framework provides the following properties:

Task, input, and output integrity and confidentiality: The integrity of task input

and output data is protected from untrustworthy schedulers in the task pathway through

explicit checks on task integrity performed at the endpoints: the WN checks the task ClassAd

it receives from the schedulers against the signed ClassAd contained in the delegation chain,

including any forwarded data or executables, and the submitter checks the signature on

the receipt when the task is complete. A secure key storage service permits end-to-end

confidentiality.

Integrity and confidentiality of data unrelated to the task: Because of the addi-

tional information included in the proxy delegation chain, submitters can explicitly specify
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policy that limits the access the infrastructure has to data unrelated to the task. In addition,

the framework limits access to related data to specific infrastructure components in the task

pathway when they are acting on behalf of the task.

Protection of the operating environment of the worker node: The operating

environment of the WN is protected because it can authenticate the source of tasks it receives

and perform explicit authorization based on the identity of the submitter. The worker node

is able to verify the integrity of tasks it receives, and use the information about task origin

to collect much stronger audit information than is currently possible.

User controllable fine grained authorization: In the system we describe, submitters

have control over the restrictions placed on the usage of delegated credentials. Delegated

credentials can be limited to the set of actions needed to perform a particular task.

Credentials tied to task: The signed ClassAd approach allows users to tightly bind

tasks to credentials when they submit a task as well as to specify restrictions based on task

properties. When a request is made on behalf of a user, the destination of the request can

verify that the request is consistent with the task description and record information about

the task in relevant audit logs and provenance mechanisms. For example, when a task is

running on an execute machine, it may use the accompanying credentials to read or write

files on resources that the user has access to. When these resource requests are made the

signed ClassAd specifying the task must accompany the proxy certificate chain used for

authentication. The resource can record the task information for audit purposes, and use

this information for authorization decisions.

Policy expressions limit credential usage based on participants: Policy in the

signed ClassAd environment is expressed in the ClassAd language. Enforcement of task and

result integrity occurs at the trusted endpoints: the task submitter and WN. Enforcement

of access control for resources is enforced by the resource, given information provided by

the submitting user and the WN. The combination of authorization expressions and service-

specific proxy certificates allows us to ensure confidentiality by limiting access to authorized

holders of the credentials. This is used to implement end-to-end confidentiality.
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In the rest of this chapter, we summarize the framework and its analysis, then discuss

general lessons learned while designing and implementing the framework, and finally outline

directions for future research.

10.1 Summary

To summarize the work presented in this thesis, we summarize the the framework of

security mechanisms we have designed and implemented, then discuss our analysis of how

this framework meets the performance and security requirements present in many distributed

batch computing operating environments.

10.1.1 Framework

Framework components include:

• Signed ClassAds

• Task-specific proxy certificates

• Action authorization expressions

• Service-specific proxy certificates

• Transparent credential transformation

• Key storage service

10.1.2 Performance Analysis

We have analyzed the performance of the framework and found that the overhead asso-

ciated with employing the framework is negligible given reasonable assumptions about job

characteristics. Only when framework mechanisms are provided for large jobs with short run

times do they make an observable impact on total job run-time.
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10.1.3 Security Analysis

Finally, we have analyzed the security features of the framework and compared them

to other implementations. The key requirements addressed by this system that are not

addressed by other implementations include:

• End-to-end confidentiality and integrity.

• User specified policy and restricted delegation.

• Task and service specific credentials.

• Reduced scope of required trust assumptions.

• Non-repudiation, attribution and reproducibility of task inputs and outputs.

10.2 Lessons Learned

In this section, we briefly discuss lessons learned while working on this thesis.

Condor itself is end-to-end, making it particularly well suited for this type of

research. Because distributed batch computing systems perform a wide variety of functions,

including data management, job control, authentication, authorization, etc., they often in-

clude many components. Condor in particular includes more than 100 tools and daemons

in a standard installation, and Condor interoperates with several other systems including

Globus Toolkit, NorduGrid, Unicore, PBS, LSF and Amazon EC2. However, when using

Condor it is quite common to use tools provided with Condor for all of these functions so

that your jobs and data are handled by Condor exclusively.

Condor’s internal libraries include ClassAds, described in Chapter 3, DaemonCore, used

to manage the event loop for daemon processes and by tools and daemons to communicate,

and CEDAR, used to perform security negotiation for authentication and authorization, for

message integrity and encryption and wrapping network communications. These libraries are

used pervasively within the Condor code base, so features implemented in them can easily

be used within any of the many tools and daemons.
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Without such a tightly coordinated centrally organized code base, it would have been

much more difficult to implement many of the framework mechanisms described in this

thesis.

Security features in Grid computing have not been driven by active attackers.

In hindsight, many of the security mechanisms described in this thesis are sensible adapta-

tions of existing state of the art for simpler scenarios (such as client-server communications)

to the more complex distributed batch computing environment. So why is so much of the

research and development in Grid computing focused on authentication and authorization

at the expense of basic mechanisms like end-to-end integrity checks and secure audit mecha-

nisms? We are of the opinion that this is because much of the feature development has been

driven by integration and interoperation goals rather than actual attacks revealing security

flaws.

This may change as commoditization of computing infrastructure occurs (i.e. “Cloud

computing.”) Attackers may find that once they become familiar with the complexities of

distributed batch computing software, in many installations they find an open window next

to a locked door. We applaud efforts such as the work of Kupsch and Miller [60, 59] to

analyze the security of these systems with a vulnerability assessment approach and look

forward to more effort in this area.

Retrofitting security is a necessary activity. One of the standard design principles

for security is to, “include security in design from the start.” [23] While this is certainly a good

idea, there are many systems, such as Condor, that are being used in ways their designers

never intended, ways that result in different security concerns than were considered when

they were designed. As a result, it is necessary to adapt these systems to include security

mechanisms that will satisfy new security requirements: retrofitting security. When new

business models and innovations in technology drive change in complex software, retrofitting

for security is almost certain to be required.
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However, this retrofitting can not take the form of simply adding security features without

consideration of the design and usage of the system as a whole – instead the mechanisms

that are added must anticipate and defend against weak points in the system as a whole.

Adding security to a system can make it useful in a wider range of contexts.

Tying together the themes of this section, we have found that it is possible to retrofit security

features into Condor because it has a tightly coordinated centrally organized code base. We

have tried to approach this effort as a redesign rather than simply adding security features,

and by anticipating the ways that potential attackers might find weaknesses in the whole

system.

We believe that by adding our framework of mechanisms, we have extended the range of

contexts in which Condor can be a useful tool. Specifically, by shifting the burden of trust

away from job intermediaries, we hope to facilitate sharing between administrative domains

that could not previously interoperate.

In science, business, among information technology professionals as well as among the

general public, security is often viewed as a barrier to “getting work done” rather than as a

facilitator.1 In fact this view is held by many computer scientists including researchers and

developers specifically focused on distributed batch computing. Upon reflection, it seems

quite obvious that the opposite is true: without appropriately designed and implemented

security infrastructure, security requirements would prevent much of the internet from being

useful.

10.3 Future Work

In this section, we outline various directions for additional research related to the security

framework described in this thesis. We discuss first connections to secure provenance, then

describe ways that the authentication and authorization infrastructure in Condor could be
1For example, in the popular comic strip Dilbert, by Scott Adams, the security administrator character

Mordac’s title is “Preventer of Information Services.” As he says in one strip, “Security is more important
than usability. In a perfect world, no one would be able to use anything.”
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extended to be purely message-based. Finally we discuss ways that this work could be

extended to work in additional environments, both within Condor as well as beyond Condor.

10.3.1 Message based authentication

Many messages exchanged by processes in Condor take the form of ClassAds. In par-

ticular, the condor_collector process receives ClassAds from all processes. Our work on

performance described in Chapter 7 shows that message based authentication can provide

performance improvements in the common case where many condor_startd processes are

sending updates to condor_collector at the same time. There may be other components

within the Condor system that could also take advantage of this approach.

In addition to providing performance benefits in situations where many processes are

communicating simultaneously, this approach could also provide benefits by making the

transport mechanism more flexible. For example, many organizations permit access to ser-

vices via HTTP but not other protocols; message based authentication could be used to

encapsulate regular Condor communications within HTTP.

In the present implementation, this would only be appropriate for communications where

integrity is required but not confidentiality; but security analysis may show that there are

situations where this is acceptable (as in the case of condor_startd processes) or additional

mechanisms may be employed to permit confidentiality. In order to implement this, the basic

mechanisms that are used to perform communications within Condor (the CEDAR libraries)

would need to be restructured or expanded.

10.3.2 Integration with Glide-Ins

One interesting area of research for security within Condor is in the case of Glide-Ins [100,

21]. Glide-Ins are a technique for creating dynamic Condor pools using arbitrary scheduling

technology by running Condor daemons on top of other systems. When a Condor Glide-In

is deployed as a job, it runs on some resource, and then connects by prior arrangement to

an external Condor pool advertising itself as a resource capable of running Condor jobs.
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Extending our work to this scenario would not be trivial; in the framework described

in this thesis (specifically service-specific proxy certificates), we assume that the Condor

daemons running on the remote resource have access to the host key (implying that they

run as root). In order to grant this level of access, a trusted process would need to manage

both the job and the glide-in. One candidate for this would be gLExec [91].

10.3.3 Secure provenance

Future efforts to develop systems providing secure provenance could take advantage of

the information describing jobs and input and output data contained in signed ClassAds,

including cryptographic checksums, as a basis for records describing the process of calculating

a particular result.

Provenance records have been used for many years in archives, art, and archaeology to

list the ownership history of an item and the actions performed on it. More recently, the

technique has been applied to modifications of digital documents, including work scheduled

and managed by Condor [81]. Secure provenance extends this trend by making provenance

records robust against attackers who have access to a provenance chain and want to alter it

inappropriately [48, 50, 49].

The process of signing a ClassAd for submission, or of signing a receipt for return, involves

a principal signing a hash of a document, as does the process for creating signature-based

checksums in Secure Provenance [49]. This connection could be explored more fully.
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