
Preprint 0 (2001) ?–? 1

Multiple Bypass:

Interposition Agents for Distributed Computing

(Preprint Version)

Douglas Thain and Miron Livny

University of Wisconsin

Computer Sciences Department

1210 W. Dayton St. Madison WI 53703

{thain,miron}@cs.wisc.edu

Interposition agents are a well-known device for attaching legacy applications to distributed systems. How-

ever, agents are difficult to build and are often large, monolithic pieces of software which are suited only to

limited applications or systems. We solve this problem with Bypass, a language and a tool for quickly building

multiple small agents that can be combined together to create powerful yet manageable software.

1. Introduction

A wide variety of distributed systems can send a

user’s applications to computers spread around the

world. However, an application may not be able to

run correctly on every system that it can access.

The system may not provide the interface that

that the program expects. For example, metacom-

puting systems such as Globus [6] and Legion [8]

provide extensive capabilities but generally require

applications to be re-written to take advantage of

their systems. An application written to a stan-

dard interface, such as POSIX [10], cannot make

full use of these facilities.

The system might provide the correct interface,

but might not have the correct resources. For ex-

ample, a matchmaking system such as Condor [14]

might match an application in North America to

a compatible computer in Europe. Although the

application and the system use the same interface,

the system is not likely to have the application’s

needed data files or even have a userid with which

to represent the remote user.

Such problems are solved in Condor and other

Standard LibraryStandard Library

Application

(via RPC)
Shadow Process

Home Machine Remote Machine

Interposition Agent

Figure 1. Split Execution

systems by an interposition agent [12], or agent for

short. An agent can place itself between an appli-

cation and the operating system and trap some of

its procedure calls. The agent might transform the

application’s calls to a new interface, or it might

find an indirect way of computing the correct re-

sults. A common technique is to send trapped calls

to a shadow process on the user’s home machine,

which can compute the correct results based on the

user’s home environment. A system involving an

application, agent, and shadow is known as a split

execution system and is shown in figure 1.

2

The design of split execution systems is an open

research issue. For example, data may be lazily

or aggressively cached between an agent and the

shadow. Policy decisions regarding call routing

may be implemented at the shadow, the agent, or

explicitly within the user program. Both the agent

and the shadow may be given complex mechanisms

for servicing an application’s system calls.

The construction of the agents themselves is

hard. The mechanism for implementing an agent is

sensitive to the domain of applications to be used.

Current agents often combine unrelated facilities,

yielding overly restrictive systems. Agents are dif-

ficult to specify in a portable manner. Semantics

for combining agents are not well defined.

In this paper, we present Bypass, a tool for

quickly building split execution systems. Bypass

does not implement one particular system, but is a

framework upon which many different split execu-

tion systems can be built. Bypass is also capable of

building standalone agents that may be combined

together to form more complex systems.

We have several contributions to previous work.

We present a simple language for specifying agents

and shadows independent of implementation mech-

anisms. We use an interposition mechanism that is

suitable to our problem domain – distributed sys-

tems. We propose rules governing the composition

of multiple agents. Finally, we illustrate and justify

our rules using practical examples.

This is an extended version of an earlier publi-

cation [2]. In this paper, we repeat the introduc-

tory material, but give more extensive examples

and describe an improved mechanism for layering

multiple agents. Our measurements use the same

methodology, but are repeated on the new soft-

ware, yielding slightly different results.

2. Goals

We envison a system where the programmer

writes a simple specification of a split execution

system merely in terms of the calls to be trapped

and the action to be taken. The system should

hide all of the ugly implementation details and be

able to produce code for a wide variety of systems.

Our goals for this system are:

1. Allow splitting of unmodified applications. There

are a wide variety of applications already writ-

ten for the POSIX interface. Very few users

are willing to rewrite their applications to take

advantage of specialized distributed comput-

ing interfaces: they may be unwilling to invest

valuable time in exchange for unknown ben-

efits, they may be unable to modify a com-

mercial application, or they may simply not

have the knowledge to rewrite an application.

Tools must work with existing, untouched, ex-

ecutable programs.

2. Allow dissimilar systems to interact. In order

to harness the maximum number of worker ma-

chines for a large distributed computation, one

must be willing and able to harness machines of

varying architectures and operating systems.

Tools must form a translating layer that allows

inter-operation between software components

on dissimilar machines.

3. Separate the programmer’s intent from the nec-

essary mechanism. We will show that trapping

procedure calls involves knowledge of unpleas-

ant implementation details. The programmer

is not interested in creating or dealing with this

knowledge for every new program. Further-

more, there are multiple ways of trapping pro-

cedure calls, each with their own benefits and

drawbacks. A tool should not require the pro-

grammer to mix implementation details with

the specification of an agent.

4. Incur minimal overhead. We expect that this

tool will allow the programmer to attach a va-

riety of (possibly slow) mechanisms to a pro-

gram. However, the trapping mechanism itself

should not have undue overhead.

3

3. Difficulties

Speaking from the experience of developing the

Condor system, we assert that hand-coding split

execution systems is hard. Trapping a few system

calls on one particular operating system is easy,

but trapping all of the system calls, passing them

between dissimilar machines, and porting the soft-

ware to a wide variety of platforms involves coming

to terms with the following difficulties:

1. Obscured interfaces. For example, the POSIX

stat system call returns summary informa-

tion about a file. The structure returned by

stat has changed as architectures have moved

from 16 to 32 to 64 bits. As a result, the

stat defined in most standard libraries as-

sumes an obsolete definition of the structure.

Recent programs that appear to use stat at

the source level are actually redirected, by way

of a macro or inline function, to a system call

often named fxstat. A program intending

to trap stat must actually trap several differ-

ent entry points and manage several different

structures.

2. Varied implementations. For example, socket

is a well-known library interface for creating a

communication channel. However, several sys-

tems do not implement socket by invoking a

matching socket system call. Some systems

implement it as open on a special file, followed

by an ioctl. Others implement it as a call

to so socket, whose additional arguments and

semantics are undocumented. A program in-

dending to trap socket and pass it between

different systems must be able to trap the ac-

tual procedure call, and not the corresponding

system calls, whatever they may be.

3. Binary incompatibilities. For example, most

varieties of UNIX conform to source-level stan-

dards such as POSIX. These standards require

that certain types, symbols, and structure el-

ements be defined at the C source level, but

do not specify implementation details such as

OSF/1 4.0 Linux 2.2 Solaris 2.6

Alpha Intel Intel

Size of 8 bytes 4 bytes 4 bytes

off t

int, int, int,

Arguments void *, void *, void *,

to send unsigned, int, unsigned,

int unsigned int

Value of 0x200 0x040 0x100

O CREAT

Elements in

struct 5 6 5

utsname

Figure 2. Binary Incompatibilities

the number of bytes in a type, the actual value

assigned to a symbol, the concrete types ex-

pected by an interface, or the number and or-

dering of elements in a structure. Figure 2 lists

examples of these binary differences on three

platforms supported by Condor.

4. Bypass

Bypass is our first implementation of these ideas.

Bypass reads a platform-independent specification

file and produces source code for an agent and a

shadow. The agent is compiled into a dynamic li-

brary and the shadow is compiled as a standalone

executable. The agent can be easily linked into

an existing application at run-time, yielding a pro-

gram prepared for split execution. Bypass hides

many of the difficulties described above, allowing

the programmer to concentrate on larger issues.

4.1. Language

The language accepted by Bypass is very similar

to C: it is simply a list of procedure declarations.

Each procedure to be trapped is named along with

its parameters and types, followed by two code

blocks: one for the code to be executed at the

agent, and one for the code to be executed at the

shadow. Any necessary headers, helper functions,

4

or variables may be placed in a prologue above the

declarations.

Pointers in C are ambiguous, so pointer argu-

ments must be annotated with keywords that ce-

ment their meaning. This is necessary if the imple-

mentation of the agent is such that a callee is ex-

ecuted in a different address space than the caller.

Currently, this is only used when calls are sent to

a shadow process for execution.

When an application invokes a trapped proce-

dure, the code block of the named procedure in

the agent is executed. This block may contain any

arbitrary C code, including calls to the trapped

procedures themselves. Such calls appear to be re-

cursive, but in fact refer to the original definition.

The precise rules for binding names to procedures

are a little tricky and are described below in section

4.2.

When building agents, it is typical, but not re-

quired, to invoke the original procedure within the

agent action. An action may also invoke other

trapped procedure calls, or it may compute a value

and return without invoking any other procedures

at all.

Instead of giving an exhaustive definition of the

Bypass language, we will illustrate it with three ex-

amples. These examples are complete agents that

may be compiled and used with real programs. Al-

though they are not very complex by themselves,

they may be combined into a meaningful remote

execution system.

We will assume the agents are all applied to an

application shown in figure 3. This application

makes use of a number of POSIX functions found in

a standard library. Each reference to a procedure

name normally invokes the definition found in the

standard library. This binding is indicated by an

arrow running from the application to a definition

in the library. As we add agents, these bindings

will change.

4.1.1. Remote I/O

Our first example is a simple remote I/O system.

This agent traps operations performed on the stan-

Application Layer

open exitclosewriteread

Standard Library Layer

Figure 3. Unmodified Application

ssize_t read(int fd,

out opaque "length" void *data,

size_t length)

agent_action

{{

if(fd<3) {

return bypass_shadow_read(fd, data, length);

} else {

return read(fd, data, length);

}

}};

shadow_action

{{

return read(fd, data, length);

}};

ssize_t write(int fd,

in opaque "length" const void *data,

size_t length)

agent_action

{{

if(fd<3) {

return bypass_shadow_write(fd, data, length);

} else {

return write(fd, data, length);

}

}}

shadow_action

{{

return write(fd, data, length);

}};

Figure 4. Agent for Remote I/O

dard input, output, and error streams, and sends

them to the shadow on the home machine for exe-

cution. Other operations are passed through to the

standard library without modification. The net ef-

fect is to leave file I/O untouched, while sending

logging and error output back to the home envi-

ronment for monitoring by the user.

Figure 4 shows the Bypass source code for this

system. Two declarations are provided: one for

5

agent_prologue

{{

static int bytes_read=0;

static int bytes_written=0;

}};

ssize_t read(int fd,

out opaque "length" void *data,

size_t length)

agent_action

{{

int result;

result = read(fd,data,length);

if(result>0) bytes_read+=result;

return result;

}};

ssize_t write(int fd,

in opaque "length" const void *data,

size_t length)

agent_action

{{

int result;

result = write(fd,data,length);

if(result>0) bytes_written+=result;

return result;

}};

void exit(int status)

agent_action

{{

printf("%d bytes read, %d written\n",

bytes_read, bytes_written);

exit(status);

}};

Figure 5. Agent for Measuring I/O

agent_prologue

{{

extern "C" {

@include "globus_common.h"

@include "globus_gass_file.h"

}

}};

int open(in string const char *path, int flags, int mode)

agent_action

{{

globus_module_activate(GLOBUS_GASS_FILE_MODULE);

return globus_gass_open(path, flags, mode);

}};

int close(int fd)

agent_action

{{

return globus_gass_close(fd);

}};

Figure 6. Agent for Attaching GASS

read and one for write. For each, parameters are

declared in a manner similar to C. The second ar-

gument for each points to data to be transferred

and so is labelled with in or out, corresponding

to the direction of data flow, followed by opaque

"length" indicating the kind and amount of data

to be transferred. The quoted value may be any

valid C expression that can be evaluated at run-

time to yield the number of bytes to transfer. In

this case, the exact number is given by the third

argument, named length.

Two procedure bodies follow, one for the agent,

and one for the shadow. The bodies may contain

any arbitrary C code, including references to the

original procedures, or to the RPC routines, which

are prefixed with bypass shadow. In this case, the

body considers the value of the file descriptor. If

it is less than three, it refers to a standard stream,

so the RPC is performed, otherwise the original

procedure is invoked.

4.1.2. Measuring I/O

Not all agents are necessarily paired with a

shadow. A number of useful tasks can be per-

formed without invoking any RPCs. Bypass can

also create such standalone agents using the same

language.

Accurately measuring program behavior is criti-

cal to designing appropriate distributed systems.

A standalone agent for measuring the I/O per-

formed by an application is shown in figure 5. It

traps the read and write procedures, invokes the

original versions, and then records how many bytes

were transferred before returning control to the ap-

plication. When the application calls exit, the

agent prints a short message summarizing the I/O

activity. Procedures not defined by the agent, such

as open and close, are passed through to the stan-

dard library below.

4.1.3. Attaching a Filesystem

Deploying a new distributed filesystem is a dif-

ficult matter. Most filesystems are implemented

as elements of an operating system kernel so as to

6

be transparently available to all processes. How-

ever, kernel code is generally not portable and a

kernel makes for a difficult development and de-

bugging environment. Furthermore, users of the

system must have administrator privileges on each

machine they wish to use the new filesystem on.

An alternative is to implement a filesystem at

the user level. This is attractive, especially in dis-

tributed systems, because user-level code is much

easier to port to multiple systems and can be ap-

plied by nearly any user, regardless of privileges.

However, attaching a user level filesystem to an

application may require re-writing or re-compiling

the application, which is not an acceptable solution

for reasons given above.

This problem can be solved by building an agent

which translates standard I/O operations into their

equivalents in a user-level filesystem. In this man-

ner, any application can take advantage of the new

system, but no special privileges are required to do

so.

An example of a user-level file system is Global

Access to Secondary Storage (GASS) [4]. This is

a library with two entry points, globus gass open

and globus gass close, which have the same sig-

nature as POSIX open and close. If an ordinary

filename is opened using this library, the two pro-

cedures will simply call open and close. However,

if the filename specifies a distributed resource, the

library will make a local copy of the file and re-

turn a file descriptor pointing to the local copy.

A number of features, such as caching and strong

authentication, are pleasant side effects.

A very simple agent can attach GASS to an

arbitrary application. The agent must simply

trap open and close and then invoke either

globus gass open or globus gass close with the

same arguments. This agent is depicted in figure 6.

Notice that both open and close make (indirect)

use of many system calls in the library below in

order to implement their complex behavior.

4.2. Semantics

A number of agents may be applied at once to

a single application. The application, agents, and

standard libraries form a stack of software through

which calls percolate. We call each of these soft-

ware elements a layer. In most programming sys-

tems, it is an error to define a procedure multiple

times; with Bypass, each layer may have its own

definition of a symbol. All these definitons can be

a little confusing, so we must establish some rules

to clarify the binding of calls to definitions.

1. A process keeps track of its active layer in a

global variable. A process begins execution

with the top layer active.

2. A call to a trapped procedure name selects the

definition in the layer immediately below the

active layer. If none is present, the next layer

below is searched, and so on.

3. After selecting but before invoking a trapped

procedure, the active layer is lowered to that

of the selected definition. Before returning, the

active layer is restored to its previous value.

4. A call to a non-trapped procedure does not

consult or affect the active layer. Such calls are

bound according to the normal linking policy

of the operating system.

It should be emphasized that these rules bind

names to procedures based on the run-time value

of the active layer variable. The location of a pro-

cedure call is irrelevant to the binding.

To illustrate this, consider the use of printf in

figure 5. printf formats some text and then sends

it to the standard output stream using write.

printf is not trapped by any of the agents, so call-

ing it does not consult or affect the active layer. 1

Which definition of write does printf call? It de-

pends on the layer from which printf itself was

called. If printf is invoked from the application

1 Technically, it is a member of the standard library, but

because it is not trapped by an agent, it is not logically a

member of that layer.

7

Application Layer

open exitclosewriteread

Standard Library Layer

exitwriteread

Measurement Layer

GASS Layer

open close

Figure 7.

layer, then the write will be bound to the topmost

agent layer. If printf is invoked from the topmost

agent layer, then the write will be bound to the

layer below.

These rules also describe how multiple agents

can be applied to the same program. The layering

of multiple agents is also called composition. In

general, composition is not commutative: the order

in which agents are layered affects their semantics.

Other work [3] has suggested, without defining the

term, that agents may commute if they are disjoint.

We wish to clarify this with an example.

The measurement and GASS layers described

above would appear at first glance to be disjoint.

One only traps read and write, while the other

only traps open and close. However, they may

be layered in one of two ways, yielding distinctly

different systems. The two possibilities are shown

in figures 7 and 8.

In figure 7, the measurement layer is placed

above the GASS layer. If the application invokes

a read or write, it will be measured and then

passed down to the standard library. If an open is

Application Layer

GASS Layer

open close

exitwriteread

Measurement Layer

open exitclosewriteread

Standard Library Layer

Figure 8.

invoked, it passes through the measurement layer

and is trapped by the GASS layer. The imple-

mentation of this call involves all sorts of proce-

dure calls – including reads and writes – which

are passed through to the standard library with-

out measurement. This ordering causes the mea-

surement layer to record the actions attempted by

the application but not any actions taken by layers

below it.

The opposite ordering is shown in figure 8. In

this case, both reads attempted directly by the ap-

plication and indirectly through a call to open are

measured. This ordering causes the measurement

layer to record the operations actually performed

by all of the layers above.

Both arrangements are useful. In a stack of mul-

tiple agents, it would be worthwhile to install one

measurement agent as the topmost, and one as the

bottommost. The topmost measures the activity

of the application independent of the transforming

layers below. The bottommost measures the actual

resources consumed by all of the software above.

8

The GASS and measurement layers would ap-

pear to be disjoint because they trap a disjoint

set of procedures. They are not disjoint because

the GASS layer invokes procedures trapped by the

measurement layer, namely read and write.

The original statement still stands: disjoint

agents may commute. However, we propose that

two agents are only disjoint if the set of procedures

they trap and invoke are disjoint. Because even

simple agents invoke code from other libraries, it

can be difficult to determine whether any two non-

trivial agents are truly disjoint.

Our rules for combining agents are quite strict.

They ensure that a given layer can only be invoked

by layers above and is only capable of invoking lay-

ers below. With strict layering in effect, a measure-

ment layer can successfully determine exactly what

operations are performed by those layers above.

The character of the measurement may be changed

by re-ordering the layers.

Other rules for combining agents are certainly

possible. For example, Mediating Connectors [3]

allows an agent to invoke either an inner or an

outer call. In Bypass parlance, an inner call corre-

sponds to invoking the next layer below, while an

outer call corresponds to re-invoking the procedure

at the topmost layer.

It is not clear if our rules are any more or less

“correct” than others. We note that permitting

outer calls prevents the construction of sensible

measurement layers. If an lower layer may invoke

a layer above, a measurement layer in between will

produce results that are quite difficult to inter-

pret. On the other hand, we can envision situ-

ations where re-invoking a layer above might be

useful. For example, a low-level layer such as a de-

vice driver might invoke a high-level procedure to

produce a dialog box that communicates an error.

4.3. Implementation

Bypass is a pre-processor, much like the tools

lex [13] and yacc [11]. It reads a source file writ-

ten in the language described above, combines it

with a knowledge file describing how to trap cer-

tain calls, and then produces C++ source code for

the corresponding agent and, if necessary, shadow.

The knowledge file encapsulates many of the dif-

ficulties we have outlined above. When the pro-

grammer requests that a particular call be trapped,

the knowledge file details the multiple entry points

to trap and the necessary type conversions needed

to accomplish the programmer’s goal. In addi-

tion, a library is provided which gives canonical

external forms for POSIX constructs, ranging from

the stat structure to the values for flags such as

O CREAT. This allows RPCs to be performed be-

tween systems that implement the standard with

different values. We have concentrated on making

the knowledge file apply to the POSIX interface,

but we know of no technical obstacle to using By-

pass on another interface such as ANSI C functions

or the X Windows library. By varying the knowl-

edge file, we have successfully ported Bypass to

several versions of Linux, Solaris, IRIX, and Digi-

tal Unix.

Each agent is compiled into a shared object

which can easily be inserted into an application

at run time. On most UNIX-like systems, this is

accomplished by setting an environment variable

which is consulted by the dynamic linker. Any

number of agents may be specified in the order, top

to bottom, that they should be layered. The ap-

plication’s standard libraries are implicitly added

to the end of the list. For example, to load our

three example agents on a Linux system, one may

execute:

LD_PRELOAD="measure.so gass.so remoteio.so"

We have selected this mechanism for several rea-

sons. It allows the trapping of procedure calls

that are not necessarily system calls. It can be

used by any user without special privileges or ker-

nel changes. It is a de facto standard across

most UNIX-like systems, discounting some syntac-

tic variations. Finally, it may be used on a wide

variety of existing dynamically linked programs.

This mechanism is well-suited towards use in

9

a distributed system. A user sending programs

around the world via a metacomputing frame-

work cannot reasonably expect all participating

machines to modify their kernels or grant the user

an administrator account. A user with normal

privileges can apply this mechanism without any

help from the owner of a machine.

This mechanism is not suitable for all purposes.

It cannot be used as a security mechanism, because

the application may simply choose to use other pro-

cedures or to invoke system calls directly. It also

cannot operate on statically-linked programs. Such

situations are better handled by binary rewriting

or a kernel-level mechanism.

Each agent defines one public entry point for

each procedure it wants to trap. This entry point

is called a switch: it decides what layer is active ac-

cording to the rules given above, looks up the cor-

rect procedure, and transfers control there. The

agent action for that entry point is placed in a

separate procedure. Each agent also maintains the

complete list of agents and a pointer to the active

layer. The agents rely on the dynamic linker to

provide routines for searching and invoking proce-

dures in shared objects.

When the linker loads a list of agents into an

application, it binds procedure calls in the applica-

tion to the topmost switches in the stack of agents.

This is done according to the linker’s normal rules:

it binds name references to the first available defi-

nition. All others (from the linker’s point of view)

are ignored. Each agent defines a switch for each

of its entry points and code to keep track of active

layer. However, only the topmost agent actually

manages the active layer, any only the topmost

switch for each trapped function are actually used.

This allows the agents to be arranged in any order

at run time, but comes at the cost of some code

duplication.

4.4. Performance

We have constructed a synthetic testing pro-

gram to measure the overhead incurred by Bypass,

independent of its application. The test was run

in six configurations. The results for the first five

are given in figure 9. The testing program simply

invokes each system call a large number of times

in a tight loop. The “open/close” test opens and

closes the same file without any intervening oper-

ations. “stat” returns metadata about a file. “get-

pid” gets the current process identifier. Finally,

reads and writes of one byte and eight kilobytes

are performed to a file. In all cases, the files were

in /tmp and cached in memory so as to avoid any

perturbances due to physical storage.

In the first configuration, the testing program

was run with no interference from Bypass. In the

second, a Bypass agent trapped each system call

and re-invoked it without modification at the for-

eign machine. For example, the specification for

close was:

int close(int fd)

agent_action {{

return close(fd);

}};

In the normal operation of Bypass, the first ref-

erence to a trapped function in an agent requires a

symbol lookup using the system’s dynamic library

manipulation tools. The function pointer is then

cached for later reference. In the second configu-

ration, caching was enabled for normal operation.

The third configuration ran the same tests, but

with caching disabled, thus measuring the actual

cost of an initial lookup. In the fourth configura-

tion, identical agents were layered one by one up to

a total of ten. A linear fit was performed, yielding

a slope which measures the average cost of adding

an agent past the first. In the fifth configuration,

a Bypass agent trapped each system call and sent

it via RPC to a shadow on the same machine to be

executed. For example, the specification for close

was:

int close(int fd)

agent_action {{

return bypass_shadow_close(fd);

}}

shadow_action {{

return close(fd);

10

Execute Execute Cost per

System Unmodified At Agent At Agent Addl. Agent Execute

Call Program (Caching) (No Caching) (Caching) At Shadow

open/close 27.7 36.1 59.7 2.65 914

stat 18.5 24.2 36.6 2.50 621

getpid 2.4 4.5 11.3 1.05 406

read 1 byte 12.0 14.7 27.4 1.27 445

write 1 byte 13.6 18.0 28.4 1.23 463

read 8 KB 53.6 54.1 81.5 1.19 988

write 8 KB 64.6 67.1 81.0 1.26 1019
All times are given in microseconds.

Variance is less than five percent for all entries.

Figure 9. System Call Overhead

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
Ti

m
e

pe
r G

et
pi

d
C

al
l (

us
)

Number of Agents

getpid measurement
fit slope = 1.1 us/agent

Figure 10. Scalability of Layering Agents

}};

In the final configuration, we applied as many

agents as possible to test to limits of layering.

By creating an agent with a one-letter name, we

were able to demonstrate linear behavior trapping

getpid with up to 500 agents, at which point we

reached the maximum length of the preloading en-

vironment variable. The results are shown in figure

10.

In each configuration, the wall clock time was

measured for 100,000 iterations of each system call.

This process was repeated 10 times, giving a mean

and variance. Variance for each measurement was

less than five percent of the mean. The values re-

ported in figure 9 are the means divided by the

number of iterations, yielding the time necessary

for a system call in the given configuration. The

testing machine was a 200 MHz Pentium Pro work-

station with 128 MB of memory and running So-

laris 2.6.

The results meet our goals. Trapping a system

call at the agent is quite fast: the first call to a

trapped procedure takes between 9 to 28 µs, while

later invocations incur only 2 to 5 µs. If multi-

ple agents are layered, calls to deeper layers cost

from 1 to 3 µs. These time variations may be at-

tributed to the varying amount of data to be copied

as parameters, variations due to the name lookups

performed by the dynamic linker, and the miscel-

laneous conversions and extra trapping points pro-

vided by the knowledge file. Sending the system

call via RPC to be executed at the shadow is an

order of magnitude slower, and depends heavily

on the network and application. The programmer

using Bypass can conscientiously use the expensive

remote procedure call when necessary, but does not

pay a significant cost for trapping a system call and

deciding to execute it locally.

Our results are a few microseconds slower than

those given previously [2]. The earlier work only

allowed one agent to be applied at once, so the

slowdown can be attributed to the newer mecha-

nism which manages several agents at once. The

stat test is actually faster, due to an inefficiency

11

discovered and removed from the knowledge file.

5. Related Work

As we have noted, agents may be implemented

in a number of ways. It is interesting to ob-

serve that interposition agents on UNIX-like sys-

tems have generally trapped calls at the kernel in-

terface, while those on Windows systems have gen-

erally trapped at the standard library interface.

The term interposition agent was coined by

Michael Jones [12] to describe a technique for plac-

ing software between a program and the operating

system kernel. This system relied on the Mach fa-

cility to reroute calls to user-level code in the same

process. Jones provides an object-oriented inter-

face to the structures exported by the kernel, such

as pathnames and file descriptors, while most other

systems work in terms of the calls to be trapped.

SLIC [7] is similar in functionality to Bypass,

but uses an interposition mechanism inside the ker-

nel. The mechanism cannot be diverted, and so is

appropriate for the problem domains suggested in

that work: security patches, sandboxing, and en-

cryption. It is not suitable for our problem domain

– distributed systems – for three reasons. First,

it requires superuser privileges to install the (ad-

mittedly small) kernel hooks to support extension.

Second, it does not provide a platform-independent

means of specifying the operation of an agent. Fi-

nally, it does not permit the redirection of proce-

dure calls that are not system calls. We have noted

above that correct split execution requires trapping

plain procedure calls.

The UFO system [1] relies on a kernel facility

to monitor the system calls of one user level pro-

cess from another. This method shares the same

advantages SLIC has over Bypass and additionally

can be used by any user without special privileges.

However, the mechanism incurs a high overhead

(trapped calls are 4-7 times slower) and can only

be applied at the kernel interface.

Bypass shares its title metaphor with Detours

[9], a system for intercepting calls to Windows li-

brary procedures. Detours uses binary rewriting to

intercept the flow of control, and so can be applied

to any sort of program at all. Bypass relies on the

system’s dynamic linker, and thus can only be used

to intercept public, dynamically linked procedures.

The main contribution of Detours is to make the

un-instrumented target function available through

a special mechanism called a trampoline. This is

roughly comparable to the switch in Bypass, al-

though the Detours mechanism is called by a name

distinct from the original entry point. By preserv-

ing the original procedure name, Bypass allows the

use of unmodified utility routines (such as printf)

within an agent.

A similar package, Mediating Connectors [3],

also traps Windows library procedures, but per-

mits the composition of multiple agents. The rules

used by this package are compared with those of

Bypass above in section 4.2.

Remote procedure calls are a standard technique

[5,17,15]. Our facility is similar to other imple-

mentations, but is driven by the need for drop-in

software which works without modifying the target

application. To this end, our specification syntax

relies on annotating existing interfaces instead of

creating new protocols from scratch. Likewise, the

RPC client implicitly configures and connects at

the first use of an RPC routine, using user-supplied

environment variables to select the shadow ad-

dress. Our external data representation is also

quite similar to existing standards [16], but goes

beyond specifying integer size and endianness. To

provide cross-platform operation, we must provide

consistent value semantics by transforming sym-

bolic constants into canonical values.

6. Conclusion and Future Work

Bypass is a general-purpose tool and language

for building split execution systems. We build

upon previous work by providing an implemen-

tation independent language, semantics for com-

bining agents, and an implementation suitable for

distributed computing. There is more work to be

12

done in each of these areas.

The Bypass language allows agents to be speci-

fied without regard to the underlying implementa-

tion. Both trapped and untrapped procedure calls

may be invoked by their original names, thus allow-

ing the use of standard subroutines and libraries

within agents. It would be useful to also express

interposition on signal propagation in the same lan-

guage. This presents several problems:

1. Signals travel up through interposition layers.

2. The semantics for combining signal-trapping

agents are yet undefined.

3. Trapping signals may require trapping all the

various standard procedures that manage the

signal disposition of a process.

We have proposed very strict rules for combining

agents. These prevent complex interactions, allow-

ing the construction of agents that can make use-

ful measurements of calls between layers. However,

less restrictive rules may be needed to implement

certain applications.

Bypass uses library preloading to insert agents.

This is suitable for the purpose of equipping ap-

plications to run correctly in a distributed envi-

ronment. Other mechanisms, such as in-kernel fa-

cilities, are more suitable for implementing a se-

curity policy. We envision a complete distributed

system that includes both: the owner of a machine

might provide a heavy-duty kernel-level sandbox to

protect the machine from a foreign program, while

the owner of a migrating program might provide a

light-weight user level agent to assist the execution

of the program. In this case, the two varieties of

agents may need to negotiate in order to determine

mutually acceptable operations.

Software, manuals, and further information

about Bypass may be downloaded from

http://www.cs.wisc.edu/condor/bypass.

References

[1] Albert Alexandrov, Maximilian Ibel, Klaus Schauser,

and Chris Scheiman. UFO: A personal global file sys-

tem based on user-level extensions to the operating sys-

tem. ACM Transactions on Computer Systems, pages

207–233, August 1998.

[2] Douglas Thain and Miron Livny. Bypass: A tool for

building split execution systems. In Ninth IEEE Sym-

posium on High Performance Distributed Computing,

pages 79–85, August 2000.

[3] Robert Balzer and Neil Goldman. Mediating connec-

tors. In 19th IEEE International Conference on Dis-

tributed Computing Systems, June 1999.

[4] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and

S. Tuecke. GASS: A data movement and access ser-

vice for wide area computing systems. 6th Workshop

on I/O in Parallel and Distributed Systems, May 1999.

[5] Andrew D. Birrell and Bruce Jay Nelson. Implementing

remote procedure calls. ACM Transactions on Com-

puter Systems, 2(1):39–59, Februrary 1984.

[6] I. Foster and C. Kesselman. Globus: A metacomputing

intrastructure toolkit. International Journal of Super-

computer Applications, 11(2):115–128, 1997.

[7] Douglas P. Ghormley, Devid Petrou, Steven H. Ro-

drigues, and Thomas E. Anderson. SLIC: An exten-

sibility system for commodity operating systems. In

USENIX Annual Technical Conference, June 1998.

[8] A.S. Grimshaw, W.A. Wulf, et al. The Legion vision of

a worldwide virtual computer. Communications of the

ACM, 40(1):39–45, January 1997.

[9] Galen Hunt and Doug Brubacher. Detours: Binary in-

terception of Win32 functions. Technical Report MSR-

TR-98-33, Microsoft Research, February 1999.

[10] IEEE/ANSI. Portable operating system interface

(POSIX): Part 1, system application program interface

(API): C language, 1990.

[11] S.C. Johnson. YACC – Yet another compiler-compiler.

Comp. Sci. Tech Rep. 32, Bell Labs, Murray Hill, New

Jersey, July 1975.

[12] Michael B. Jones. Interposition agents: Transparently

interposing user code at the system interface. In Pro-

ceedings of the 14th ACM symposium on operating sys-

tems principles, pages 80–93, 1993.

[13] M.E. Lesk and E. Schmidt. LEX – a lexical analyzer

generator. Comp. Sci. Tech. Rep. 39, Bell Labs, Murray

Hill, New Jersey, 1975.

[14] Michael Litzkow, Miron Livny, and Matthew Mutka.

Condor - a hunter of idle workstations. In Proceed-

ings of the 8th International Conference of Distributed

Computing Systems, June 1988.

[15] R. Srinivasan. RFC-1831: RPC: Remote procedure

call protocol specification version 2. Network Working

Group Requests for Comments, August 1995.

[16] R. Srinivasan. RFC-1832: XDR: External data repre-

13

sentation standard. Network Working Group Requests

for Comments, August 1995.

[17] Sun Microsystems. rpcgen Programming Guide. Sun

Microsystems Inc., Mountain View CA, 1987.

7. Biography

Miron Livny received a B.Sc. degree in physics

and mathematics in 1975 from the Hebrew Uni-

versity and M.Sc. and Ph.D. degrees in computer

science from the Weizmann Institute of Science

in 1978 and 1984, respectively. Since 1983 he

has been on the Computer Sciences Department

faculty at the University of Wisconsin-Madison,

where he is currently a Professor of Computer Sci-

ences. He has been leading the Condor project

since 1986.

Douglas Thain received a B.S. degree in physics

in 1997 from the University of Minnesota-Twin

Cities and a M.S. degree in computer sciences in

1999 at the University of Wisconsin-Madison. He is

currently a Ph.D. student with the Condor project

at UW-Madison and specializes in distributed I/O

systems.

