Adaptive Scheduling for Master-Worker Applications
on the Computational Grid

ElisaHeymann®, Miquel A. Senar", Emilio Luque and Miron Livny 2

1 Unitat d Arquitecturad’ Ordinadorsi Sistemes Operatius
Universitat Autonoma de Barcelona
Barcelona, Spain
{e. heymann, m a.senar, e.luque}@c.uab.es

2Department of Computer Sciences
University of Wisconsin— Madison
Wisconsin, USA
mron@s. w sc. edu

Abstract™. We address the problem of how many workers should be alocated
for executing a distributed application that follows the master-worker paradigm,
and how to assign tasks to workers in order to maximize resource efficiency
and minimize application execution time. We propose a simple but effective
scheduling strategy that dynamically measures the execution times of tasks and
uses this information to dynamicaly adjust the number of workers to achieve a
desirable efficiency, minimizing the impact in loss of speedup. The scheduling
strategy has been implemented using an extended version of MW, a runtime
library that dlows quick and easy development of master-worker computations
on a computational grid. We report on an initial set of experiments that we
have conducted on a Condor pool using our extended verson of MW to
evaluate the effectiveness of the scheduling strategy.

1. Introduction

In the last years, Grid computing [1] has become a red dternative to traditiona
supercomputing environments for developing padld applications that harness
massve computationa resources. However, by its definition, the complexity incurred
in building such pardld Grid-avare gpplications is higher than in traditiond parald
computing environments, Users must address issues such as resource discovery,
heterogendity, fault tolerance and tak scheduling. Thus, severd high-leve
programming frameworks have been proposed to smplify the development of large
pardle applications for Computationd Grids (for instance, Netsolve [2], Nimrod/G
[3], MW [4]).

Severd programming paradigms ae commonly used to develop pardld programs

* This work was supported by the CICYT (contract TIC98-0433) and by the Commission for
Cultural, Educational and Scientific Exchange between the USA and Spain (project 99186).

on digributed clusters, for ingtance, Master-Worker, Single Program Multiple Data
(SPMD), Data Pipdining, Divide and Conquer, and Speculative Paradldism [5]. From
the previoudy mentioned paradigms, the Master-Worker paradigm (dso known as
task farming) is especidly attractive because it can be easly adapted to run on a Grid
platform. The Master-Worker paradigm conssts of two entities a master and multiple
workers. The magter is responsble for decomposing the problem into smal tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the
partia results in order to produce the fina result of the computation. The worker
processes execute in a very smple cycle receive a message from the master with the
next task, process the task, and send back the result to the master. Usudly, the
communication takes place only between the master and the workers a the beginning
and a the end of the processing of each tak. This means that, master-worker
gpplications usudly exhibit a wesk synchronization between the master and the
workers, they ae not communication intensve and they can be run without
sgnificant loss of performance in a Grid environment.

Due to these chaacteridtics, this paradigm can respond quite wel to an
opportunigic environment like the Grid. The number of workers can be adapted
dynamicdly to the number of available resources so that, if new resources appear they
are incorporated as new workers in the application. When a resource is reclamed by
its owner, the task that was computed by the corresponding worker may be
redllocated to another worker.

In evauating a Made-Worker application, two performance measures of
particular interest are speedup and efficiency. Speedup is defined, for each number of
processors n, as the raio of the execution time when executing a program on a single
processor to the execution time when n processors are used. Idedly we would expect
that the larger the number of workers assigned to the application the better the
speedup achieved. Efficiency measures how good is the utilization of the n alocated
processors. It is defined as the ratio of the time that n processors spent doing useful
work to the time those processors would be able to do work. Efficiency will be a
vdue in the intevd [01]. If efficiency is becoming closer to 1 as procesors are
added, we have linear speedup. This is the ided case, where dl the dlocated workers
can be kept usefully busy.

In generd, the peformance of master-worker applications wll depend on the
tempora characterigtics of the taks as wel as on the dynamic dlocation and
scheduling of processors to the agpplication. In this work, we condder the problem of
maximizing the speedup and the efficiency of a mader-worker goplication through
both the dlocation of the number of processors on which it runs and the scheduling of
tasksto workers at runtime.

We address this god by firg proposng a generdized master-worker framework,
which dlows adgptive and reisble management and scheduling of mager-worker
goplications running in a computing environment composed of opportunigtic
resources. Secondly, we propose and evduate experimentdly an adaptive scheduling
srategy that dynamicaly measures application efficiency and task execution times,
and uses this information to dynamicaly adjust the number of processors and to
control the assignment of tasks to workers.

The rest of the paper is organized as follows. Section 2 reviews related work in
which the scheduling of magter-worker applications on Grid environments was

dudied. Section 3 presents the generdized Magter-Worker paradigm. Section 4
presents a definition of the scheduling problem and outlines our adaptive scheduling
srategy for master-worker applications. Section 5 desxribes the prototype
implementation of the scheduling strategy and section 6 shows some experimentd
data obtained when the proposed scheduling strategy was applied to some synthetic
goplications on a red grid environment. Section 7 summarizes the main reults
presented in this paper and outlines our future research directions.

2. Related Work

One group of dudies has conddered the problem of scheduling maester-worker
goplications with a sngle set of tasks on computationd grids. They include AppLeS
[6], NetSolve[7] and Nimrod/G [3].

The AppLeS (ApplicationLeve Scheduling) sysem focuses on the development
of scheduling agents for pardld metacomputing applications. Each agent is written in
a case-by-case bads and esch agent will perform the mapping of the user's pardld
goplication [8]. To determine schedules, the agent must consider the reguirements of
the application and the predicted load and avalability of the system resources a
scheduling time. Agents use the sarvices offered by the NWS (Network Weether
Sarvice) [9] to monitor the varying performance of available resources.

NetSolve [2] is a dient-agent-server system, which enables the user to solve
complex scientific problems remotely. The NetSolve agent does the scheduling by
searching for those resources that offer the best performance in a network. The
gpplications need to be built using one of the API's provided by NetSolve to perform
RPC-ike computations. There is an APl for creating task fams [7] but it is targeted
tovery smplefarming applications that can be decomposed by asingle bag of tasks.

Nimrod/G [3] is a resource management and scheduling system that focuses on the
management of computations over dynamic resources scatered geographicaly over
wide-area networks. It is targeted to scientific gpplications based on the “exploration
of a range of parameterized scenarios’ which is Smilar to our definition of master-
worker gpplications, but our definition dlows a more generdized scheme of farming
goplications. The scheduling schemes under development in Nimrod/G are based on
the concept of computationd economy developed in the previous implementation of
Nimrod, where the system tries to complete the assigned work within a given deadline
and cost. The deadline represents a time which the user requires the result and the cost
represents an abstract measure of what the user is willing to pay if the system
completes the job within the deadline. Artificid costs are used in its current
implementation to find sufficient resources to meet theuser’ sdeadline.

A scond group of ressarchers has dudied the use of padld applicatiion
characteristics by processor schedulers of multiprogrammed multiprocessor systems,
typicdly with the god of minimizing average response time [10, 11]. However, the
results from these dudies are not applicable in our case because they were focussed
basicdly on the dlocaion of jobs in shared memory multiprocessors in which the
computing resources ae homogeneous and avalable during dl the computation.
Moreover, most of these dudies assume the avalability of accurate historica

performance data, provided to the scheduler smultaneoudy with the job submission.
They dso focus on overdl system performance, as opposed to the performance of
individua applications, and they only ded with the problem of processor dlocation,
without consdering the problem of task scheduling within a fixed number of
processors aswe do in our strategy.

3. A Generalized MasterWorker paradigm

In this work, we focus on the study of gpplications that follow a generdized
Master-Worker paradigm because it is used by many sdetific and engineering
goplications like software testing, sendtivity andyss, training of neura-networks and
stochastic optimization among others. In contrast to the simple master-worker model
in which the master solves one single st of tasks, the generdized master-worker
modd can be used to solve of problems that require the execution of severa batches
of tasks. Figure 1 shows an dgorithmic view of thisparadigm.

Initialization
Do
For task = 1to N
PartialResult = + F|=unction (task) ||1— Worker
end A Tasks
|act on bach complete() |< | Master
while (end condition not met). Tasks

Fig. 1. Generdized Master-Worker algorithm

A Master process will solve the N tasks of a given bach by looking for Worker
processes that can run them. The Master process passes a description (input) of the
task to each Worker process. Upon the completion of a task, the Worker passes the
result (output) of the task back to the Master. The Master process may carry out some
intermediate computation with the results obtained from each Worker as well as some
fina computation when dl the tasks of a given batch are completed. After that a new
batch of tasks is assigned to the Master and this process is repested severa times until
completion of the problem, that is, K cycles (which are later refereed asiterations).

The generdlized Master-Worker paradigm is very eassy to program. All dgorithm
control is done by one process, the Master, and having this central control point
facilitates the collection of job's datigtics, a fact that is used by our scheduling
mechaniam. Furthermore, a sgnificant number of problems can be mapped naturaly
to this paradigm. N-body smulations [12], genetic dgorithms [13], Monte Carlo
smulations [14] and materids science smulaions [15] are jus a few examples of
natura computations that fit in our generalized master-worker paradigm.

4. Challengesfor scheduling of M aster-Worker applications

In this section, we give a more precise definition of the scheduling problem for
measter-worker applications and we introduce our scheduling policy.

4.1. Mativationsand background

Efficient scheduling of a magter-worker gpplication in a cluster of digtributively
owned resources should provide answers to the following questions:

How many workers should be dlocated to the application? A sSmple gpproach
would consgt of dlocaing as many workers as tasks are generaed by the
goplication a each iteraion. However, this policy will incur, in generd, in poor
resource utilization because some workers may be idle if they are assigned a short
task while other workers may be busy if they are assigned long tasks.

How to assign tasks to the workers? When the execution time incurred by the tasks
of a gngle iteration is not the same, the totd time incurred in completing a batch of
taks drongly depends on the order in which taks are assigned to workers.
Theoreticadl works have proved that smple scheduling dtrategies based on ligt-
scheduling can achieve good performance [16].

We evauae our scheduling drategy by meesuring the efficency and the tota
execution time of the application.

Resource efficency (E) for n workers is defined as the ratio between the amount of
time workers spent doing useful work and the amount of time workers were able to
performwork.

n: Number of workers.

Tuwarki: Amount of time that worker i spent doing useful work.

Tupi: Time elapsed sinceworker i isdive until it ends.

Tag: Amount of time that worker i is suspended, that is, when it cannot do any
work.

Execution Time (ET) is defined as the time eapsed since the application begins its
execution until it finishes, usng nworkers.
ET = Ttinishn - T beginn
T finisnn: Time of the ending of the application when usng nworkers.
T beginn: Time of the beginning of the application workers.

As [17] we view fficiency as an indication of benefit (the higher the efficiency,
the higher the benefit), and execution time as an indication of cod (the higher the

execution time, the higher the codt). The implied sysem objective is to achieve
efficient usage of each processor, while taking into account the cost to users. It is
important to know, or a least to estimate the number of processors that yield the point
a which the raio between efficiency to execution time is maximized. This would
represent the desired alocation of processors to each job.

4.2. Proposed Scheduling Palicy

We have conddered a group of master-worker gpplications with an iterative
behavior. In these iterative pardlel applications a batch of pardld tasks is executed K
times (iterations). The completion of a given bach induces a synchronization point in
the iteration loop, followed by the execution of a sequentid body. This kind of
goplications has a high degree of predictability, therefore it is possble to teke
advantage of it to decide both the use of the avalable resources and the dlocation of
tasksto workers.

Empiricd evidence has shown that the execution of each task in successve
iterations tends to behave smilarly, so tha the measurements teken for a particular
iteretion are good predictors of near future behavior [15]. As a consequence, our
current implementation of adaptive scheduling employs a heuritic-based method that
uses higtorical data about the behavior of the application, together with some
parametersthat have been fixed according to results obtained by smulation.

In particular, our adaptive scheduling strategy collects statistics dynamically about
the average execution time of esch task and uses this information to determine the
number of processors to be dlocated and the order in which tasks are assigned to
processors. Tasks are sorted in decressing order of their average execution time.
Then, they are assigned to workers according to that order. At the beginning of the
application execution, no data is avaldle regading the average execution time of
tasks. Therefore, tasks are assigned randomly. We call this adaptive strategy Random
and Average for obvious reasons.

Initidly as many workers as tasks per iteration (N) are dlocated for the application.
We fird ask for that maximum number of workers because getting machines in an
opportunistic environment is time-consuming. Once we get the maximum number of
mechines & the dat of an agpplication, we rdesse machines if needed, ingtead of
getting alower number of machines and asking for more.

Then, a the end of each iteration, the adequate number of workers for the
gpplication is determined in a two-step approach. The first step quickly reduces the
number of workers trying to approach the number of workers to the optimal vaue.
The second gep caries out a fine correction of that number. If the application
exhibits a regular behavior the number of workers obtained by the firsd step in the
initid iterations will not change, and only smdl corrections will be done by the
second step.

The fird sep determines the number of workers according to the workload
exhibited by the application. Table 1 is an experimenta teble that has been obtained
from smulation sudies. In these smulatiions we have evauated the performance of
different drategies (including Random and Awverage policy) to schedule tasks of
master-worker applications. We tested the influence of severd factors the variance

of taks execution times among iterations, the baance degree of work among tasks,
the number of iterations and the number of workers used [18].

Table 1 shows the number of workers needed to get efficiency grester than 80%
and execution time less than 1.1 the execution time when usng N workers. These
vaues would correspond to a stuation in which resources are busy mogt of the time
while the execution time is not degraded sgnificantly.

Table 1. Percentage of workers with respect to the number of tasks.

Workload <% % 4% | 50% | 60% | 70% % W%
Yoworkers (largest tasks sSimilar size) Ntesk 7% 55% | 45% | 0% | 35% | 3% | 2%
Yoworkers (largest tasks diff. Sz€) 60% 45% B | 30% | 20 | 20% | 0% 20%

The firsg row contains the workload, defined as the work percentage done when
executing the largest 20% tasks. The second and third rows contain the workers
percentage with respect to the number of tasks for a given workload in the cases that
the 20% largest tasks have smilar and different executions times respectively.

For example, if the 20% largest tasks have carried out 40% of the totad work then
the number of workers to dlocate will be either N*0,55 or N*0,35. The former vaue
will be used if the larges tasks are dmilar, otherwise the later vaue is applied.
According to our smulation results the largest tasks are conddered to be smilar if
their execution time differences are not grester than 20%.

The fine correction step is caried out a the end of esch iteraion when the
workload between iterations remains constant and the ratio between the lagt iteration
execution time and the execution time with the current number of workers given by
table 1 is less than 1.1. This correction consists of diminishing by one the number of
workers if efficiency is less than 0.8, and observing the effects on the execution time.
If it gets worse a worker is added, but never surpassing the vaue given by table 1.
The complete dgorithm is shown in figure 2.

1. Inthefirstiteration Nworkers = Ntasks
Next steps are executed at the end of each iteration i.

2. Compute Efficiency, Execution Time Workload and the Differences of the execution times
of the 20% largest tasks.
3. if(i==2
Set Nworkers= NinitWorkers according to Workload and Differencesof Table 1.
dse
if (Workload of iterationi != Workloadof iteration i-1)
SetNworkers = NinitWorkers according to Workload and Differences of Table 1
dse
if (Execution Timeof it. i DIV Execution Time of it. 2 (with NinitWorkers) <= 1.1)
if (Efficiency of iterationi <0.8)
Nworkers = Nworkers— 1
dse
Nworkers = Nworkers + 1

Fig. 2. Algorithm to determine Nworkers.

5. Current implementation

To evaduate both the proposed scheduling agorithm and the technique to adjust the
number of workers we have run experiments on a Grid environment usng MW
library as a Grid middleware. Firgt, we will briefly review the main characterigtics of
MW and then we will summarize the extensons included to support both our
generdized master-worker paradigm and the adaptive scheduling policy.

5.1. Overview of MW

MW is a runtime library that alows quick and easy development of master-worker
computations on a computational grid [4]. It handles the communication between
megter and workers, asks for available processors and performs fault-detection. An
application in MW has three base components. Driver, Tasks and Workers. The
Driver is the master, who manages aset of user-defined tasks and a pool of workers.
The Workers execute Tasks. To create a pardle application the programmer needs to
implement some pure virtua functions for each component.

Driver: This is a layer that dts above the program’'s resource management and
message passing mechanisms. (Condor [19] and PVM [20], respectively, in the
implementation we have used). The Driver uses Condor services for getting machines
to execute the workers and to get information about the date of those machines. It
crestes the tasks to be executed by the workers, sends tasks to workers and receives
the results It handles workers joining and leaving the computation and rematches
running tasks when workers are lost. To creaste the Driver, the user needs to
implement thefollowing pure virtua functions:
- get_userinfo(): Processes argumentsand doesinitia setup.
setup_initial_tasks(): Creates the tasks to be executed by the workers.
pack_worker_init_data): Packs the initid data to be sent to the worker upon
startup.
act_on_completed_task(): Thisis cdled every time atask finishes.

Task: This is the unit of work to be done. It contains the data describing the tasks
(inputs) and the results (outputs) computed by the worker. The programmer needs to
implement functions for sending and receiving this data between the master and the
worker.

Worker: This executes the tasks sent to it by the master. The programmer needs to
implement the following functions:
unpack_init_data(): Unpacks the initidizetion data passed in the Driver
pack_worker_init_data() function.
execute task(): Computesthe resultsfor agiven task.

5.2. Extended version of MW

In its origind implementation, MW supported one master controlling only one set
of taks. Therefore we have extended the MW API to support our programming
modd, the Random and Average scheduling policy and to collect useful information
to adjust the number of workers.

To create the master process the user needs to implement another pure virtud
function: global_task_setup. There are dso some changes in the functiondity of
some others pure virtual functions:

- global_task_setup(): It initidizes the data structures needed to keep the tasks
results the user want to record. This is caled once, before the execution of the first
iteration.
setup_initial_tasks (iterationNumber). The set of tasks created depends on the
iteration number. So, there are new tasks for eech iteration, and these tasks could
depend on vaues returned by the execution of previous tasks. This fundion is
cdled before eech iteration begins and cregtes the tasks to be executed in the
iterationNumber iteration.
get_userinfo(): The functiondity of this function remains the same, but the user
needsto call thefollowing initialization functions there:

- st iteration_number (n): This is used to set the number of times tasks will be
created and executed, that is, the number of iterations. If INFINITY is used to
st the iterations number, then tasks will be created and executed until an end
condition is achieved. This condition needs to be set in the function
end_condition().

- sat Ntasks (n): This is used to st the number of tasks to be executed per
iteration.

- st task_retrive mode (mode): This function dlows the user to sdect the
scheduling policy. It can be FIFO (GET_FROM_BEGIN), based on a usex
key (GET_FROM_KEY), random (GET_RANDOM) or random and average
(GET_RAND_AVG).

- printresults (iterationNumber): It alows the results of the iterationNumber
iteration to be printed.

In addition to the above changes, the MWDriver collects datistics about tasks
execution time, workers dae (when they ae dive, working and suspended), and
about iteration beginning and ending.

At the end of each iteration, function UpdateWorkersNumber() is called to adjust
the number of workers accordingly with regard to the agorithm explained in the
previoussection.

6. Experimental study in agrid platform

In this section we report the preliminary set of results obtained with the am of
testing the effectiveness of the proposed scheduling sraiegy. We have executed some
synthetic master-worker gpplications that could serve as representative examples of

the generdized mester-workers paradigm. We run the applications on a grid platform
and we have evduaed the ability of our scheduling stretegy to dynamicdly adapt the
number of workers without any a priori knowledge about the behavior of the
goplications.

We have conducted experiments usng a grid platform composed of a dedicated
Linux duger running Condor, and a Condor pool of workstations at the University of
Wisconsin. The tota number of availdble machines was around 700 dthough we
restrict our experiments to machines with Linux architecture (both from the dedicated
cluser and the Condor pool). The execution of our agpplication was caried out usng
the grid services provided by Condor for resource requesting and detecting,
determining information about resources and fault detecting. The execution of our
gpplication was carried out with a set of processors that do not exhibit significant
differences in peformance, so that the plaform could be consdered to be
homogeneous.

Our applications executed 28 synthetic tasks a each iteration. The number of
iterations was fixed to 35 o0 that the application was running in a steady state most of
the time. Each synthetic task performed the computation of a Fibonacci series. The
length of the series computed by each task was randomly fixed a eech iteration in
such a way that the variation of the execution time of a given task in suaccessive
iterations was 30%. We carried out experiments with two synthetic applications that
exhibited a workload digtribution of 30% and 50% agpproximately. In the former case
dl large tasks exhibited a Smilar execution time. In the latter case, the execution time
of larger tasks exhibited sgnificant differences. These two synthetic programs can be
representative examples for master-worker applications with a highly baanced
digribution of workload and medium baanced didribution of workload between
tasks, respectively. Figure 3 shows, for indance, the average and the dandard
deviation time for each of the 28 tasks in the master-worker with a 50% workload.

Different runs on the same programs genedly produced dightly different find
execution times and efficiency results due to the changing conditions in the grid
environment. Hence, average-case results are reported for sets of three runs.

Tables 2 and 3 show the efficiency, the execution time (in seconds) and the
speedup obtained by the execution of the master-worker application with 50%
workload and 30% workload, respectively. The results obtained by our adaptive
scheduling are shown in bold in both tables. In addition to these results, we show the
results obtained when a fixed number of processors were used during the whole
execution of the gpplication. In paticular, we tested a fixed number of processors of
n=28, n=25, n=20, n=15, n=10, n=5 and n=1. In dl cases the order of execution was
caried out according to the sorted lig of average execuion time (es described in
previous section for the Random and Average policy). The execution time for n=1
was used to compute the speedup of the other cases. It is worth pointing out that the
number of processors dlocated by our adaptive strategy was obtained basicdly
through table 1. Only in the case of 30% workload, did the fine adjustment carry out
the additiona reduction of the number of processors.

Tasks Average Execution Time
300 T T T T T T T T T T T 1

N
a
o
T
1

N
o
o
T
I+I
<C

Execution Time (sec)
= =
o (o)
o o
=

e

mu

——

a1
o

FrIFrIsEEEETE

0o 2 4 6 8 1012 14 16 18 20 22 24 26 28
Task number
Fig. 3. Tasks execution times.

Table 2. Experimental results in the execution of a master-worker application with 50%
workload using the Randomand Average policy.

#Workers 1 5 8 10 15 20 25 28
Efficiency 1 0,94 0,80 0,65 0,43 0,33 0,28 0,22
Exec. Time | 80192 16669, 12351 | 12365 | 13025 | 12003 [12300,4 12701
Spesdup 1 4,81 6,49 6,49 6,16 6,68 6,52 6,31

Table 3. Experimenta results in the execution of a master-worker application with 30%
workload using the Random and Average policy.

#Workers 1 5 10 15 18 20 25 28
Efficiency 1 0,85 0,85 0,87 0.78 0,72 0,59 0,55
Exec. Time | 36102 9269 4255 3027 2459 2710 2794 2434
Spesdup 1 3,89 8,48 11,93 | 1468 | 1332 | 12,92 | 14,83

The firgt results shown in tables 2 and 3 are encouraging as they prove tha an
adaptive scheduling policy like Random and Average wes able, in generd, to achieve
a high eficency in the use of resources while the speedup was not degraded
sgnificantly. The improvement in efficiency can be explained because our adaptive
strategy tends to use a smdl number of resources with the am of avoidng idle time in
workers that compute short tasks. In generd, the larger the number of processors the
larger the idle times incurred by workers in each iteration. This stuation is aso more
remarkable when the workload of the application is more unevenly distributed among
tasks. Therefore, for a given number of processors the largest loss of efficiency was
obtained normally in the gpplication with a 50% workload.

It can dso be observed in both tables that the adaptive scheduling strategy obtained
in generd an execution time that was similar or even better than the execution time
obtained with a larger number of processors. This result basicdly reflects the
opportunistic nature of the resources that were used in our experiments. The larger the

number of processors dlocated, the larger the number of task suspensons and
redlocations incurred a run time. The need to terminate a task prematurely when the
user clamed back the processor prevented normaly the benefits in execution time
obtained by the use of additiona processors. Therefore, from our results, we conclude
that, the reduction in the number of processors dlocated to an goplication running in
an opportunigtic environment is good not only because it improves overal efficiency,
but it dso avoids sde effects on the execution time due to suspensons and
redllocations of tasks.

As is perhaps to be expected, the best performance was normaly obtained when
the larges number of machines were used, dthough better machine efficiencies were
obtained when a smaler number of machines were used. These results may seem to
be obvious, but it should be stressed that they have been obtained from a red test-bed,
in which resources were obtained from a total pool of non-dedicated 700 machines. In
this test-bed our adaptive scheduler used only datistics information collected &t
runtime, and the execution of our applications should copse with the effects of
resource obtaining, locd suspenson of taks, task reessume and dynamic
redistribution of |oad.

We caried out an additiond st of experiments in order to evaduate the influence in
the order of tak assgnment. Due to time congraints, this aticle only contains the
results obtained when a master-worker application with 50% workload was scheduled
usng a Random policy. In this policy, when a worker becomes idle, a random task
from the list of pending tasks is chosen and assigned to it. As can be seen when tables
2 and 4 are compared, the order in which tasks are assgned has a dgnificant impact
when a small number of workers is used. For less than 15 processors the Randomand
Average policy peforms dgnificantly better than the Random policy, both in
efficiency and in execution time. When 15 or more processors are used, differences
between both policies weae nearly negligible This fact can be explaned because
when the Random policy has a large number of available processors, the probability
to assgn a lage task a the beginning is dso large Therefore, in these Stuations the
assgnments carried out by both polices are likely to follow a similar order. Only in
the cae of 20 processors, was Random's peformance dgnificantly worse than
Random & Average However, this could be explained because the tests of the
Random policy with 20 processors suffered from many task suspensons and
reall ocations during their execution.

Table 4. Experimental results for Random scheduling with a master-worker application with
50% workload.

#Workers 1 5 10 15 20 25 28
Efficiency 1 0,80 0,56 0,40 0,34 0,26 0,26
Exec. Time 80192 | 20055 | 14121 | 13273 | 13153 | 12109 | 12716
Specdup 1 4,00 5,68 6,04 6,10 6,62 6,31

7. Conclusions and future work

In this paper, we have discussed the problem of scheduling master-worker
gpplications on the computational grid. We have presented a framework for master-
worker gpplications that dlow the development of a talored scheduling strategy. We
have proposed a scheduling dtrategy that is both smple an adaptive and tekes into
account the measurements taken during the execution of the master-worker
gpplication. This information is usualy a good predictor of near future behavior of the
gpplication. Our drategy tries to dlocae and schedule the minimum number of
processors that guarantees a good speedup by keeping the processors as busy as
possble and avoiding sStuaions in which processors gt idle waiting for work to be
done. The drategy alocates the suitable number of processors by using the runtime
information obtained from the gpplication, together with the information contaned in
an empiricd table that has been obtained by smulation. Later, the number of
processors would eventudly be adapted dynamicaly if the scheduling agorithm
detects that the efficiency of the application can be improved without Sgnificant
losses in performance.

We have built our scheduling strategy usng MW as a Grid middeware. And we
tested the scheduling srategy on a Grid environment made of severa pools of
machines, the resources of which were provided by Condor. The preiminary st of
tests with synthetic applications dlowed us to vdidae the effectiveness of our
scheduling strategy. In generd, our adaptive scheduling dtrategy achieved an
efficiency in the use of processors close to 80% while the speedup up of the
gpplication was close to the speedup achieved with the maximum number of
processors. Moreover, we have observed that our agorithm quickly achieves a stable
stuation with afixed number of processors.

There are some ways in which this work can be extended. We have tested our
drategy on a homogeneous Grid platform where the resources were relatively closed
and the influence of the network latency was negligible A firgd extenson will adapt
the proposed scheduling drategy to handle a heterogeneous set of resources. In order
to cary this out, a normdizing factor should be applied to the average execution
times to index table 1. Another extenson will focus on the incluson of additiond
mechanisms that can be used when the distance between resources is sgnificant (for
ingance, by packing more than one task to a digant worker in order to compensate
network dedays). A second extenson will be oriented to the extenson of the
scheduling strategy to be gpplied for applications that are not iterative or that exhibit
different behaviors a different phases of the execution. This extenson would be
useful for applications that follow, for instance, a Divide and Conquer paradigm or a
Speculative Pardldism paradigm.

8. References

1. |. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infraestructure”,
Morgan-Kaufmann, 1999.

10.

11

13.

14,

15.

16.

17.

18.

19.

20.

H. Casanova and J. Dongarra, “NetSolve: Network enabled solvers’, IEEE Computational
Science and Engineering, 5(3) pp. 57-67, 1998.

D. Abramson, J. Giddy, and L. Kotler, "High Performance Parametric Modding with
Nimrod/G: Killer Application for the Globa Grid?’, in Proc. of |PPS/SPDP 2000, 2000.

J-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, “An enabling framework for master-
worker applications on the computational grid”, Tech. Report, University of Wisconsin —
Madison, March, 2000.

L. M. Silva and R. Buyya, “Pardlel programming models and paradigms’, in R. Buyya
(ed), “High Performance Cluster Computing: Architectures and Systems. Volume 2”,
Prentice Hall PTR, NJ, USA, 1999.

F. Berman, R. Wolski, S Figueira, J. Schopf and G. Shao, “Application-Level Scheduling
on Distributed Heterogeneous Networks’, Proc. of Supercomputing’ 96.

H. Casanova, M. Kim, J. S. Plank and J. Dongarra, “Adaptive scheduling for task farming
with Grid middleware’, International Journad of Supercomputer Applications and High-
Performance Computing, pp. 231-240, Volume 13, Number 3, Fall 1999.

G. Shao, R. Wolski and F. Berman, “Peformance effects of scheduling strategies for
Measter/Slave distributed applications’, Technical Report TRCS98598, University of
Cadlifornia, San Diego, September 1998.

R. Wolski, N. T. Spring and J. Hayes, “The Network Wesather Service: a distributed
resource performance forecasting service for metacomputing”, Journal of Future
Generation Computing Systems’, Val. 15, October, 1999.

T. B. Brecht and K. Guha, “Using paralel program characterigtics in dynamic processor
alocation policies’, Performance Evaluation, Vol. 27 and 28, pp. 519-539, 1996.

T. D. Nguyen, R. Vaswani and J. Zahorjan, “Maximizing speedup through self-tuning of
processor alocation”, in Proc. of the Int. Par. Proces. Symp. (IPPS 96), 1996.

V. Govindan and M. Franklin, “Application Load Imbalance on Parald Processors’, in
Proc. of the Int. Paral. Proc. Symposium (IPPS 96), 1996.

E. Cant-Paz, “Designing efficient master-dave paralel genetic algorithms’, in J. Koza,
W. Banzhaf, K. Chdlapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon D. E. Goldberg, H.
Iba and R. Riolo, editors, Genetic Programming: Proceeding of the Third Annual
Conference, San Francisco, Morgan Kaufmann, 1998.

J. Basney, B. Raman and M. Livny, “High throughput Monte Carlo”, Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio
Texas, 1999.

J. Pruyne and M. Livny, “Interfacing Condor and PVYM to harness the cycles of
workstation clusters’, Journal on Future Generations of Computer Systems, Vol. 12, 1996.

L. A. Hall, “Aproximation agorithms for scheduling”, in Dorit S. Hochbaum (ed.),
“ Approximation algorithms for NP-hard problems’, PWS Publishing Company, 1997.

D. L. Eager, J Zahorjan and E. D. Lazowska, “Speedup versus efficiency in paralel
systems’, IEEE Transactions on Computers, vol. 38, pp. 408-423, 1989.

E. Heymann, M. Senar, E. Luque, M. Livny. “Evauation of an Adaptive Scheduling
Strategy for Master-Worker Applications on Clusters of Workstations’. Proceedings of 7"
Int. Conf. on High Performance Computing (HiPC' 2000) (to appear).

M. Livny, J. Basney, R. Raman and T. Tannenbaum, “Mechanisms for high throughput
computing”, SPEEDUP, 11, 1997.

A. Ged, A. Begudin, J. Dongarra, W. Jang, R. Manchek and V. Sunderam, “PVM:
Paralld Virtud Machine A User's Guide and Tutoriad for Networked Perdld
Computing”, MIT Press, 1994,

