Utilizing Widely Distributed Computational
Resources Efficiently with Execution Domains

Jim Basney Miron Livny

University of Wisconsin-Madison, USA

Paolo Mazzanti

INFN and University of Bologna, Italy

Abstract

Wide-area computational grids have the potential to provide large amounts of com-
puting capacity to the scientific community. Realizing this potential requires in-
telligent data management, enabling applications to harness remote computing re-
sources with minimal remote data access overhead. We define ezecution domains, a
framework which defines an affinity between CPU and data resources in the grid,
so applications are scheduled to run on CPUs which have the needed access to
datasets and storage devices. The framework also includes domain managers, agents
which dynamically adjust the execution domain configuration to support the effi-
cient execution of grid applications. In this paper, we present the execution domain
framework and show how we apply it in the Condor resource management system.

Key words:

PACS: 07.05.Bx, 89.80.+h

Cluster Computing; Computational Grids; Network Scheduling; Remote 1/0;
Checkpointing; High Throughput Computing; Condor

1 Introduction

Computational grids (1; 2) have the potential to deliver large amounts of
computing capacity to the scientific community by federating the computing
resources on the network for large experiments (3). Pooling resources into a
computational grid enables resource sharing: a scientist can harness computing
resources owned by others when they are not using them. Many large com-
puting experiments operate in cycles, where researchers plan an experiment

Preprint submitted to Elsevier Preprint 30 April 2000



and collect input data before beginning the computation. When the compu-
tation completes, the researchers analyze the results of the computation and
plan their next experiment. Sharing computing resources naturally increases
the computing capacity available to all participants, since one research project
may use many computing resources while other projects are in the planning
or analysis stages.

Intelligent data management is central to the success of a computational
grid (4). The Particle Physics Data Grid! and the CERN Data Grid? are two
recent efforts to address the challenges of supporting data-intensive Physics
applications on the grid. Data-intensive grid applications access large input
datasets, produce large volumes of output, and generate large intermediate
data files (for checkpointing or out-of-core computation). If these applications
naively perform I/O to remote storage devices, they may spend a significant
proportion of their run time waiting on the network (5). We have been engaged
in a collaborative effort to deploy the Condor resource management system at
INFN sites across a wide-area network (6). As part of this effort, we have de-
veloped a scheduling framework for CPU and data resources called ezecution
domains. The framework defines an affinity between CPU and data resources,
so applications are scheduled to run on CPUs which have the needed access
to datasets and storage devices. The framework also includes domain man-
agers, agents which dynamically adjust the execution domain configuration to
support the efficient execution of grid applications. In this paper, we describe
the execution domain framework and how we apply it in the Condor resource
management system.

2 Execution Domains

Execution domains ensure that applications which require a given level of
access to a data resource run on CPUs which can provide the needed access.
If an application’s input data is stored on a network file server, execution
domains ensure that the application runs only on CPUs with reliable, high-
speed access to that network file server. For applications which produce large
volumes of output, execution domains ensure that the application runs only on
CPUs with access to sufficient storage capacity for the application’s output. If
the application produces large intermediate state (for checkpointing or out-of-
core computation), execution domains ensure that, once the application begins
its execution using a storage device, it migrates only among CPUs with high-
performance access to that storage device. Since data resources may not be
accessible from all CPUs in a wide-area grid for system administration and

! http://www.phys.ufl.edu/ avery/mre/
2 http://nicewww.cern.ch/~ingoa/DataGrid.html



A D@y 000 ¢

- O0W o jdVV

:____V__Q__V_l:- E :r" Legend
E_B_ _lj _lj_i“_@_‘nj_i g _ch)lsjesrvers
E J o0 D: L _ ' - Domains
:___C?__V____ED_E d - dataset

Fig. 1. Example Execution Domain Configuration

security reasons, execution domains are useful even for applications which can
tolerate low data rates, to ensure that the application only runs on CPUs
with some type of access to the application’s data. Also, an execution domain
may be empty if a dataset is not yet available. Applications which require the
dataset will not run until it is produced. So, execution domains also serve as
a mechanism for controlling data dependencies between grid applications.

An execution domain is a set of CPUs with a defined level of access to a
data resource. Levels of access to a data resource may be defined according to
performance, network distance, reliability, security, or other criteria. Execution
domains may be defined at different access levels for a given data resource.
However, a CPU is a member of at most one execution domain for each data
resource. A data resource may be a server or dataset. A server is any data
storage device, including network file servers and database servers. Servers
occupy a fixed position on the network and can not be easily relocated. A
dataset is a file or set of files stored on a server. Datasets may be dynamically
replicated and migrated between servers on the network. Figure 1 illustrates
an example execution domain configuration. Domains A, B, and C are each
defined by their proximity to a set of data servers. As illustrated, a logical
execution domain may include multiple physical servers. Domain D, which
overlaps with the other domains, is defined by copies of a dataset staged on
the local disks of four CPUs.

Domain managers are responsible for defining execution domain membership
and maintaining the affinity between applications and the execution domains
of their data. We envision the implementation of two types of domain man-
agers. The first type of domain manager is a domain migration agent. The
migration agent schedules the initial placement of application data files on
file servers and ensures that applications run within the execution domains of
the file server(s) which store their files. The agent also monitors the demand
for and availability of CPUs in the server domains. If there is an insufficient
number of CPUs in the execution domain of a file server, the domain migra-
tion agent can transfer the job’s data files from the current file server to a
server in a domain where more CPUs are available. The agent can then mod-



ify the job’s domain requirements so it will run in the new execution domain.
The second type of domain manager is a data staging agent. The data staging
agent schedules the initial distribution of datasets in the grid and configures
the execution domain membership for those datasets. This agent also monitors
the demand for datasets in the grid by watching the job queues. If there are
an insufficient number of CPUs in the execution domain of a dataset to meet
current demand, the data staging agent expands the execution domain. The
agent stages a copy of the dataset on additional storage devices and injects the
dataset attributes into the resource offers of the CPUs in the domains of those
storage devices. Since domain managers are external to the grid scheduler,
they can be used to implement scheduling policies or algorithms which were
not anticipated by the scheduler’s developers. For example, the domain man-
agers can use network load information to explicitly schedule data transfers
over wide-area links, for staging and migration.

3 Execution Domains in Condor

The Condor ClassAd Matchmaking framework (7) enables easy implementa-
tion of execution domains with no changes to the Condor resource manage-
ment system. ClassAd Matchmaking gives us the ability to dynamically inject
information into the system to achieve custom scheduling goals. The ClassAd
resource description language encodes requests and offers for computing re-
sources in the grid. This language uses a semi-structured data model, so there
is no fixed schema for the representation of resource requests and offers. Each
resource request or offer contains a set of attribute definitions which describe
the request or the offered resource. They each also contain a Requirements
expression which specifies the compatibility between requests and offers and
a Rank expression which indicates preferences.

Domain managers can use the Condor APIs to modify the execution domain
definitions and application requirements. To modify the domain definitions,
the domain managers can insert, delete, or modify attributes in resource of-
fers. When the domain staging agent stores a dataset on the local disk of a
workstation, it inserts a new attribute for that dataset in the workstation’s
resource offer. When the domain migration agent moves an application’s data
files to a new file server, it modifies the Requirements and Rank expressions
in the application’s resource request so the application will execution in the
domain of the new file server.

For example, the following resource offer describes a Sparc Solaris workstation
with 256 MB of memory and a MIPS rating of 200:

OpSys = “Solaris2.6”;



Arch = “Sun4u”;
Memory = 256;
Mips = 200;

To include a workstation’s CPU in an execution domain, the domain manager
inserts an attribute into the resource offer. For example, if this workstation has
local access to the cs.wisc.edu AFS network filesystem, the manager inserts
the following attribute:

AFSDomain = “cs.wisc.edu”;

Resource offers with different values defined for the AFSDomain attribute de-
scribe CPUs in different execution domains. The domain manager also inserts
a Boolean attribute for each dataset to indicate that the CPU is a member of
the execution domain of that dataset. For example:

HasDataSetXYZ97S3 = True;

The dataset may be staged differently for different CPUs. It may, for example,
be located on the local disk of some CPUs and available to other CPUs via a
network file server. If the applications which require this dataset have different
I/O characteristics, it is useful to define more restrictive execution domains.
The domain manager can define an execution domain which includes only
those CPUs with the dataset staged on the local disk as follows:

HasDataSetXYZ97S3Locally = True;

So, applications which need local-disk access speeds to this dataset should run
only in this more restrictive execution domain. The Condor remote I1/O library
can be used to hide the different file access methods from the application. The
library instruments the application’s I/O system calls and redirects them to
the appropriate file access method. Support for many 1/O access protocols in
the Condor remote 1/0O is in progress, including FTP, HTTP, and GASS (8).

An application’s resource request indicates its requirements and preferences
for an execution site. For example, the resource request below is compatible
with the resource offer above. The request asks for a Sparc Solaris workstation
with more than 80 MB of memory, with a preference for the CPU with the
highest MIPS rating (i.e., CPUs are ranked in descending order by their Mips
value):

Requirements = (Target.OpSys == “Solaris2.6”) &&
(Target.Arch == “Sun4u”) && (Target.Memory > 80);
Rank = Mips;

To indicate that the application stores its data files in the cs.wisc.edu AFS



filesystem and so should run in the execution domain of that filesystem for
best performance, the domain manager modifies the Requirements in the ap-
plication’s resource request:

Requirements = (Target.OpSys == “Solaris2.6”) &&
(Target.Arch == “Sundu”) && (Target.Memory > 80) &&
(Target.AFSDomain == “cs.wisc.edu”);

AFS is an example of a global filesystem, where any file on an AFS server
can be accessed from any AFS client, assuming the user has the necessary
credentials. So, if this application can tolerate higher-latency access to its
AFS files, it could feasibly run on any CPU which serves as an AFS client.
In this case, the application’s resource request requires only that AFSDomain
is defined, indicating that the CPU is an AFS client. The resource request
indicates a preference for the cs.wisc.edu AFS domain, however, since a CPU
in that domain will have the best access to the application’s data files. This
example uses the ClassAd =!= operator to test if an attribute is defined. It
also uses the Rank expression, where a value of True is ranked higher than a
value of False.

Requirements = ... && (Target.AFSDomain =!= Undefined);
Rank = (Target. AFSDomain == “cs.wisc.edu”);

To indicate that the application should run on a CPU in the execution domain
of a dataset, the domain manager modifies the Requirements attribute of the
resource request as follows:

Requirements = ... && Target.HasDataSetXYZ97S3;

When the application begins its run, it uses the location attribute in the re-
source offer to find the dataset on the workstation. Applications which require
local disk access speeds to this dataset will require a CPU in the more restric-
tive execution domain:

Requirements = ... && Target.HasDataSetXYZ97S3Locally;

Other applications may not strictly require local disk access speeds, but will
perform better at higher speeds. In this case, the domain manager specifies the
application’s preferences in the Rank expression of its resource request (where
True is ranked higher than False):

Requirements = ... && (Target.HasDataSetXYZ97S3 ||
Target.HasDataSetXYZ97S3Locally);
Rank = Target.HasDataSetXYZ97S3Locally;



4 Managing Checkpoints

We have also applied the execution domain mechanism to the management
of checkpoints in Condor. In our experience, checkpoint transfers are often
the main cause of network overhead for Condor applications. For example, in
one Condor pool of approximately 700 CPUs, we often see more than 100 GB
of daily checkpoint traffic. The checkpoint of an application’s state includes
its entire memory state, so memory-intensive applications can generate large
checkpoints. When long-running applications obtain short CPU allocations,
they must store a checkpoint at the end of each allocation to save the work
they have accomplished. Dedicated checkpoint servers, deployed throughout
the grid, provide storage space for these large application checkpoints.

To localize the transfer of checkpoints in the network, we define execution do-
mains according to proximity to checkpoint servers. These checkpoint domains
are defined by inserting a CkptDomain attribute into each CPU’s resource
offer. Applications write their checkpoints to a checkpoint server in the cur-
rent checkpoint domain. Applications are restricted to migrate only to CPUs
in the current checkpoint domain, to avoid transferring the checkpoint to a
CPU beyond the domain. To implement this policy, the Requirements of the
application’s resource request must specify the checkpoint domain once the
application has written its first checkpoint. For example:

CkptDomain = “ckpt.cs.wisc.edu”;
Requirements = ... && (My.CkptDomain == Target.CkptDomain);

A task may begin execution in any checkpoint domain, but once it has com-
pleted its first checkpoint, it executes only on CPUs in the chosen checkpoint
domain.

Since a task may wait a long time for an available workstation in its checkpoint
domain, we support migration between checkpoint domains. As with other ex-
ecution domains, a domain migration agent could transfer the checkpoint to
a new checkpoint server and modify the CkptDomain attribute in the job’s
resource request. However, it is also possible for the domain migration agent
to migrate the job without transferring the checkpoint between checkpoint
servers by simply modifying the job’s resource request. The job will transfer
its checkpoint from the old checkpoint server directly to the CPU in the new
checkpoint domain when it begins execution. For example, the domain man-
ager can modify the resource request as follows so the job will run in either
the ckpt.cs.wisc.edu domain or the ckpt.bo.infn.it domain:

CkptDomain = “ckpt.cs.wisc.edu”;
Requirements = ... && ((My.CkptDomain == Target.CkptDomain) ||
(Target.CkptDomain == “ckpt.bo.infn.it”));



Rank = My.CkptDomain == Target.CkptDomain;

The Rank expression specifies that the application should remain in the cur-
rent checkpoint domain if a CPU is available there. Otherwise, if a CPU in
available in the ckpt.bo.infn.it checkpoint domain, the application will trans-
fer the checkpoint from the ckpt.cs.wisc.edu checkpoint server directly to that
CPU to resume its execution. If the application is preempted again, it will send
its checkpoint to the local checkpoint server in the ckpt.bo.infn.it domain and
update its resource request to look for a new CPU in the new checkpoint
domain:

CkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && (My.CkptDomain == Target.CkptDomain);

It is possible for the migration agent to transfer a checkpoint only to find that
CPUs are no longer available in the new checkpoint domain. By delaying the
migration until the CPU is allocated to the job, the domain migration agent
avoids performing potentially unnecessary checkpoint migrations. This savings
represents a trade-off, because the job will need to transfer the checkpoint
over a longer network distance at the start of the CPU allocation, increasing
network wait time.

It is also possible to implement migration between checkpoint domains auto-
matically (without intervention of a domain migration agent) by specifying
more complex Requirements expressions. In the following example, the appli-
cation is allowed to migrate to a new checkpoint domain if it has been waiting
for an available CPU for over 24 hours.

LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((My.LastCkptDomain == Target.CkptDomain) ||
((CurrentTime - My.StartIdleTime) > 24*60*60));

Or, the application may be allowed to migrate between checkpoint domains
only at night, when demand for capacity on the wide-area network is lower,
as in the example below:

LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((My.LastCkptDomain == Target.CkptDomain) ||
(ClockHour < 7) || (ClockHour > 18));

We can also implement an even more permissive policy, which allows the
checkpoint to migrate to a new domain at any time if there is insufficient
CPU capacity in the current domain. We use the Rank expression to specify
that we would prefer that the job remain in the current checkpoint domain,
but it may migrate to any of the other domains specified in the Requirements
expression when necessary.



Requirements = (Target.CkptDomain == “ckpt.bo.infn.it”) ||
(Target.CkptDomain == “ckpt.cs.wisc.edu”) ||
(Target.CkptDomain == “ckpt.ncsa.uiuc.edu”);

Rank = (My.CkptDomain == Target.CkptDomain);

Checkpoint domains differ from other execution domains due to the flexibility
provided by checkpoint servers. Unlike file servers, which are often not under
the administrative control of grid administrators, checkpoint servers may be
installed on any machines with available disk space in the grid. Since all grid
nodes have access to all checkpoint servers through Condor APIs, checkpoint
servers can be used as more general-purpose data staging areas to improve
accessibility to application data. This improved flexibility provides greater
scheduling opportunities to the execution domain managers.

5 Conclusion

We have presented execution domains, a mechanism for ensuring that grid
applications have local access to needed network services, and we have shown
how execution domains are realized in the Condor environment. Computa-
tional grids have the potential to deliver large amounts of computing capacity
to the scientific community, but supporting data intensive applications on
wide-area computational grids requires intelligent data management. Work
for deploying execution domains in the INFN Condor Pool is ongoing. Addi-
tional information about the Condor research project and Condor software is
available at http://www.cs.wisc.edu/condor/.

References

[1] L Foster and C. Kesselman, Editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers, Inc., July 1998.

[2] W. Johnston, D. Gannon, and B. Nitzberg. NASA’s Information Power
Grid: Distributed High-Performance Computing and Large-Scale Data
Management for Science and Engineering. Proceedings of the International
Conference on Computing in High Energy and Nuclear Physics, Padova,
Italy, February 2000.

[3] J. Basney, R. Raman, and M. Livny. High Throughput Monte Carlo.
In Proceedings of the Ninth SIAM Conference on Parallel Processing for
Scientific Computing, March 1999.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
Data Grid: Towards an Architecture for the Distributed Management and



[5]

[6]

7]

8]

Analysis of Large Scientific Datasets. To appear in the Journal of Network
and Computer Applications.

J. Basney and M. Livny. Improving Goodput by Co-scheduling CPU and
Network Capacity. International Journal of High Performance Computing
Applications, 13(3), Fall 1999.

D. Bortolotti, T. Ferrari, A. Ghiselli, P. Mazzanti, F. Prelz, F. Semeria,
M. Sgaravatto, and C. Vistoli. Condor on WAN. Proceedings of the Inter-
national Conference on Computing in High Energy and Nuclear Physics,
Padova, Italy, February 2000.

R. Raman, M. Livny, and M. Solomon. Matchmaking: An extensible frame-
work for distributed resource management. Cluster Computing: The Jour-
nal of Networks, Software Tools and Applications, 2:129-138, 1999.

J. Bester, 1. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A
Data Movement and Access Service for Wide Area Computing Systems.
Sizth Workshop on 1/0 in Parallel and Distributed Systems, May 5, 1999.

10



