
Harnessing the Capacity of Computational Grids for High Energy
Physics

J. Basney1, M. Livny1, P. Mazzanti2

1 University of Wisconsin-Madison, USA
2 INFN and University of Bologna, Italy

Abstract
By harnessing available computing resources on the network, computational grids can

deliver large amounts of computing capacity to the high energy physics (HEP) community.
Supporting HEP applications, which typically make heavy memory and I/O demands, requires
careful co-allocation of network, storage, and computing resources. The grid manager must
ensure that applications have the necessary resources to run efficiently while respecting the
usage policies imposed by the owners of those resources. The Condor research group is
engaged in an effort to develop effective co-allocation mechanisms for computational grids.
We present two of these mechanisms, checkpoint domains and file system domains, which
attack the wide-area network bottleneck by providing local access to checkpoint and data
storage.

Keywords: grid computing, network scheduling, high throughput computing

1 Introduction

Computational grids [1] have the potential to deliver large amounts of computing capacity to the
high energy physics community by federating the computing resources on the network for large
experiments. Pooling resources into a computational grid enables resource sharing: a scientist can
harness computing resources owned by others when they are not using them. Many large com-
puting experiments operate in cycles, where researchers plan an experiment and collect input data
before beginning the computation. When the computation completes, the researchers analyze the
results of the computation and plan their next experiment. Sharing computing resources naturally
increases the computing capacity available to all participants, since one research project may use
many computing resources while other projects are in the planning or analysis stages.

Careful management of network resources is central to the success of the grid. In this paper,
we present two network management mechanisms we have developed to support the communica-
tion needs of grid applications characterized by the following attributes:
• The application’s work can be divided into many independent tasks. This attribute

signifies that the application can potentially harness many distributed CPUs to accomplish
its goal. Master-worker or data parallel applications (for example, Monte Carlo studies) are
particularly good candidates for high throughput grid computing [2, 3].

• Each task is long-running with large intermediate state. The fact that the task is long-
running indicates that a checkpointing mechanism is required for successful execution on
non-dedicated resources. The task must be checkpointed when it is preempted so the work
it has accomplished on the borrowed workstation is not lost. Additionally, a long-running
task must be checkpointed periodically to limit the amount of work lost due to hardware
or software failures. The fact that the task has large intermediate state indicates that the
checkpoint will be large, requiring significant network capacity to transfer.

• Each task is I/O intensive. The task processes a large dataset and/or produces a large
amount of output. This indicates that the task must have fast access to the data storage
medium to execute efficiently.

These applications can spend a significant proportion of their run time waiting on the network,
transferring checkpoints and accessing remote file servers. To attack the network bottleneck, we
group the computational resources in the grid into logical execution domains according to network
connectivity. Applications store checkpoints and access data within the boundaries of the execu-
tion domains, utilizing high-speed local area networks and avoiding slower wide-area links. In the
following sections, we describe our approach for defining execution domains in the Condor High
Throughput Computing environment. We begin with an overview of ClassAd Matchmaking, the
resource management framework we use to implement execution domains.

2 ClassAd Matchmaking

The ClassAd Matchmaking framework [4] enables flexible, distributed resource management in
a grid environment. The most important feature of the framework for the purpose of defining
execution domains is the ability to dynamically inject information into the scheduling system to
achieve custom scheduling goals. The framework defines a resource description language which
encodes requests and offers for computing resources in the grid. This language uses a semi-
structured data model, so there is no fixed schema for the representation of resource requests
and offers. Each resource request or offer contains a set of attribute definitions which describe
the requested or offered resource, a Requirements expression which specifies the compatibility
between requests and offers, and a Rank expression which indicates preferences. New information
is injected into the scheduling system by simply adding additional attributes or by modifying the
Requirements or Rank expressions.

The following example shows a resource offer on the left describing a Sparc Solaris work-
station with 256 MB of memory which is available to run grid applications when the Unix load
average on the machine is less than 0.3. Applications from the AI research group are preferred,
according to the Rank expression. The example also shows a compatible resource request on the
right for a Sparc Solaris workstation with more than 80 MB of memory, where workstations in the
UWCS cluster are preferred.
[[

OpSys = "Solaris2.6"; Group = "AI";

Arch = "Sun4u"; Requirements = Target.Memory > 80 &&

Memory = 256; Target.OpSys == "Solaris2.6" &&

LoadAvg = 0.25; Target.Arch == "Sun4u";

Cluster = "UWCS"; Rank = Target.Cluster == "UWCS";

Requirements = My.LoadAvg < 0.3;]

Rank = Target.Group == "AI";

]

Cluster and Group are examples of attributes added to implement custom scheduling policies.
Since the application owners in this example prefer to run their applications on workstations in
their department, each resource offer includes a Cluster attribute which specifies each worksta-
tion’s location. Similarly, since the workstation owners in this example prefer to run the applica-
tions of their research group, each resource request includes a Group attribute which specifies each
application’s research group. In the next section, we show how we inject attributes into resource
requests and offers to implement execution domains for checkpoint transfers.

3 Checkpoint Domains

To provide facilities on the local-area network for storing checkpoints, we organize the work-
stations in the grid into checkpoint domains. The workstations in a checkpoint domain share a
checkpoint server. Checkpoint servers provide dedicated disk space for storing large checkpoint
files, since disk space may not be available for storing checkpoints directly on the borrowed work-
station. Checkpoint servers also allow tasks to access their checkpoints at any time without par-
ticipation from previously borrowed workstations. However, when the intermediate state of a task
is large, transferring a checkpoint over the network can be an expensive operation. Checkpoint
domains provide a checkpoint server on each local area network and direct tasks to write their
checkpoints to the local checkpoint server. When the workstation is allocated to the task, the task
reads the CkptServer attribute from the resource offer to know which server to use. For example,
the resource offer may contain:
CkptServer = "ckpt.cs.wisc.edu";

The CkptServer attribute serves both as a pointer to the local checkpoint server and as an indica-
tion of the checkpoint domain of the workstation.

Once a task has performed a checkpoint, the task should continue executing on workstations
in the same checkpoint domain to avoid transferring the checkpoint over the wide-area network.
The task must read its checkpoint to continue its execution on a new workstation. The faster the
task can transfer the checkpoint to the new workstation, the sooner the task’s state can be fully
restored and the task can continue execution. We establish a scheduling affinity between a task
and its checkpoint domain by modifying the task’s request for a new workstation. We augment
the resource request to include the location of the task’s checkpoint (LastCkptServer) and a
requirement that the task continue executing in that checkpoint domain. For example:
LastCkptServer = "ckpt.cs.wisc.edu";

Requirements = My.LastCkptServer == Target.CkptServer;

Under this policy, a task may begin execution in any checkpoint domain, but once it has completed
its first checkpoint, it executes only on workstations in the chosen checkpoint domain.

Since a task may wait a long time for an available workstation in its checkpoint domain, we
support migration between checkpoint domains. We can manually migrate the task by modifying
its Requirements to include additional checkpoint domains. For example:
Requirements = Target.CkptServer == "ckpt.cs.wisc.edu" ||

Target.CkptServer == "ckpt.bo.infn.it";

If a workstation in available in the ckpt.bo.infn.it checkpoint domain, the task will transfer the
checkpoint from ckpt.cs.wisc.edu directly to that workstation to resume the task. If the task is
preempted again, it will send its checkpoint to ckpt.bo.infn.it and update its resource request to
look for a new workstation in the new checkpoint domain.

It is also possible to implement migration between checkpoint domains automatically by
specifying more complex Requirements and Rank expressions. For example, the task may be
allowed to migrate to a new checkpoint domain only if it has been waiting for an available work-
station for over 24 hours. Or, the task may be allowed to migrate between checkpoint domains
only at night, when demand for capacity on the wide-area network is lower. We may also envision
a scheduler which performs automatic migrations by transferring checkpoints directly between
checkpoint servers and updating the LastCkptServer attribute of the task’s resource request to
migrate the task to the new checkpoint domain.

4 File System Domains

In the previous section, we described how checkpoint domains improve the performance of check-
point transfers. In this section, we introduce a similar mechanism for improving I/O performance.
To provide fast access to each task’s data, we organize the workstations in the grid into file system
domains. Workstations in a file system domain share one or more file servers on the local-area
network. We inject an attribute into each resource offer which lists the file system domain for the
workstation. For example:
FileSystemDomain = "cs.wisc.edu";

To run I/O intensive tasks in the grid, a user first distributes the input data for each task to the
available file servers. Then, by modifying the task’s Requirements expression, the user specifies
that each task should only run on workstations in the file system domain which contains the task’s
input data. For example:
Requirements = Target.FileSystemDomain == "cs.wisc.edu";

The task writes its output to the local file servers, and the user transfers the output data from remote
domains when the task completes.

For higher performance file access, data may also be staged directly on the remote worksta-
tions. For example, each task may analyze a section of a very large dataset, where each section of
the dataset is itself large and the analysis requires significant CPU time. To provide fast access to
the dataset, a user may distribute the sections of the dataset to the local disks of workstations in
the grid and augment each workstation’s resource offer to include an attribute for each available
local dataset. For example:
HasDataSet172 = True; HasDataSet192 = True;

Each task requests a machine with local access to the datasets it needs. For example:
Requirements = Target.HasDataSet172 && Target.HasDataSet192;

Each dataset may be staged on multiple workstations to provide greater availability.

5 Conclusion

Computational grids can deliver large amounts of computing capacity to the high energy physics
community. Supporting data intensive applications on wide-area computational grids requires
careful management of network resources. We have presented two network management mech-
anisms developed for the Condor High Throughput Computing environment which attack the
wide-area network bottleneck by providing local access to checkpoint and data storage. Addi-
tional information about the Condor research project and Condor software is available at http:
//www.cs.wisc.edu/condor/.

References

1 M. Livny and R. Raman. High-Throughput Resource Management. In I. Foster and
C. Kesselman, Editors, The Grid: Blueprint for a New Computing Infrastructure, Chap-
ter 13. Morgan Kaufmann Publishers, Inc., 1998.

2 J. Basney, R. Raman, and M. Livny. High Throughput Monte Carlo. In Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scientific Computing, March 1999.

3 J. Goux, J. Linderoth, and M. Yoder. Metacomputing and the Master-Worker Paradigm,
September 1999. http://www.cs.wisc.edu/condor/mw/.

4 R. Raman, M. Livny, and M. Solomon. Matchmaking: An extensible framework for dis-
tributed resource management. Cluster Computing: The Journal of Networks, Software
Tools and Applications, 2:129–138, 1999.

