Policy Driven Heterogeneous Resource Co-Allocation with Gangmatching

Rajesh Raman, Miron Livny and Marvin Solomon
{raman, miron, solomon}@cs.wisc.edu
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706

Abstract

Dynamic, heterogenous and distributively owned re-
source environments present unique challenges to the prob-
lems of resource representation, allocation and manage-
ment. Conventional resource management methods that rely
on static models of resource allocation policy and behavior
fail to address these challenges. We previously argued that
Matchmaking provides an elegant and robust solution to re-
source management in such dynamic and federated environ-
ments. However, Matchmaking is limited by its purely bilat-
eral formalism of matching a single customer with a single
resource, precluding more advanced resource management
services such as co-allocation. In this paper, we present
Gangmatching, a multilateral extension to the Matchmak-
ing model, and discuss the Gangmatching model and its as-
sociated implementation and performance issues in context
of a real-world license management co-allocation problem.

Keywords: distributed resource management, match-
making, gangmatching, heterogenous computing, Condor

1. Introduction

Federated distributed systems present new challenges to
resource management. Conventional resource managers are
based on a relatively static resource model and a centralized
allocator that assigns resources to customers. This model
does not adapt well to highly dynamic environments char-
acterized by distributed management and distributed owner-
ship. Distributed management introduces resource hetero-
geneity: Not only the set of available resources, but even the
set of resource types is constantly changing [3]. Distributed
ownership introduces policy heterogeneity: Each resource
may have its own idiosyncratic allocation policy. We pre-
viously argued that Matchmaking provides an elegant and
robust solution to the problem of heterogeneous resource
management in dynamic, distributed environments [13].
Matchmaking provides a powerful language for a consumer

to express constraints and preferences on a resource and for
the resource to express constraints and preferences on a con-
sumer.

But Matchmaking has an important limitation: It
matches each customer with a single resource. In many
important application domains, a collection of resources
may be required to perform an action. Often, complex
consistency requirements hold between the consumer and
the resources, and amongst the resources. This paper
presents Gangmatching, a formalism that extends Match-
making from a bilateral to a multilateral model, and dis-
cusses the implementation and performance issues associ-
ated with Gangmatching.

We begin with a brief introduction to Matchmaking in
Section 2, and continue in Section 3 with a discussion of the
necessity of a multilateral matchmaking model by present-
ing a real-world multi-resource problem that has no prac-
tical bilateral matchmaking solution. We then present the
Gangmatching model in Section 4 and discuss implemen-
tation and performance of the Gangmatching model in Sec-
tions 5 and 6 respectively. Related work is presented in Sec-
tion 7 and future directions are identified in Section 8.

2. Matchmaking

The underlying ideas of the matchmaking paradigm are
intuitive and very simple. In this section, we briefly describe
the fundamental processes and components of our match-
making framework. Interested readers are referred to [13]
for further details.

Agents describe their capabilities and requirements by
sending messages to a Matchmaker. These messages, which
we call classified advertisements (classads) in analogy to
their newspaper counterparts, contain both descriptive in-
formation about entities and policy constraints on compat-
ible matches. The Matchmaker finds compatible pairs of
classads and informs agents of the results. The agents may
then use bilateral protocols to establish bindings based on
these results. For example, Submission agents may inform

the Matchmaker about Jobs waiting to be run, while Execu-
tion agents send classads describing Machines and their ca-
pabilities. Each Job classad describes the characteristics of
the Job, constraints on Machines suitable for running it, and
preferences to choose among compatible Machines. Simi-
larly, each Machine classad may impose impose constraints
and indicate preferences among Jobs it is willing to run.
When the Matchmaker finds a compatible (Job, Machine)
pair, it informs the corresponding Submission and Execu-
tions agents, which then engage in a claiming protocol to
cement the relationship and start running the Job.

Our matchmaking framework is composed of the follow-
ing components:

1. A language for specifying the characteristics, con-
straints and preferences of agents. Our framework uses
the classified advertisement (classad) language for this
purpose. Classads are semi-structured [10] records of
(name, expression) pairs which may be thought of
as “attribute lists” that describe agents. The language
has special undefined and error values, as well as spe-
cial operator semantics to operate robustly in heteroge-
neous and semi-structured environments.

2. The Matchmaker Protocol describes how entities com-
municate with the Matchmaker to post advertisements
and receive notifications.

3. The Matchmaking Algorithm is used by the Match-
maker to create matches. In the abstract, the match-
making algorithm transforms the contents of submitted
advertisements and the state of the system to the set of
matches created.

4. Claiming Protocols are activated between matched
parties to confirm the match, establish the allocation
and utilize the advertised services. Either party may
choose to withdraw from a match by rejecting a claim,
which may happen if the state of the agent has changed
since the last advertisement was posted.

The flexibility and expressiveness of the classad lan-
guage greatly contributes to the effectiveness of our Match-
making framework. Figure 1 shows a classad describ-
ing a workstation in the University of Wisconsin—-Madison
Condor [7] pool.l While most attributes in the classad
describe the machine’s characteristics, the Constraint
and Rank identify the advertising entity’s constraints and
preferences—i.e., the entity’s policy. When testing the
compatibility and preferences of two advertisements A and
B, the Matchmaker places the two advertisements in an

IThe Wisconsin Condor pool is currently composed of over 900 nodes,
running seven different architecture/operating system combinations. The
pool is used continuously as a production system to provide computation
services for several research projects.

evaluation environment such that in classad A, the reference
other evaluates to B, and vice versa. If A.Constraint
and B.Constraint both evaluate to true, the two adver-
tisements are deemed compatible and the Rank expressions
of A and B may be evaluated to determine their respective
preferences.

The classad language specifies the syntax and seman-
tics of the expressions in Figure 1, while the matchmaking
protocol and algorithm give special significance to the key-
words Constraint, Rank, and other. All policy in-
formation is expressed in the Rank and Constraint ex-
pressions; the classad language and matchmaking provide
the mechanism for enforcing it. For example, the worksta-
tion in Figure 1 has the following policy: Jobs belonging to
user “riffraff” are never accepted, and jobs are only serviced
when the machine has a low load average and its console
has been idle for at least fifteen minutes. Furthermore, jobs
with low image sizes are preferred between 9am and Spm.

[

Type = "Machine";

Activity = "Idle";

KeybrdIdle = ’00:23:12'; // h:m:s

Disk = 323.4M; // mbytes

Memory = 256M; // mbytes

State = "Unclaimed";

LoadAvg = 0.042969;

Mips = 104;

Arch = "INTEL";

OpSys = "LINUX";

KFlops = 21893;

Name = "foo.cs.wisc.edu";

Subnet = "128.105.175";

Rank = DayTime () >= 79:00’ &&
DayTime () <= "17:00" ?
1/other.ImageSize : 0;

Constraint other.Type=="Job" &&

other.Owner!="riffraff" &&
LoadAvg < 0.3 && KeybrdIdle>’00:15"

Figure 1. Classad describing a Machine

Many interesting and useful policies may be easily de-
fined within this framework; interested readers are referred
to reference [14] for more sophisticated examples derived
from the policies of real-world users of the Condor system.

3. Motivation for Gangmatching

One of the first indications of practical limitations to bi-
lateral matchmaking arose in the context of Condor. A Con-
dor user had purchased licenses for various software pack-
ages. Jobs that use such packages need to allocate both a
machine and a license before they can run. Licensing terms
impose a variety of constraints on running instances of an
application. For example, in addition to issuing a limited
number of licenses, some licenses may be valid only on
some workstations, while others may be valid on certain

subnets. Other licenses may “float” throughout the site, but
once claimed on a particular machine, may be valid for sev-
eral instances of the application on that machine. In the
context of such policies, it becomes necessary to treat soft-
ware licenses as resources that must be managed with the
same degree of flexibility and robustness as other resources
in a resource management system.

Due to the dependencies between job, workstation and
license, conventional bilateral matchmaking is inadequate
for solving this problem. An attempt to work around the
problem might use two interactions with the Matchmaker.
On the first round, the submission agent would submit an
ad describing a Job and seeking a matching Machine. On
receiving a response, it could then send an ad describing the
(Job, Machine) pair and looking for a suitable license. How-
ever, if licenses are in short supply, the first match might tie
up a machine for lengthy periods while waiting for a license.
In the worst case, deadlock is possible. A similar problem
arises if the Submission agent requests the license first and
then the machine. Strategies that allocate one resource and
subsequently free it if the other other is not available are
highly inefficient and can lead to livelock and starvation.
The need for a matchmaking scheme that can marshal a
consistent aggregation of dependent classads in an atomic
operation is therefore clear.

It is important to note that we are not merely proposing a
mechanism to solve specific license management scenarios,
which may be individually solved by ad hoc mechanisms
that are simpler than our Gangmatching solution. Our goal
is to develop a single method of multilateral matchmaking
that is agnostic to the kinds of resources being matched and
thus capable of marshaling consistent resource aggregates
whose composition and inter-dependencies are not known
to the Matchmaker a priori.

4. The Gangmatching Model

The challenge of developing a multilateral matchmaking
model is in defining a solution that inherits and extends the
full generality of the bilateral matchmaking scheme. The
power of the Matchmaking model is in managing resources
whose properties and dependencies are not known a pri-
ori. In direct analogy, we required our multilateral model
to be able to marshal candidate groups in which the specific
kinds of candidates and their inter-dependencies are defined
only by the candidates themselves. There are many conse-
quences of this requirement.

The most important requirement of a multilateral match-
making model is a scheme to express the need to marshal
an arbitrary number of candidates. Since no central schema
is legislated, it is important that the “interfaces” of these
different candidate resource types be separated to prevent
namespace collisions and ambiguity. Next, the solution

must provide the ability to relate the properties of multi-
ple candidates through arbitrary constraints defined on can-
didate individuals and groups. Since the constraints may
themselves be defined in different advertisements, a mecha-
nism must be provided for properties about some candidates
to be conveyed to other candidates who might not know
the full composition of the group. For example, a com-
pute server may need information about a data file without
knowing if the file data is expressed as part of the user’s job
attributes, or if the user is marshaling in a replica from a
storage server as part of the multilateral match. Finally, the
solution must be amenable to efficient implementation.

Gangmatching is our solution to the multilateral match-
making problem. The Gangmatching model follows a dock-
ing paradigm, where aggregate “gangs of classads” are cre-
ated by binding together (i.e., “docking”) individual clas-
sads with a matching operation. Intuitively, Gangmatching
extends regular matchmaking by replacing a classad’s sin-
gle implicit bilateral match imperative with an explicit list
of required bilateral matches, with the additional ability of
allowing classads to access information from other bilateral
match localities.

Each basic docking operation occurs between ports of
classads. The port abstraction serves multiple purposes.
First, ports serve as matchmaking interfaces, allowing in-
formation to be provided to candidates independent of how
the information is generated (i.e., some constant value, or
from properties of other candidates in the gang). Second,
the port abstraction separates the namespaces of candidates,
and provides a naming scheme that allows the properties of
candidates to be accessed from other localities. Finally, the
abstraction imposes a structure on the aggregate gang that
simplifies the definition and implementation of algorithms
that operate on the entire group.

We introduce the Gangmatching model by discussing
the license management problem in context of the compo-
nents of a matchmaking framework: classad representation,
matchmaking algorithm, matchmaking protocols and claim-
ing protocols. More complex examples of the capabilities of
the Gangmatching model are provided in reference [12].

4.1. ClassAd Representation

The classad representing the job in the license manage-
ment problem is illustrated in Figure 2. The most notable
feature of the example is the Ports attribute. A classad’s
ports define the number and characteristics of matching ads
required for that classad to be satisfied. In the Gangmatch-
ing model, bilateral matchmaking occurs between the ports
of classads instead of entire classads.

Each port defines a Label that names the candidate
bound to that port, replacing the fixed other attribute of
bilateral matching. The scope of a label extends from the

[Type = "Job";
// some common attributes

Owner = "raman";
QDate = ’Mon Feb 28 14:22:22 2000 (CST) -06:00";
Cmd = "run_sim";
Ports = {
[// request a workstation
Label = cpu;
ImageSize = 28M;
Rank = cpu.KFlops/1lE3 + cpu.Memory/32;
Constraint = cpu.Type=="Machine" &&
cpu.Arch == "INTEL" &&
cpu.OpSys == "LINUX" &&
cpu.Memory >= Imagesize;
i
[// request a license
Label = license;
Host = cpu.Name; // cpu name
Rank = 0;
Constraint = license.Type=="License" &&
license.App == Cmd;

Figure 2. A Gangmatch request

port of declaration to the end of the port list. Thus, expres-
sions in the second port with declared label “license” can
refer to the “cpu” label declared in the first port, but not
vice versa. Furthermore, port labels are private and local
to the hosting classad, preventing namespace pollution and
collisions.

In this example, as in many cases of Gangmatching, con-
straints on some matches are influenced by the attributes of
other classads participating in the match. Specifically, the
validity of a license depends on the particular machine that
has been chosen to host the application. By allowing the
scopes of labels to extend beyond the port of declaration,
the Gangmatching mechanism allows the ability to convey
information from one match locality to another. Thus, the
license request port can convey the location of the chosen
workstation to the license offer via the Host attribute. Note
that labels of succeeding ports may not be referred to by
preceding ports, which limits the dependency relations be-
tween ports and makes the model more amenable to effi-
cient implementation. Specifically, the scoping rules guar-
antee that the first port of an advertisement is not dependent
on any other port.

Example advertisements of workstations and licenses (as
would be advertised by workstation and license agents) are
illustrated in Figures 3 and 4 respectively. The workstation
classad is very similar to its bilateral matchmaking counter-
part, except for the presence of a port to explicitly indicate
its imperative to match one entity.

The most noteworthy aspect of the license classad is the
presence of requester.Host in the Constraint ex-
pression which, refers to the Host attribute of the matching
port. Since this attribute was defined as cpu . Name in Fig-
ure 2, the referenced value is the name of the workstation

[Type = "Machine";
Activity = "Idle";
KeybrdIdle = ’00:23:12'; // h:m:s
Disk = 323.4M; // mbytes
Memory = 256M; // mbytes
State = "Unclaimed";
LoadAvg = 0.042969;
Mips = 104;
Arch = "INTEL";
OpSys = "LINUX";
KFlops = 21893;
Name = "foo.cs.wisc.edu";
Subnet = "128.105.175";
Ports = {
[Label = requester;
Rank = 1/requester.ImageSize;
Constraint = requester.Type=="Job" &&
requester.Owner!="riffraff" &&
LoadAvg < 0.3 && KeybrdIdle>’00:15'
]
}
]
Figure 3. Workstation Advertisement
[Type = "License";
App = "sim_app";
ValidHost = "foo.cs.wisc.edu";
Ports = {
[Label = requester;
Rank = 0;
Constraint = requester.Type=="Job" &&

requester.Host==ValidHost

Figure 4. License Advertisement

chosen to run the job. Thus, the license’s constraint is sat-
isfied only if the chosen workstation is the single valid host
“foo.cs.wisc.edu.” Clearly, more complex constraints may
be expressed in the license constraint to implement sophis-
ticated license management policies.

Note that the Gangmatching model requires the job clas-
sad to convey host information to the license classad via
the appropriate port. The license ad cannot directly access
the Name attribute of the machine ad. This scoping restric-
tion was deliberate. The 1icense port declared in the Job
ad acts as an abstract “interface” to potential license ads.
The job classad in turn “implements” that interface by ex-
porting a matching workstation’s name through its attribute
Ports[1l] .Host.

4.2. Matchmaking Algorithm

The role of the Matchamking algorithm in the Gang-
matching scheme is to marshal a consistent “gang” of clas-
sads for the job classads in the system. Conceptually, a gang
is constructed by starting with a degenerate gang composed
of a single root classad, and then binding each unbound port
of the gang to a compatible port of a new classad (one not

already in the gang) until all ports in the gang are bound and
the gang is consistent (i.e., all constraints are satisfied).

Different concrete algorithms may be employed to im-
plement this conceptualization. We describe a few specific
algorithms developed to exploit the known structure of the
Gangmatching problem in Section 5.

In the license example, a gang consists of three ads: a
job, a machine and a license. If one of the ads, for exam-
ple the license, had another port, the match would not be
complete until another ad was found to match against the
“unbound” port. In general, a match consists of a tree of
ads. Each pair of adjacent ads is bound by choosing a port
ad from each and checked by evaluating the Constraint
attributes of the two port ads. Each Constraint expres-
sion can refer to attributes of its own ad as well as attributes
of the Port ads bound to its port and earlier ports in its
containing ad.

Although this conceptual model suggests a “left-to-
right” evaluation of Constraint expressions, it does not
require it. In fact, we shall see in Section 5 that other order-
ings can be substantially more efficient.

4.3. Matchmaking Protocols

The Gangmatching model does not require any modi-
fication to the the advertisement protocol that is used by
agents to send their classads to the matchmaker. However,
the notification protocol (used by the matchmaker to no-
tify matched agents) requires a modest and straightforward
extension: The matchmaker must now notify every agent
whose classad was matched in the gang, and it must include
in the notification all relevant information about the other
ads it matched. A simple way to provide this information
is simply to send the entire gang to each agent, letting the
agents extract whatever parts of it they find useful.

4.4. Claiming Protocols

The claiming protocols for Gangmatching must proceed
in a two-phase manner to accommodate the possibility of
any agent in the gang rejecting the match. Claiming is initi-
ated by the agent whose advertisement serves as the root of
the gang (the root agent), and proceeds recursively in a top-
down manner. The root agent begins by checking whether
each of its gang neighbors is willing to participate in the
transaction. During the delay between the initial message
from the agent to the matchmaker and the time when it is
contacted during the claiming protocol, its local conditions
may have changed so that it no longer considers the match
valid. If so, it responds in the negative and the root agent
tells all members of the gang to discard the match and start
over. If the match is still valid and it is not a leaf in the
gang tree, it contacts its children to validate the match. Af-

firmative responses pass up the tree to the root. If the root
agent get affirmative responses from all its children, it en-
ters the second phase, in which claims and allocations are
established.

5. Gangmatching Implementation

Given a set of classads, Gangmatching proceeds as a pe-
riodic activity by identifying a subset of classads that will
serve as gang roots, and sorting these roots using some cri-
terion. For example, job classads may be identified as roots
and sorted by priority order. Thereafter, the Gangmatching
algorithm attempts to marshal a consistent gang for each
root (in order), eliminating matched ads from further con-
sideration. Note that our implementations handle the full
generality of the Gangmatching scheme; however, we re-
strict our descriptions to the license management problem
for purposes of clarity and simplicity.

We begin by describing a simple naive algorithm that
serves to illustrate the obvious solution, and provide con-
text to the algorithms that follow. The naive algorithm is
a simple recursive backtracking search. Given a root clas-
sad, the matchmaker proceeds sequentially through its ports
from first to last, attempting to find a candidate compatible
with that port. If a candidate is found to be incompatible,
another candidate is tried, until the a successful candidate
is discovered, or all candidates are exhausted. If no can-
didate could be found for a particular port, the algorithm
backtracks to the previous port and attempts to replace the
incumbent at that port with another compatible candidate,
proceeding forward if the attempt was successful. If the al-
gorithm reaches the end of the root’s port list, a gang has
been successfully marshaled, and if the algorithm attempts
to backtrack from the first port, no consistent gang exists.
If a matching ad has more than one port (so that the re-
sulting gang is a multi-level tree), the algorithm is called
recursively to iterate through potential sub-gangs using it as
aroot.

Although the naive algorithm will give the correct re-
sult, it may be very inefficient, depending on the nature and
distribution of the available ads. In relational database ter-
minology, the Gangmatching problem is similar to a multi-
way join’. Relational database systems use two techniques
for optimizing such queries: reordering the pairwise joins,
and choosing the right algorithm for each join.

The naive algorithm performs each pairwise join using
simple nested loops. We use a classad indexing scheme that
indexes both attributes and constraints to efficiently exclude
large numbers of incompatible candidates. The basic idea is

2The difference between a database join and matchmaking is that when
multiple matches are found, a join returns them all, while matchmaking
chooses one. Also, a match “consumes” the matched ads.

to use conventional search trees for attribute indexes and in-
terval trees to index the constituent comparison expressions
of constraints, which may be thought of as intervals over
some domain. Due to the efficiency of the indexing scheme
and its ability to provide tight supersets of candidates, it is
also used in heuristic functions to guide the strategy of the
Gangmatching algorithm by estimating candidate set sizes
for ports.

As in the case of relational queries, reordering joins can
yield orders of magnitude speedup. For example, consider
our license example when there are many compatible ma-
chines but a small number of highly selective licenses. The
naive algorithm would iterate through all matches of jobs
to machines, trying to find an appropriate license for each
such match. Most of the effort spent matching jobs to ma-
chines would be wasted. A much more efficient approach
would be to first match a job to a license, and then look
for a compatible machine. The license’s Constraint ex-
pression makes indirect reference to the Name attribute of a
machine ad, so it cannot be fully evaluated until a machine
ad is chosen. However, it can be partially evaluated. Per-
haps a license candidate can be rejected out of hand. For
example, if the clause && Owner == "solomon" were
added to the license ad of Figure 4, a match with the ad
of Figure 2 could be rejected regardless of machine. If the
partial gang cannot be rejected at this stage, it can still be
represented as a classad with a Constraint expressions
to be matched against potential machine ads. The indexing
techniques mentioned above can be use in this step as well.

Since it is always possible (and often likely) for a fixed
strategy to work extremely poorly in realistic workloads
which constantly change, it is important to develop an adap-
tive algorithm that chooses the right strategy dynamically.
We augmented the naive algorithm with heuristics to fill
ports in ascending order of candidate set sizes. Thus, for ex-
ample, if there are a large number of compatible machines
but a small set of licenses, the algorithm first chooses a li-
cense and then attempts to find a machine that is compatible
with the license, dynamically shunting constraints from the
license classad to the cpu port of the job classad to accom-
plish the task. Furthermore, if there are no licenses, the al-
gorithm can immediately terminate without having to check
for machine compatibility at all.

6. Gangmatching Performance

In this section, we present the performance of the fixed-
order, fixed-order with indexes, and dynamic algorithms.
Classads used for these experiments are similar in struc-
ture to the job, workstation and license classads presented
in Figures 2, 3 and 4, except that only architecture, operat-
ing system, physical memory and virtual memory attributes
were modeled for workstations, with corresponding con-

straints imposed on them by jobs. In addition we modeled a
memory size attribute for jobs, which is constrained by the
workstation classads.

Workloads are characterized by three parameters: NV, the
number of job and workstation classads (always equal), L,
the license density (the relative number of license classads,
either 50% or 100% of N), and .S, the selectivity index of li-
cense classads (1, 2, 4 or 8). For selectivity index S, the sets
of license and workstation classads are each divided into .S
disjoint equally sized partitions; licenses in each partition
are only valid on workstations from the corresponding par-
tition.

Figure 5 illustrates the elapsed time performance of the
naive fixed-order algorithm on this benchmark (Intel Pen-
tium Pro Linux workstation with 256MB RAM). Curves fall
into two bands, those with license density L of 50% (above)
and those with license density 100% (below). Two points
are worth noting: First, the naive algorithm is especially in-
efficient when matches cannot be made due to scarcity of
licenses. When licenses are scarce, the algorithm must fre-
quently backtrack, leading to a running time that is high and
grows quadratically with the number of ads. Second, the
costs of backtracking and evaluation dominate the elapsed
time so that the selectivity S has nearly no additional effect
on performance.

Figure 6 shows what happens when indexes are used to
speed up the search. As in Figure 5, the upper curve corre-
sponds to the 50% license density workloads. Although this
graph looks similar to Figure 5, the reader should note the
scale; performance is improved by an order of magnitude
overall. The indexed algorithm handles upto 4000 job clas-
sads in at most 580 seconds, compared to only 500 classads
in 800 seconds, in the worst case. Again, selectivity is not
seen to be a significant factor.

The elapsed time of the indexed algorithm is closely
aligned with the number of index probes, as shown in Fig-
ure 7. Therefore, we present the rest of our results in probe
counts rather than seconds of elapsed time, as probe counts
are less sensitive to implementation details such as proces-
sor and memory speeds.

Figure 8 exhibits the performance of the dynamic algo-
rithm on the same workload, as measured by the number of
index probes. In contrast to the previous algorithms, the per-
formance of the dynamic algorithm does not differ signifi-
cantly between the 50% and 100% license density regimes,
demonstrating the efficacy of the dynamic scheme.

To contrast the performance of the dynamic and the in-
dexed fixed order (i.e., “left-to-right”) algorithms, we com-
pare the number of probes issued by each algorithm in the
two license density regimes. Figure 9 illustrates representa-
tive curves of the number of probes issues by the two al-
gorithms in the 100% license density case with selectiv-
ity S = 1. We note that the dynamic algorithm actually

800

700 -

600 -

Elapsed time (seconds)
N o
& 2
8 g
T T

@

3

3
T

200

100

50 100 150 200 250 300 350 400 450
Number of classads

Figure 5. Naive Algorithm Performance

issues more probes than the indexed fixed-order algorithm
due to the additional probes required by the heuristic func-
tion, which then chooses the same “left-to-right” strategy as
the fixed-order algorithm. However, the situation is drasti-
cally reversed in Figure 10, which illustrates the number of
probes issued when the license density is only 50% — the
fixed-order algorithm issues upto 425,000 probes, while the
dynamic algorithm issues less than 11,000 probes.

To highlight the performance gained by the dynamic al-
gorithm due its agility, we present the performance of a
fixed-order indexed algorithm that runs right-to-left. The
performance of the algorithm is dual to the left-to-right al-
gorithm in that it performs well in the 50% license den-
sity case. However, in the 100% workload, the algorithm
performs worse than the left-to-right algorithm in the 50%
workload. This is due to the fact that unlike workstation
that have attributes such as operating system and architec-
ture, there are no attributes to differentiate licenses from
one another. Thus, the right-to-left algorithm is severely
handicapped by having to consider every single license as a
possible candidate. Furthermore, selectivity plays a signif-
icant role in this experiment. For higher selectivity values,
the reduced machine to license ratio of the 100% workload
makes it less likely to obtain a workstation matching a job’s
constraints once a license has already been picked from a
particular partition. Thus, higher selectivity indexes pro-
voke correspondingly worse performance from the right-to-
left algorithm.

Thus, we see that the dynamic algorithm is distinctly bet-
ter than any fixed-order algorithm. The heuristic allows the
dynamic algorithm to avoid the pathological cases of the
fixed-order algorithms. The stability of the algorithm under
workload variations, as characterized by the proximity of
the 50% and 100% regime curves in Figure 8 indicate that
it is a far better choice than any fixed-order algorithm.

500

600

Elapsed time (seconds)
@ a
8 8
S 8
T T

N

S

5
T

100

T
501/ —+—
50/2/ ~-%--
50/4/ <%
50/8/ &,
100/1/ -~
10012/ -/o-
100/4/ /- -@--
100/gf - a---

Figure 6. Indexed

Number of classads

Performance

Left-to-Right Algorithm:

450000

400000

T

350000

300000

T

250000

200000

T

Number of index probes

150000

100000

T

50000 [~

T
501/ ——

100/8)-- a--- |

0
500

Figure 7. Indexed

1000 1500 2000 2500
Number of classads

Probes issued

3000

3500 4000

Left-to-Right Algorithm:

Number of index probes

Number of index probes

12000

" 501/ ——
—

10000

8000

6000

4000

2000

L L L
2000 2500 3000

Number of classads

0 L
500 1000 1500 3500

Figure 8. Dynamic Algorithm: Probes issued

12000

4000

GynA00A/ ——
710011/~

10000

8000

6000

4000

T

2000

L L L
2000 3000 3500

Number of classads

L
1000

1500

2500

Figure 9. Left-to-Right vs. Dynamic: 100%
license density

4000

Number of index probes

Number of index probes

450000 T
dyn/50/1/ —+—
Ir/50/1/ =%~
400000 | 1
350000 [—
X
300000 |- g
250000 | R
X
200000 1
150000 —
100000 1
50000 | -
, ‘
0 1500 2000 2500 3000 3500 4000
Number of classads
Figure 10. Left-to-Right vs. Dynamic: 50%
license density
450000
5011/ —+—
50, g
400000 |
350000 | - o008/
300000 | —
e
250000 [—
LT o
200000 o 4
. g B
150000 IR SEy 4
.
100000 - q
50000 —
0 = #
500 1000 1500 2000 2500 3000 3500 4000

Number of classads

Figure 11. Indexed Right-to-Left Algorithm:
Probes issued

7. Related Work

The concept of matchmaking is not new in itself since
the topic is widely studied for agent systems. Agents sys-
tems such as ACL [5] and RETSINA [16, 17] employ pow-
erful advertisement languages with inferencing capabilities
so that general behavioral specifications of agents may be
described and reasoned about. In contrast to the knowledge-
base representations used in these systems, the classad lan-
guage uses a database representation. Expression evaluation
semantics are simple and lightweight, facilitating efficient
and robust implementation.

The classad notation is very similar to that of general-
ized tuples found in constraint databases [4]. The bilat-
eral matchmaking operation is intuitively similar to a spa-
tial join between server and customer classads. Matchmak-
ing differs from a spatial join in that matchmaking “con-
sumes” classads during the matching process — a classad
may be matched at most once. Also, in contrast to con-
straint database systems, our framework employs a semi-
structured data model.

Globus [2, 1] defines an architecture for resource man-
agement of autonomous distributed systems with provisions
for policy extensibility and co-allocation. Customers de-
scribe required resources through a resource specification
language (RSL) that is based on a pre-defined schema of
the resources database. Although Globus provides flexible
APIs to perform more sophisticated co-allocation, these re-
quirements cannot be stated in RSL.

Most resource management systems such as LSF [18],
Prospero [11], PBS [6] and NQE [15] process user submit-
ted jobs by finding resources that have been identified either
explicitly through a job control language, or implicitly, by
submitting the job to a particular queue that is associated
with a set of resources. Jobs that require multiple resources
must be submitted to queues that can service the special re-
quirements of these jobs. There is no mechanism for a job
to marshal a unique mix of resources to service its particular
needs.

Set-matching extends the ClassAds language to provide
a multilateral matchmaking mechanism where the number
of resources is not known a priory[9]. However, the set
matching mechanism is not capable of marshaling a hetero-
geneous mix of resources.

The RedLine system casts multilateral matchmaking as
a constraint satisfaction problem[8], and is thus capable of
using many of the techniques developed for constraint pro-
gramming. The scheme borrows and extends many of the
principles and techniques developed in our matchmaking
framework, but uses a substantially more complex adver-
tising language. The recency of the system and lack of ex-
perience with it makes more detailed comparison difficult.

8. Conclusions and Future Work

Dynamic, heterogenous and distributively owned re-
source environments present unique challenges to the prob-
lems of resource representation, allocation and manage-
ment. We have previously demonstrated that the matchmak-
ing paradigm offers a natural solution to these problems,
and has been demonstrated to work well in practice. In this
paper, we have introduced a multilateral matchmaking ex-
tension to address the problem of heterogenous resource co-
allocation, motivated by the intent of solving a real problem
encountered by production users of the Condor system.

Our contribution is in defining the abstractions that com-
prise the Gangmatching scheme, and accompanying im-
plementations of multiple algorithms that implement the
model, demonstrating the feasibility of the Gangmatching
solution. A semi-structured data indexing method and a
heuristic-driven dynamic algorithm have been used to ef-
ficiently implement the Gangmatching model.

A significant goal of our future work is to incorporate
preferences into the gangmatching algorithm, and develop
more sophisticated algorithms to cope with the possibility
of larger (i.e., both “wider” and “deeper”) classad gangs.

There remain some useful extensions to be made to the
gangmatching model. A shortcoming of our current for-
mulation is that the number of resources required for a co-
allocation must be known a priori. While this restriction
is reasonable for heterogenous resource co-allocation, there
are many situations, such as workstation allocation for par-
allel computations, when a dynamic number of relatively
homogeneous resources are required. It would be interest-
ing to generalize the gangmatching model to address this
possibility.

References

[1] K. Czajkowski, I. Foster, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A Resource Management Archi-
tecture for Metacomputing Systems.

[2] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. To appear in International Journal of
Supercomputer Applications.

[3] I.Foster and C. Kesselman, editors. The GRID: Blueprint for
a New Computing Infrastructure, chapter High Throughput
Resource Management, pages 311-336. Morgan Kaufman,
1999.

[4] V. Gaede and M. Wallace. An informal introduction to con-
straint database systems. Lecture Notes in Computer Sci-
ence, 1191:7-52, 1996.

[5S] M. Genesereth, , N. Singh, and M. Syed. A distributed
anonymous knowledge sharing approach to software inter-
operation. In Proc. of the Int’l Symposium on Fifth Genera-
tion Computing Systems, pages 125-139, 1994.

(6]

(7]

[8

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Henderson and D. Tweten. Portable Batch System: Exter-
nal reference specification. Technical report, NASA, Ames
Research Center, 1996.

M. J. Litzkow and M. Livny. Experience with the Condor
Distributed Batch System. IEEE Workshop on Experimental
Distributed Systems, 1990.

C. Liu and I. Foster. A constraint language approach to grid
resource selection. In Proceedings of the Twelfth IEEE Inter-
national Symposium on High Performance Distributed Com-
puting (HPDC-12)., June 2003.

C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evalu-
ation of a resourceselection framework for grid applications.
In Proceedings of the Eleventh IEEE Symposium on High-
Performance Distributed Computing, July 2002., 2002.

S. Nestorov, S. Abiteboul, and R. Motwani. Inferring Struc-
ture in Semistructured Data. In Proceedings of the Workshop
on Management of Semistructured Data, Tucson, Arizona,
May 1997.

B. C. Neumann and S. Rao. The prospero resource manager:
A scalable framework for processor allocation in distributed
systems. Concurrency: Practice and Experience, June 1994.
R. Raman. Matchmaking Frameworks for Distributed Re-
source Man-agement. PhD thesis. University of Wisconsin-
Madison, 2000.

R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed resource management for high-throughput com-
puting. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing
(HPDC?7), July 1998.

R. Raman, M. Livny, and M. Solomon. Matchmaking: An
extensible framework for distibuted resource management.
Cluster: Journal of Software, Networks and Applications.
(Special Issue on High Performance Distributed Comput-
ing), 2(2), 1999.

C. Research. Document number in-2153 2/97. Technical
report, Cray Research, 1997.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. /[EEE Expert, pages
3646, dec 1996.

K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic ser-
vice matchmaking among agents in open information envi-
ronments. SIGMOD Record, 1999.

S. Zhou. LSF: Load sharing in large-scale heterogenous dis-
tributed systems. In Proc. Workshop on Cluster Computing,
1992.

10

