

Data Placement for Scientific Applications in
Distributed Environments

Ann Chervenak1, Ewa Deelman1, Miron Livny2, Mei-Hui Su1, Rob Schuler1, Shishir Bharathi1, Gaurang Mehta1,
Karan Vahi1

1USC Information Sciences Institute
Marina Del Rey, CA 90292

{annc,deelman,mei,schuler,shishir,gmehta,vahi}@isi.edu
2Computer Science Department, University of Wisconsin Madison

Madison, WI 53706-1685
miron@cs.wisc.edu

Abstract— Scientific applications often perform complex
computational analyses that consume and produce large data
sets. We are concerned with data placement policies that
distribute data in ways that are advantageous for application
execution, for example, by placing data sets so that they may be
staged into or out of computations efficiently or by replicating
them for improved performance and reliability. In particular, we
propose to study the relationship between data placement
services and workflow management systems. In this paper, we
explore the interactions between two services used in large-scale
science today. We evaluate the benefits of prestaging data using
the Data Replication Service versus using the native data stage-in
mechanisms of the Pegasus workflow management system. We
use the astronomy application, Montage, for our experiments
and modify it to study the effect of input data size on the benefits
of data prestaging. As the size of input data sets increases,
prestaging using a data placement service can significantly
improve the performance of the overall analysis.

I. INTRODUCTION
For data-intensive scientific applications running in a

distributed environment, the placement of data onto storage
systems can have a significant impact on the performance of
scientific computations and on the reliability and availability
of data sets. These scientific applications may produce and
process terabytes or petabytes of data stored in millions of
files or objects, and they may run complex computational
workflows consisting of millions of interdependent tasks,
including jobs that stage data in and out of storage systems
adjacent to computational resources. A variety of data
placement algorithms could be used, depending on the goals
of the scientific collaboration, or Virtual Organization (VO)
[17]. For example, a placement algorithm might have the goal
of placing data as close as possible to the computational nodes
that will execute a scientific analysis, or it might try to store
replicas of every data item on multiple storage systems to
avoid data loss if any storage system or disk fails. These goals
might be considered policies of the VO, and a policy-driven
data placement service is responsible for replicating and
distributing data items in conformance with these policies or
preferences.

In our previous work we examined issues of reliable data
placement [20] where the focus was on utilizing multiple data
transfer protocols to deliver data to their destination. We also
examined the issues of data management in the context of an
individual workflow [14], focusing on the interplay of the data
management and computation management components
within a single analysis.

In this paper, we are concerned with data placement
policies that distribute data in a way that is advantageous for
application or workflow execution, for example, by placing
data sets near high-performance computing resources so that
they can be staged into computations efficiently; by moving
data off computational resources quickly when computation is
complete; and by replicating data sets for performance and
reliability. Effective data placement policies of this type might
benefit from knowledge about available resources and their
current performance and capacity. Placement services could
also make use of hints or information about applications and
their access patterns, for example, whether a set of files is
likely to be accessed together and therefore should be
replicated together on storage systems.

We propose to study the relationship between data
placement services and workflow management systems. In
particular, our goal is to separate to the extent possible the
activities of data placement and workflow execution, so that
placement of data items can be largely asynchronous with
respect to workflow execution, meaning that data placement
operations are performed as data sets become available and
according to the policies of the Virtual Organization,
independently of the actions of the workflow management
system. This is in contrast to many current workflow systems,
which are responsible for explicitly staging data onto
computational nodes before execution can begin. While some
explicit data staging may still be required by workflow
engines, intelligent data placement on appropriate nodes has
the potential to significantly reduce the need for on-demand
data placement and to improve workflow execution times.

Based on their knowledge of applications and of expected
data access patterns, workflow management systems can
provide hints to data placement services regarding the

placement of data, including information about the size of data
sets required for a workflow execution and collections of data
items that are likely to be accessed together. A data placement
service can also get hints from the workflow system or from
information systems about the availability of computational
and storage resources. In addition, the Virtual Organization
can provide hints to the placement service on preferred
resources or on other policies that might affect the placement
of data. Together, these hints will provide important clues
regarding where computations are likely to run and where data
sets should be stored so that they can be easily accessed
during workflow execution.

In this paper, we use a simple prototype system that
integrates the workflow management functionality of the
Pegasus system [15, 16] with a data movement service called
the Data Replication Service [10]. Using these existing
services for data and workflow management in distributed
computing environments, our goal is to demonstrate that
asynchronous placement of data has the potential to
significantly improve the performance of scientific workflows.

The paper is organized as follows. First, we describe two
existing data placement services for large scientific
collaborations and discuss how they might benefit from
cooperation between placement services and workflow
systems. Second, we describe data placement alternatives for
scientific environments in more detail. Third, we describe two
existing systems used in large-scale science: Pegasus and the
Data Replication Service. We discuss the interplay of
functionality that allows these two systems to cooperate to
improve overall workflow performance. Next, we present
performance results for a Montage application, which
generates science-grade mosaics of the sky. These results
compare the performance of a workflow that uses
asynchronous data placement with one that does on-demand
data placement. They demonstrate that such data placement
can significantly improve the performance of workflows with
large input data sets. We conclude with related work and a
discussion of our future plans for work on the integration of
data placement and workflow management.

II. DATA PLACEMENT FOR LARGE SCIENTIFIC APPLICATIONS
Large scientific collaborations have developed complex

systems for management of data distribution and replication.
Existing data placement systems include the Physics
Experiment Data Export (PheDEx) [6, 32] system for high-
energy physics and the Lightweight Data Replicator (LDR)
[24] for gravitational-wave physics. In both collaborations, the
Virtual Organization has developed policies to distribute and
replicate data sets widely so that they will be available to
scientists at their individual institutions or near where
computations are likely to run and so that the system will
provide a high degree of availability.

In parallel with these data placement services,
computational workflows have emerged as an important
paradigm for large-scale computing. Many sciences are
turning to workflow management systems to provide a
framework for coupling community codes and applications

into large-scale analysis. Until now, data placement and
computation placement services have been developed largely
independently. However, we argue that these functionalities
should not be developed in isolation. Rather, we believe that
the next step beyond data distribution and replication is to
study the relationship between data placement and workflow
management. Our techniques could add value to existing
placement services such as PheDEx and LDR by providing
additional hints on where data sets should be placed to be used
effectively by workflow engines.

For the remainder of this section, we describe the
functionality of the PheDEx and LDR systems.

The high energy physics scientific community includes
several experiments that will make use of terabytes of data
collected from the Large Hadron Collider (LHC) [13] at
CERN. The data sets generated by these experiments will be
distributed to many sites where scientists need access to the
raw and processed data products. The high energy physics
community has a hierarchical or tiered model for data
distribution [6]. At the Tier 0 level at CERN, the data will be
collected, pre-processed and archived. From there, data
products will be replicated and disseminated to multiple sites.
Tier 1 sites are typically large national computing centers that
will have significant storage resources and will store and
archive large subsets of the data produced at the Tier 0 site. At
the next level, Tier 2 sites will have less storage available and
will store a smaller subset of the data. At lower levels of the
Tier system, smaller subsets of data are stored and made
accessible to scientists at their individual institutions.

The PheDEx system manages data distribution for the
Compact Muon Solenoid (CMS) high energy physics
experiment [13]. The goal of the system is to automate data
distribution processes as much as possible. Data operations
that must be performed include staging data from tape storage
(for example, at the Tier 0 site) into disk buffers; wide area
data transfers (to Tier 1 or Tier 2 sites); validation of these
transfers; and migration from the destination disk buffer into
archival storage at those sites. The PheDEx system design
involves a collection of agents or daemons running at each site,
where each agent performs a unique task. For example, there
are agents that stage data from tape to disk and agents that
perform data transfers. The agents communicate through a
central database running on a multi-server Oracle database
platform. The PheDEx data distribution system supports three
use cases for CMS. First, it supports the initial “push-based”
hierarchical distribution from the Tier 0 site at CERN to the
Tier 1 sites. It also supports subscription-based transfer of data,
where sites or scientists subscribe to data sets of interest, and
those data sets are sent to the requesting sites as they are
produced. Finally, PheDEx supports on-demand access to data
by individual sites or scientists.

The Lightweight Data Replicator (LDR) system [24]
distributes data for the Laser Interferometer Gravitational
Wave Observatory (LIGO) project [4, 23]. LIGO produces
large amounts of data and distributes or places it at LIGO sites
based on metadata queries by scientists at those sites.
Currently, the collaboration stores more than 120 million files

across ten locations. Experimental data sets are initially
produced at two LIGO instrument sites and archived at
CalTech; they are then replicated at other LIGO sites to
provide scientists with local access to data. LIGO researchers
developed the LDR system to manage the data distribution
process. LDR is built on top of standard Grid data services
such as the Globus Replica Location Service [9, 11] and the
GridFTP data transport protocol [5]. LDR provides a rich set
of data management functionality, including replicating
necessary files to a LIGO site. Each LDR site initiates local
data transfers using a pull model. A scheduling daemon
queries the site’s local metadata catalog to request sets of files
with specified metadata attributes. These sets of files are
called collections, and each collection has a priority level that
determines the order in which files from different collections
will be transferred to the local site. For each file in a
collection, the scheduling daemon checks whether the desired
file already exists on the local storage system. If not, the
daemon adds that file’s logical name to a priority-based
scheduling queue. Each LDR site also runs a transfer daemon
that initiates data transfers of files on the scheduling queue in
priority order. The transfer daemon queries replica catalogs to
find locations in the Grid where the desired file exists and
randomly chooses among the available locations. Then the
transfer daemon initiates data transfer operations from the
remote site to the local site using the GridFTP data transport
protocol.

While the PheDEx and LDR systems provide sophisticated
data placement and replication for their communities, these
systems could benefit from greater interplay with
computational schedulers such as workflow management
systems. Hints from workflow systems could potentially
influence the placement of data and significantly improve the
performance of computational analyses.

III. CLASSES OF DATA PLACEMENT SERVICES
In this section, we present a broad view of how data

placement services could be utilized by scientific applications.
There are three broad categories of placement algorithms:
those that seek to stage data efficiently into computations;
those concerned with staging data out of computational
resources; and algorithms designed to provide data reliability
and durability.

The first class of data placement algorithms is concerned
with staging data into computation analyses efficiently. In a
large workflow composed of thousands of interdependent
tasks, each task that is allocated for execution on a
computational node requires that its input files be available to
that node before computation can begin. Specific
characteristics of data access during workflow execution also
need to be taken into account by the data placement service.
For example, data items tend to be accessed as related
collections rather than individually, and a placement service
would ideally place items in a collection together on a storage
system to facilitate execution. In addition, data access patterns
tend to be bursty, with many data placement operations taking
place during the stage in (or stage out) phase of execution. In

this paper, we focus primarily on placement services that
move data sets asynchronously onto storage systems
accessible to computational nodes, ideally before workflow
execution begins so that workflow tasks do not need to wait
for data transfer operations to complete. This type of data
placement is illustrated in Fig. 1. Other placement algorithms
try to schedule jobs on or near nodes where data sets already
exist, as discussed in Section VII.A.

Workflow
Planner Data

Placement
Service

Compute
Cluster

Storage
Elements

Jobs Data
Transfer

Workflow
Tasks

Staging
Request

Setup
Transfers

Fig. 1: Workflow planner sends data staging requests to a data placement
service, which initiates data transfer operations from storage elements in the
distributed environment to the storage system associated with compute nodes
on which the workflow tasks will execute.

In practice, staging data out of computational resources
efficiently may also be a significant challenge for scientific
applications. When these applications run large analyses on
distributed resources (e.g., on the Open Science Grid [2],
which provides a number of diverse distributed resources to
scientific collaborations), the individual nodes that run
computational jobs may have limited storage capacity. When
a job completes, the output of the job may need to be staged
off the computational node onto another storage system before
a new job can run at that node. Thus, a data placement service
that is responsible for moving data efficiently off
computational nodes can have a large impact on the
performance of scientific workflows.

A third set of data placement algorithms is concerned with
the maintenance of data to provide high availability or
durability, i.e., protection from data failures. These placement
algorithms replicate data to maintain additional copies to
protect against temporary or permanent failures of storage
systems. For example, a placement service of this type might
create a new replica of a data item whenever the number of
accessible replicas falls below a certain threshold. These
replication algorithms might be reactive to failures or might
proactively create replicas. Several of these algorithms are
described in Section VII.C.

IV. THE PEGASUS WORKFLOW MANAGEMENT SYSTEM
Pegasus, which stands for Planning for Execution in Grids

[15, 16], is a framework that maps complex scientific

wo

n that at the time of
the

he new data
pl

REPLICATION SERVICE
For asyn o us data acement, we use the Data

Replication e DRS is to
re

rkflows onto distributed resources such as the TeraGrid [3],
the Open Science Grid, and others. Pegasus relies on the
Condor DAGMan [18] workflow engine to launch workflow
tasks and maintain the dependencies between them. Pegasus
enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying
cyberinfrastructure or the particulars of the low-level
specifications required by the cyberinfrastructure middleware
(Globus[19] and Condor [25]). As part of the mapping,
Pegasus automatically manages data generated during
workflow execution by staging them out to user-specified
locations, by registering them in data catalogs, and by
capturing their provenance information.

Sometimes workflows, as structured by scientists, are not
tuned for performance. Additionally, give

 workflow generation, the eventual execution resources are
not known, it is impossible to optimize the runtime of the
overall workflow. Since Pegasus dynamically discovers the
available resources and their characteristics, and queries for
the location of the data (potentially replicated in the
environment), it improves the performance of applications
through: data reuse to avoid duplicate computations and to
provide reliability, workflow restructuring to improve
resource allocation, and automated task and data transfer
scheduling to improve overall workflow runtime. Pegasus also
provides reliability through dynamic workflow remapping
when failures during execution are detected.

Currently, Pegasus schedules all the data movements in
conjunction with computations. However, as t

acement services are being deployed within the large-scale
collaborations, workflow management systems such as
Pegasus need to be able to interface and efficiently interact
with the new capabilities.

V. THE DATA

chr no pl
Service (DRS) [10]. The function of th

plicate a specified set of files onto a storage system and
register the new files in appropriate replica catalogs. DRS
builds on lower-level Grid data services, including the Globus
Reliable File Transfer (RFT) service, which provides reliable
multi-file transfer requests, and the Replica Location Service
(RLS), a distributed registry for replicated data items. The
operations of the DRS include discovery, identifying where
desired data files exist on the Grid by querying the RLS;
transfer, copying the desired data files to the local storage
system efficiently using the RFT service; and registration,
adding location mappings to the RLS so that other sites may
discover newly created replicas. Throughout DRS replication
operations, the service maintains state about each file,
including which operations on the file have succeeded or
failed. Fig. 2 illustrates the basic operation of the Data
Replication Service.

Fig. 2 Operation of the Data Replication Service

When a client request for a data replication operation
arrives (1), the Data Replication Service first queries a Replica
Location Service Index node to determine the location(s) of
the requested files in the Grid. The RLS Index returns a
pointer to an RLS local catalog at site 2, and the DRS next
queries that catalog (3) to determine the physical location of
the desired file(s). Next, the DRS issues a file transfer request
to the RFT Service (4), which initiates a third-party transfer
operation (5) between GridFTP servers at the source and
destination sites. After the file transfer operation is complete
(6), the DRS registers the new replica in its local RLS catalog
(7).

VI. WORKFLOW PERFORMANCE USING ASYNCHRONOUS DATA
PLACEMENT

We combined the functionality of the Data Replication
Service (DRS) for data placement with that of the Pegasus
system for workflow management. The goal is to demonstrate
that data-intensive workflows may execute faster with such
asynchronous data placement than with on-demand staging of
data by the workflow management system.

Our data placement is performed based on an explicit
knowledge of which files will be used during the workflow
execution. We issue requests to DRS to move these files to a
storage system associated with the cluster where workflow
execution will take place. This data movement takes place
asynchronously with respect to the execution of the workflow.

When the Pegasus workflow management system is
launched, it detects the existence of these data sets by
querying a replica catalog. If the data items are available on
the storage system associated with the computational cluster
where the workflow will run, then Pegasus accesses the data
sets via symbolic links to that storage system. Thus, Pegasus
avoids explicitly staging the data onto computational
resources at run time.

A. The Montage Workflow
For these experiments, we used the workflow for the

Montage astronomy application. Montage [1, 7] is an
application that constructs custom science-grade astronomical
image mosaics on demand. Montage is used as a key
component of eleven projects and surveys worldwide to
generate science and browse products for dissemination to the
astronomy community. Fig. 3 shows the structure of a small
Montage workflow. The figure only shows the graph of the
resource-independent abstract workflow. The executable
workflow will contain data transfer and data registration nodes
in addition to those shown in the figure.

The levels of the workflow represent the depth of a node in
a workflow determined through a breadth-first traversal of the
directed graph. At each level of the workflow, a different set
of executables that performs specific image processing
functions is invoked. The inputs to the workflow include the
input images in standard FITS format (a file format used
throughout the astronomy community), and a “template
header file” that specifies the mosaic to be constructed. The
workflow can be thought of as having three parts, including
reprojection of each input image to the coordinate space of the
output mosaic, background rectification of the reprojected
images, and coaddition to form the final output mosaic.

1

22

5

1

2 2

5

1

2 2

5

1

2

5

1

2

5

1

5

3

4

6

7

Fig. 3: A small Montage workflow.

To experiment with data-intensive workflows, we varied
the sizes of the Montage input data set. In addition to default
input file sizes in the range of Kbytes, we staged in an
additional input file for each job in the first level of the
Montage workflow. We set the size of these additional files to
2 Megabytes and to 20 Megabytes in two different
experiments. We expected that the performance results would
show greater benefits for more data-intensive workflow
executions.

B. Performance Comparison
The workflows for our experiments ran on a cluster with up

to 50 available compute nodes, where each node is a dual
Pentium III 1GHz processor with 1GByte of RAM running
the Debian Sarge 3.1 operating system. The data sets are

staged onto a storage system associated with the cluster from a
GridFTP server on the local area network.

In our experiments, we compared the time it takes to
asynchronously prestage data versus letting the Pegasus
workflow management system stage the data explicitly as part
of the workflow execution. The graphs below show the time
to stage data using the Data Replication Service; the running
time of the workflow when the data are already prestaged by
DRS, requiring no additional data movement by Pegasus; and
the running of the workflow when Pegasus manages the data
staging explicitly. In order to facilitate comparisons, we also
show the sum of the DRS data staging time and the Pegasus
execution time for prestaged data, which would correspond to
sequential invocation of these two services.

In our experiments, we modified the data granularity of the
Montage workflow from the default size. Our hypothesis was
that asynchronous data placement would be more
advantageous for workflows that were data-intensive. To test
this hypothesis, we experimented with three input sizes for the
files required by the Montage workflow. Table 1 shows the
total number of files used as input to each workflow execution,
where additional files are used to simulate more data-intensive
workflows.

Table 1 shows the total number of files used as input to
each workflow execution, where additional files are used to
simulate more data-intensive workflows.

Table 2 shows the total input size for each degree of the
Montage workflow that we ran. Although we increase the
input data size for the workflow, the computational run time
of the workflow remains the same as for the default input size,
because the additional input files are ignored for the purposes
of computation.

TABLE 1

NUMBER OF INPUT FILES

Number of input files for workflow execution Degree
Square of
Montage

Mosaic
Default input

size

With
additional
2MB files

With
additional

20MB files
1 50 95 95
2 166 318 318
4 648 1258 1258

TABLE 2

 TOTAL INPUT SIZE FOR WORKFLOWS

Total input size for workflow execution Degree
Square of
Montage

Mosaic Default

With
additional
2MB files

With
additional

20MB files
1 91 MBytes 182 MBytes 993 MBytes
2 307 MBytes 612 Mbytes 3.31 GBytes
4 1.2 GBytes 2.4 GBytes 13.2 GBytes

Fig. 4 through Fig. 6 show the performance of the Montage

workflow with three input sizes for mosaic degrees of 1, 2 and

4. The line in each graph labeled “DRS” shows the time for
the Data Replication Service to do asynchronous placement of
the input files onto the storage system associated with the
cluster. The line in each graph labeled “Pegasus with
Prestaged Data” shows the execution time for the workflow
under Pegasus using the data sets that have been prestaged by
DRS. The line labeled “DRS + Pegasus” shows the sum of
these times for data staging and execution with pre-staged
data, as a measure of the worst-case performance if these two
operations occur sequentially. Finally, the line labeled
“Pegasus with Data Staging” shows the performance of the
Montage workflow when the Pegasus system stages the data
as part of the workflow execution. Pegasus stages data
through explicit data transfer tasks in the workflow. These
tasks are placed by DAGMan (Pegasus’ workflow engine) in
the local Condor queue and eventually released for execution.
Thus, these data movement tasks incur the overheads of the
Condor queuing and scheduling system. As the number of
data transfer jobs increases, these overheads also increase, and
the execution time of workflows using Pegasus to perform
data staging may exceed the execution time for the
combination of DRS data staging and Pegasus execution with
prestaged data, as can be seen most notably in Fig. 6.

Default Montage Workflow

0

1000

2000

3000

4000

5000

6000

1 2 4

Degree Square of Montage Mosaic

R
un

tim
e

in
 S

ec
on

ds

DRS

Pegasus with
Prestaged Data
Pegasus with Data
Staging
DRS+Pegasus

Fig. 4 Shows the execution times for a Montage workflow with the default
input size for mosaic degrees of 1, 2 and 4. Different lines show the time for
prestaging data with DRS; the execution time for the workflow if data sets
have been prestaged; the combined execution time for DRS staging and
Pegasus execution; and finally the execution time for a Montage workflow in
which Pegasus explicitly stages in data at run time.

Fig. 4 shows the performance for the default input size for
the Montage workflow. The graph shows that there is a small
advantage for prestaging data for this workflow, where a total
of about 1.2 GBytes are prestaged by DRS. Workflow
execution time is reduced approximately 8% for the combined
DRS staging plus Pegasus execution, compared to the case
where Pegasus explicitly stages data.

Fig. 5 also shows a small advantage for prestaging data for
the Montage workflow. Here, we increase the total input data
size by transferring an additional 2 MByte file into every job
at the first level of the Montage workflow. With a mosaic
degree of 4, the total input data size is about 2.4 Gbytes,
approximately double the size for the experiment in Fig. 4.

As expected, for the most data intensive of the workloads
we measured, the advantages of prestaging data using the Data
Replication Service are significant, as shown in Fig. 6. For

this experiment, we transferred an additional 20 MByte file
into every job at the first level of the Montage workflow. With
a total input data size of 13.2 GBytes for a mosaic of 4 degree
square, the combination of prestaging data with DRS followed
by workflow execution using Pegasus improves execution
time approximately 21.4% over the performance of Pegasus
performing explicit data staging as part of workflow execution.
When data sets for this workflow are completely prestaged by
DRS before workflow execution begins, the workflow
execution time is reduced by over 46%.

 Montage Workflow with 2MB Additional Input Files

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

Degree Square of Montage Mosaic

R
un

tim
e

in
 S

ec
on

ds

DRS

Pegasus with
Prestaged Data
Pegasus with Data
Staging
DRS+Pegasus

Fig. 5 Shows execution times for a Montage workflow with larger input sizes,
where additional 2 MByte files are staged in for each job at the first level of
the workflow.

Montage Worfklow with 20MB Additional Input Files

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 4

Degree Square of Montage Mosaic

R
un

tim
e

in
 S

ec
on

ds

DRS

Pegasus with
Prestaged Data
Pegasus with
Data Staging
DRS+Pegasus

Fig. 6 Shows execution times for a Montage workflow with an additional 20
MByte file staged in for each job run as part of the workflow. For this more
data intensive workflow, it is more advantageous to perform asynchronous
data placement using DRS.

As described above, additional overheads are incurred
when Pegasus performs data staging tasks explicitly as part of
its workflow execution. These overheads increase with the
number of input files being transferred. Additionally, data-
centric services such as DRS can potentially tune the
parameters of data transfers to be optimal for particular sets of
data, particular sizes of data and network conditions. This type
of tuning would be hard to achieve in general-purpose
workflow management systems.

The above performance numbers demonstrate the potential
advantages of combining data placement services with
workflow management systems for data-intensive scientific
applications. While these performance studies only address
the problem of efficiently prestaging input files for a

computation, we also plan to study the problems of staging
data out of computational nodes as well as the relationship
between data placement for computational efficiency and for
availability/reliability.

VII. RELATED WORK
There has been extensive work on data placement and

replication for a variety of distributed file systems and
distributed storage systems. Here we focus particularly on
work related to policy-driven data placement in large, wide-
area distributed systems.

A. Data and Computational Scheduling in Grids
Several groups have addressed issues related to the

scheduling of data and computations in Grid environments.
We have already discussed the PheDEx and LDR systems,
which focus primarily on data distribution for high energy and
gravitational wave physics applications.

In [29-31] the authors conducted extensive simulation
studies that examined the relationship between asynchronous
data placement and replication and job scheduling. They
examined a variety of combinations of job scheduling and
data scheduling. The data scheduling policies keep track of the
data set usage and replicate popular datasets. The authors
concluded that scheduling jobs where data sets are present is
the best algorithm and that actively replicating popular data
sets also significantly improves execution time.

One difference between this work and our proposed
approach is that the authors assume that the jobs being
scheduled are independent of one another. We propose to
study the interplay between more complex analyses composed
of many interdependent jobs. Thus, we consider costs
associated with managing the entire workflow, for example,
moving intermediate data products to where the computations
will take place and co-allocating possibly many data products
so that the workflow can progress efficiently. Additionally,
the approach they propose is reactive in the sense that it
examines the past popularity of data to make replication
decisions, whereas our approach is proactive and examines
current workflow needs to make data placement decisions.

B. Workflow Scheduling in the Context of Data Management
Directed Acyclic Graphs (DAGs) are a convenient model to

represent workflows, and the extensive literature on DAG
scheduling is of relevance to the problem of workflow
scheduling [22]. Scheduling scientific workflows in
distributed environments has been recently studied in [8, 26,
33, 35-37]. In the majority of these works, the aim is to
minimize the workflow execution time, with the assumption
that data scheduling is included as part of the computational
scheduling decisions.

C. Data Placement and Replication for Durability
Data placement services may also enforce policies that

attempt to maintain a certain level of redundancy in the
system to provide highly available or durable access to data.
For example, a system where data sets are valuable and
expensive to regenerate may want to maintain several copies

of each data item on different storage systems in the
distributed environment. The UK Quantum Chromodynamics
Grid (QCDGrid) project [27, 28] is a virtual organization that
maintains several redundant copies of data items for reliability.
Medical applications that preserve patient records could also
benefit from placement services that maintain multiple copies
of data items. Such placement services monitor the current
state of the distributed system, and if the number of replicas of
a data item falls below the threshold specified by V.O. policy,
the placement service initiates creation of additional replicas
on available storage nodes.

In the Oceanstore global distributed storage system [21],
several algorithms have been studied for replication of data to
maintain high levels of durability. These include a reactive
replication algorithm called Carbonite [12] that models
replica repair and failure rates in a system as the birth and
death rates in a continuous time Markov model. To provide
durability, the replication rate must match or exceed the
average rate of failures. Carbonite creates a new replica when
a failure is detected that decreases the number of replicas
below a specified minimum.

The Oceanstore group has also proposed a proactive
replication algorithm called Tempo [34] that creates replicas
periodically at a fixed low rate. Tempo creates redundant
copies of data items as quickly as possible using available
maintenance bandwidth and disk capacity. Tempo provides
durability for data sets comparable to that from the reactive
Carbonite algorithm using a less variable amount of
bandwidth, thus helping to keep maintenance costs predictable.

The work presented in this paper does not directly address
data placement policies for durability, but we plan to include
this functionality in the future.

VIII. SUMMARY AND FUTURE WORK
We are interested in understanding the relationship between

existing data placement services and workflow management
systems used today in data-intensive scientific applications. In
particular, we believe that by separating to the extent possible
the activities of data placement and workflow execution, we
can significantly improve the performance of scientific
workflows. We presented experimental results for the
execution of several astronomy workflows. For each Montage
workflow, we compared the execution time using a workflow
management system that explicitly stages data into the
workflow at runtime with the execution time for a system that
uses a data placement service to prestage data sets onto
storage resources. Using the Data Replication Service for data
placement and the Pegasus workflow management system to
execute these workflows, we demonstrated that this separation
of data placement and workflow execution has the potential to
significantly improve the performance of workflows that have
large input data sizes.

This work represents a first step towards understanding the
interplay between community-wide data placement services
and community workflow management systems. In addition to
the work presented here that focuses on staging data into
workflows efficiently, we also plan to study placement

services that move data sets produced by workflow execution
off computational nodes in a timely and reliable way. This
efficient staging out of data will allow workflows to execute
efficiently on nodes that have limited storage. Finally, we are
interested in placement services that replicate data for
performance and reliability reasons and their relationship to
workflow management systems.

ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under the grants CNS 0615412 and OCI 0534027
and by the Department of Energy’s Scientific Discovery
through Advanced Computing II program under grant DE-
FC02-06ER25757. The authors would like to thank the
Montage team: Bruce Berriman, John Good, and Daniel Katz
for their helpful discussions and the use the of the Montage
codes and 2MASS data.

REFERENCES
[1] "Montage."http://montage.ipac.caltech.edu
[2] "Open Science Grid."www.opensciencegrid.org
[3] "TeraGrid."http://www.teragrid.org/
[4] A. Abramovici, W. Althouse, et al., "LIGO: The Laser

Interferometer Gravitational-Wave Observatory," Science, vol.
256, pp. 325-333, 1992 1992.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, I. Foster, "The Globus Striped GridFTP Framework and
Server," in SC05 Conference, Seattle, WA, 2005.

[6] T. A. Barrass, et al., "Software Agents in Data and Workflow
Management," in Computing in High Energy and Nuclear Physics
(CHEP) 2004, Interlaken, Switzerland, 2004.

[7] G. B. Berriman, et al., "Montage: A Grid Enabled Engine for
Delivering Custom Science-Grade Mosaics On Demand," in SPIE
Conference 5487: Astronomical Telescopes, 2004.

[8] J. Blythe, et al., "Task Scheduling Strategies for Workflow-based
Applications in Grids," in CCGrid, Cardiff, UK, 2005.

[9] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A.
Iamnitchi, C. Kesselman, P. Kunst, M. Ripeanu, B, Schwartzkopf,
H, Stockinger, K. Stockinger, B. Tierney, "Giggle: A Framework
for Constructing Sclable Replica Location Services," in SC2002
Conference, Baltimore, MD, 2002.

[10] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, B. Moe,
"Wide Area Data Replication for Scientific Collaborations " in
Proceedings of 6th IEEE/ACM Int'l Workshop on Grid Computing
(Grid2005), Seattle, WA, USA, 2005.

[11] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, R.
Schwartzkopf, "Performance and Scalability of a Replica Location
Service," in Thirteenth IEEE Int'l Symposium High Performance
Distributed Computing (HPDC-13), Honolulu, HI, 2004.

[12] B. G. Chun, et al., "Efficient replica maintenance for distributed
storage systems," in Proc. of the 3rd Symposium on Networked
Systems Design and Implementation, 2006.

[13] CMS Project, "The Compact Muon Solenoid, an Experiment for
the Large Hadron Collider at CERN, http://cms.cern.ch/,"
2005.http://cmsinfo.cern.ch/Welcome.html/

[14] E. Deelman, et al., "What Makes Workflows Work in an
Opportunistic Environment?," Concurrency and Computation:
Practice and Experience, vol. 18, 2005.

[15] E. Deelman, et al., "Pegasus: a Framework for Mapping Complex
Scientific Workflows onto Distributed Systems," Scientific
Programming Journal, vol. 13, pp. 219-237, 2005.

[16] E. Deelman, et al., "Pegasus: Mapping Large-Scale Workflows to
Distributed Resources," in Workflows in e-Science, I. Taylor, E.
Deelman, D. Gannon, and M. Shields, Eds.: Springer, 2006.

[17] I. Foster, et al., "The Anatomy of the Grid: Enabling Scalable
Virtual Organizations," International Journal of High
Performance Computing Applications, vol. 15, pp. 200-222, 2001.

[18] J. Frey, et al., "Condor-G: A Computation Management Agent for
Multi-Institutional Grids.," Cluster Computing, vol. 5, pp. 237-246,
2002.

[19] Globus, "www.globus.org," 2006
[20] T. Kosar and M. Livny, "A Framework for Reliable and Efficient

Data Placement in Distributed Computing Systems," Journal of
Parallel and Distributed Computing, vol. 65, pp. 1146-1157, 2005.

[21] J. Kubiatowicz, et al., "OceanStore: An Architecture for Global-
Scale Persistent Storage," in 9th Int'l. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 2000), 2000.

[22] Y.-K. Kwok and I. Ahmad, "Static Scheduling Algorithms for
Allocating Directed Task Graphs.," ACM Computing Surveys, vol.
31, pp. 406-471, 1999.

[23] LIGO Project, "LIGO - Laser Interferometer Gravitational Wave
Observatory, http://www.ligo.caltech.edu/,"
2004.http://www.ligo.caltech.edu/

[24] LIGO Project, "Lightweight Data Replicator, http://www.lsc-
group.phys.uwm.edu/LDR/," 2004.http://www.lsc-
group.phys.uwm.edu/LDR/

[25] M. Litzkow, et al., "Condor - A Hunter of Idle Workstations," in
Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, pp.
104-111.

[26] A. Mandal, et al., "Scheduling Strategies for Mapping Application
Workflows onto the Grid.," in IEEE International Symposium on
High Performance Distributed Computing (HPDC) 2005

[27] J. Perry, et al., "QCDgrid: A Grid Resource for Quantum
Chromodynamics " Journal of Grid Computing, vol. 3, pp. 113-
130, June 2005 2005.

[28] QCDGrid Project, "QCDGrid: Probing the Building Blocks of
Matter with the Power of the Grid,
http://www.gridpp.ac.uk/qcdgrid/,"
2005.http://www.gridpp.ac.uk/qcdgrid/

[29] K. Ranganathan and I. Foster, " Identifying Dynamic Replication
Strategies for a High Performance Data Grid," in 2nd IEEE/ACM
International Workshop on Grid Computing (Grid 2001), 2001.

[30] K. Ranganathan and I. Foster, "Decoupling Computation and Data
Scheduling in Distributed Data Intensive Applications," in
Eleventh IEEE Int'l Symposium High Performance Distributed
Computing (HPDC-11), Edinburgh, Scotland, 2002.

[31] K. Ranganathan and I. Foster, "Simulation Studies of Computation
and Data Scheduling Algorithms for Data Grids " Journal of Grid
Computing, vol. 1(1), 2003 2003.

[32] J. Rehn, et al., "PhEDEx high-throughput data transfer
management system," in Computing in High Energy and Nuclear
Physics (CHEP) 2006, Mumbai, India, 2006.

[33] R. Sakellariou, et al., "Scheduling Workflows with Budget
Constraints," in Integrated Research in Grid Computing, S.
Gorlatch and M. Danelutto, Eds.: CoreGrid series, Springer-Verlag,
2007.

[34] E. Sit, et al., "Proactive replication for data durability," in 5rd
International Workshop on Peer-to-Peer Systems (IPTPS 2006),
2006.

[35] M. Wieczorek, et al., "Scheduling of Scientific Workflows in the
ASKALON Grid Environment," SIGMOD Record, vol. 34, 2005.

[36] J. Yu and R. Buyya, "A Budget Constraint Scheduling of
Workflow Applications on Utility Grids using Genetic
Algorithms," in Proceedings of the Workshop on Workflows in
Support of Large-Scale Science (WORKS06)

[37] H. Zhao and R. Sakellariou, "Advance Reservation Policies for
Workflows," in 12th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP) Saint-Malo,France, 2006

http://montage.ipac.caltech.edu/
http://www.opensciencegrid.org/
http://www.teragrid.org/
http://cms.cern.ch/,
http://cmsinfo.cern.ch/Welcome.html/
http://www.globus.org,/
http://www.ligo.caltech.edu/,
http://www.ligo.caltech.edu/
http://www.lsc-group.phys.uwm.edu/LDR/,
http://www.lsc-group.phys.uwm.edu/LDR/,
http://www.lsc-group.phys.uwm.edu/LDR/
http://www.lsc-group.phys.uwm.edu/LDR/
http://www.gridpp.ac.uk/qcdgrid/,
http://www.gridpp.ac.uk/qcdgrid/

