
A Client-centric Grid Knowledgebase

George Kola, Tevfik Kosar and Miron Livny
Computer Sciences Department, University of Wisconsin-Madison

{kola,kosart,miron}@cs.wisc.edu

Abstract

Grid computing brings with it additional complexities
and unexpected failures. Just keeping track of our jobs
traversing different grid resources before completion can at
times become tricky. In this paper, we introduce a client-
centric grid knowledgebase that keeps track of the job per-
formance and failure characteristics on different grid re-
sources as observed by the client. We present the design and
implementation of our prototype grid knowledgebase and
evaluate its effectiveness on two real life grid data process-
ing pipelines: NCSA image processing pipeline and WCER
video processing pipeline. It enabled us to easily extract
useful job and resource information and interpret them to
make better scheduling decisions. Using it, we were able to
understand failures better and were able to devise innova-
tive methods to automatically avoid and recover from fail-
ures and dynamically adapt to grid environment improving
fault-tolerance and performance.

1. Introduction

Grid computing [6] while enabling researchers to har-
ness idle grid resources, creates difficulties because of the
lack of guarantees. Scaling an application from the con-
trolled well-understood cluster environment to a grid envi-
ronment creates a plethora of problems.

Livny and Thain [12] [19] have pointed out that the only
practical way of handling these problems is to make the
client (submitting endpoint) responsible for the progress in-
cluding failure handling. While client submit software like
Condor [11] and Condor-G [9] address some of these prob-
lems, the presence of ’black holes’, machines that accept
jobs but never complete them, and machines with faulty
hardware, buggy or misconfigured software impede the ef-
ficacy of using grid based resources.

We study the prevalence of black holes by analyzing the
log files of two real-life grid applications. After detecting
the presence of black holes, we investigate the reasons for
their occurrence. As a viable solution, we introduce the con-

cept of grid knowledgebase that keeps track of the job per-
formance and failure characteristics on different grid re-
sources as observed by the client.

Client middleware can use this knowledgebase transpar-
ently to improve performance and throughput of unmodified
grid applications. Grid knowledgebase enables easy extrac-
tion of useful information simplifying a variety of tasks in-
cluding bug finding, statistics collection and visualization.

In the spirit of grid computing, mutually trusting enti-
ties can share the knowledgebase. Grid sites can use it to
detect misconfiguration, software bugs and hardware faults.
We discuss the design and implementation of our prototype
grid knowledgebase and evaluate its effectiveness on a real-
life grid workload.

2. Why do we need a Grid Knowledgebase?

We performed an objective study to identify the pres-
ence of black holes by analyzing the log files of two real-
life grid applications: NCSA DPOSS image processing
pipeline [5] and WCER video processing pipeline [10].
Both the pipelines strive towards a fully automated fault-
tolerant processing of terabytes of images and videos re-
spectively.

In the WCER pipeline log files, we found the presence
of three black holes that accepted a job each and did not
seem to have done anything and scheduler was trying un-
successfully to talk to the machine for over 62 hours. We
also found a case where a machine caused an error be-
cause of a corrupted FPU. Through a careful analysis, we
found that certain machines had problems with certain job
classes while they executed others successfully. As a partic-
ular case, we found that the machine that had FPU corrup-
tion with MPEG-4 encoding had earlier successfully per-
formed MPEG-1 encoding.

Detecting the above kinds of problems is difficult and
the only party affected is the job that was unable to com-
plete successfully. Further, in a grid environment, job sub-
mitter may not have control over the machine configura-
tion. Following the ‘dependability from client side’ argu-
ment [12] [19], the job should be adapted to avoid those re-
sources.

In an organization with thousands of compute nodes, it
is a nightmare to ensure that all the different software are
properly configured and working on all the nodes. While in-
dividual hardware and software are relatively easy to check,
ensuring that different software work fine together is a non-
trivial task. Most of the organizations at this point depend
on user complaints to help them identify problems with such
complex interactions. Many problems are not fixed because
the users did not want to take the trouble of identifying the
problem and reporting them.

In the WCER pipeline case, a couple of routine software
and operating system upgrades fixed the problem. However,
those upgrades took several months. The users did not try
to find the cause of problem or report it because a few re-
tries was probabilistically sufficient to get the jobs sched-
uled on a properly configured machine. A system capable
of automatically identifying problem would greatly benefit
site administrators. If site administrators use this informa-
tion to fix the problems, it would result in better quality of
service for jobs using that site.

To survive, organisms need to learn from experience and
adapt themselves to changing environment. In a large-scale
grid environment, it is imperative that jobs should adapt to
ensure successful completion. Just as organisms pass the
gained wisdom down the generations, grid jobs should pass
down the gained wisdom to future grid jobs.

We need a mechanism to enable passing this informa-
tion from current grid jobs to future ones. To enable this,
we propose the concept of grid knowledgebase that aggre-
gates the experience of the different jobs. It collects this
information from the job log files produced by the batch
scheduling systems like Condor/Condor-G. These log files
are normally available to the client and are different from
cluster/pool log files that many site administrators are un-
willing to share. This log files essentially contain the view
of the world as seen by the client.

We extract useful information from the log files and en-
ter it into a database. We add an adaptation layer that uses
this collected wisdom to adapt the failed job instances and
future job instances of a grid application. This is similar
to organisms learning from experience and works well be-
cause many grid applications consist of multiple instances
of the same executable operating on different data.

3. Grid Knowledgebase Framework

Grid Knowledgebase, as shown in figure 1, consists of
six main components: log parser, database, data miner,
adaptation layer, notification layer, and visualization layer.

The log parser extracts useful information from the log
files of submitted jobs and enters it into a database. This in-
formation includes the list of events that occurred during a
job’s life, the timestamp of each event, list of compute nodes

PLANNER

JOB
SCHEDULER

JOB QUEUE

GRID RESOURCES

MATCH
MAKER

JOB
LOG FILES

LOG PARSER

DATABASE

JOB
DESCRIPTIONS

USER

ADAPTATION
LAYER

VISUALIZATION
LAYER

NOTIFICATION
LAYER

GRID KNOWLEDGEBASE

DATA MINER

USERS/
ADMINISTRATORS

GUI

Figure 1. The main components of Grid
Knowledge Base and their interaction with
other parts of the system.

that executed this job, resource utilization statistics and er-
ror messages.

The data miner runs a set of pre-selected queries on the
database periodically. It checks the event history of the job
and compares it with its own templates; checks the state of
the resources on which the job executed; compares expected
job execution time with the observed execution time; and
tries to infer the reasons for delays, failures and other prob-
lems. In cases where the pre-selected set of queries is not
sufficient, the user can either modify the existing queries or
add new ones. The users can tune how often to run each of
the queries and can even make them event-based so that cer-
tain events trigger execution of certain queries.

The data miner queries help determine the problem and
choose an appropriate course of action. At present, the data
miner runs three sets of queries.

The first set of queries takes a job-centric view and tries
to find out the jobs that failed and tries to find the reason for
them and feeds this to the adaptation layer.

The second set of queries takes a resource-centric view.
They determine the resources that failed to successfully ex-
ecute jobs and feed this information to the notification layer.

The third set of queries takes a user-centric view and tries
to get the information that users may be interested in ob-
serving and feeds this to the visualization layer. An exam-
ple would be tracking the memory usage of an application.

The adaptation layer analyzes the information fed by the
data miner and if possible, tries to adapt the job dynami-
cally to prevent recurrence of encountered problems. In cer-
tain cases, simple changes in job requirements such as in-
creasing the memory requirement and/or hard disk space
requirements or avoiding failure-prone machines may solve
the problem. The adaptation layer can also pass this infor-
mation and the strategy it took to higher-level planners like
Chimera, Pegasus or DAGMan.

The notification layer informs the user who submit-
ted the jobs and execute-site administrators about possible
problems such as misconfigured and faulty machines. Since
it is more important for machines bought under a project
funding to be able to run that projects applications success-
fully than it is for those machines to run some other job
when idle, the notification layer allows users/administrators
to attach weights to machine-application pair. The email
sent to the administrator specifies the failures and sorts them
by weight. Users/administrators can tune the frequency of
email notifications.

The visualization layer generates the information neces-
sary to visualize the inferred information. Figure 1 shows
how all of the components of grid knowledgebase interact
with each other and other entities in the overall scheduling
system.

The different job classes using the framework can choose
to share the data. Sharing this information between differ-
ent organizations that submit the same classes of applica-
tions is very useful. In this case, the data miner can query
remote data to get additional information. It is also possi-
ble to use a distributed database between different mutually
trusted entities.

Organization may share this information even if they
submit different application classes as the data miner can
use the data to determine correlations between failures. For
instance, a machine may fail when the input file is greater
than 2 GB and we can use correlation to extract this infor-
mation.

4. Implementation Insights

We have implemented a prototype of our grid knowl-
edgebase framework and interfaced it with the Condor batch

scheduling system. Condor/Condor-G jobs can choose to
have the logs generated in either Condor specific user-log
format or more generic XML format. Originally, our parser
supported only the XML format hoping that we can make
the jobs choose XML format logs. Further, we felt that by
supporting XML, we could easily extend the parser to parse
XML format logs produces by other batch scheduling sys-
tems. While interacting with users, we found that many of
them had logs in the condor specific user log format and
did not want to switch to XML. Because of this, we added
support for condor user-log format and now our parser can
parse both formats.

Condor-G uses Globus toolkit [7] functionality to sched-
ule jobs on almost all grid-enabled resources. As Condor-G
is being used by most of the Grid2003 [16] users to submit
grid jobs, the ability to parse Condor-G job logs gives us
the ability to parse most of the real-life grid job logs. Thus,
most of the grid community can easily use the grid knowl-
edgebase and benefit from it.

After designing the parser, we had to choose a database.
At first glance, we thought a native XML database would
be a good choice for storing event data . As we could
not find a free native XML database with suitable perfor-
mance and because we found it difficult to construct XML
(XQuery [1]/XPath [20]) queries to extract the useful infor-
mation, we decided to load job logs into relational database
tables. The current system uses a postgres [18] database.

We faced several issues while designing the schema to
represent job event history. The first was whether we should
use a vertical schema or a horizontal schema. In vertical
schema, the events are stored as job id, event pairs. The
horizontal schema allocates a field in the relational table
for each of the events that may occur. Vertical schema is
faster for loading, but requires joins for querying. Horizon-
tal schema requires some processing before loading but is
faster for querying, as it does not require any joins. Hori-
zontal schema may waste space if the tuple is very sparse
i.e. if most of the events rarely occur. After careful analysis,
we found that the space wastage depended on the database
implementation and that most relational databases are opti-
mized for horizontal schemas. Further, vertical schemas re-
quired complex queries. With that, we decided to go in for
a horizontal schema.

We now had to convert each of the events into a field of
a relational table. We encountered the following problem.
Certain jobs were executed multiple times because of en-
countered failures resulting in multiple event sequences for
the same job. Further, even in a single event sequence, cer-
tain events like exception occurred multiple times.

Our initial approach was to create multiple table entries
for such repeated events. We soon realized that querying
them and extracting useful information was not straight-
forward. After some research, we found that postgres was

Field Type
JobId int
JobName string
State int
SubmitHost string
SubmitTime int
ExecuteHost string []
ExecuteTime string []
ImageSize int[]
ImageSizeTime integer []
EvictTime int []
Checkpointed bool []
EvictReason string
TerminateTime integer []
TotalLocalUsage string
TotalRemoteUsage string
TerminateMessage string
ExceptionTime int []
ExceptionMessage string []

Table 1. Relational database schema used to
store job event history.

an object-relational database and it supported ’array type’,
which essentially allows multiple entries in a single field.
This addressed most of the issues we had. In the present
form, each job maps into a single record in the database ta-
ble.

Table 1 shows a simplified schema. To make it intuitive,
we have simplified SQL varchar(n) to string and left out the
bytes in the integer (we use int instead of int2, int4 and int8).
The [] after a type makes it an array type. An array type can
have a sequence of values.

A job goes through different states in the course of its
life and the state field tracks that. Figure 2 shows the state
change that a job typically goes through. The job enters the
system when a user submits it. When the scheduler finds a
suitable host, it assigns the job to that host and starts ex-
ecuting it there. During execution, the scheduler may pe-
riodically observe the job state like image size and log it.
A number of exceptions may happen during job execution.
For instance, the scheduler may be unable to talk to the ex-
ecute machine because of a network outage.

An executing job may be evicted when the machine
owner or a higher priority user wants to use the machine or
when the job exceeds its resource usage limit. The evicted
job is rescheduled. When a job is evicted, the job that has
the ability to checkpoint may save its state and can resume
from that state when it restarts. Finally, the job may termi-
nate. If the job terminates abnormally, or it terminates nor-
mally with non-zero return value, the job is considered to

Evicted

Exception

Submit

Terminated
Abnormally

Terminated
Normally

Schedule

Execute

Exit code = 0?

Job
Succeeded

Job
Failed

Yes

No

Suspend

Un-suspend

User

Figure 2. The state changes a job goes
through.

have failed. If the job terminates normally with zero return
value, it is considered successful.

The ’ExecuteHost’ and ’ExecuteTime’ are pairs in that
first element of ’ExecuteTime’ gives the time when the job
started execution on the first ’ExecuteHost’. Other pairs are
obvious from the first part of their field names.

5. Evaluation

Grid knowledgebase enabled us to extract useful infor-
mation about jobs and resources and interpret them to gain a
better understanding of failures. It helped us devise methods
to avoid and recover from failures and helped us make bet-
ter scheduling decisions. It helped us dynamically adapt our
jobs to the ever-changing grid environment. We observed
that using the grid knowledgebase in NCSA DPOSS im-
age processing and WCER video processing pipelines in-
creased their reliability and efficiency. Below, we list some
of the contributions of grid knowledgebase to these real life
data processing pipelines.

Collecting Job execution time statistics. We wanted to
determine the average job execution time, its standard de-
viation, median, and fit a distribution to the execution time.
Just the average and standard deviation is useful to bench-
mark two different clusters for this application. The grid
knowledgebase allowed us to easily extract this informa-
tion.

A simplified query to extract the average and standard
deviation of MPEG1 encoder is shown below.

SELECT AVG(TerminateTime[index]-ExecuteTime[index]),
STDDEV(TerminateTime[index]-ExecuteTime[index]),

FROM WCER_VideoPipeline
WHERE TerminatedNormally[index] IS true

AND JobName ILIKE(’\%MPEG1-ENCODE\%’) ;

Detecting and Avoiding Black Holes. During the pro-
cessing of WCER video data, we detected the presence of
some black holes. Jobs assigned to certain resources started
execution but never completed. We called such machines
black holes and decided to understand them and avoid them
if possible.

To detect a black hole, we used the previously ex-
tracted run-time statistics. Our job execution times
were normally distributed. So, we knew that 99.7% of
the job execution times should lie between average
- 3*standard-deviation and average +
3*standard-deviation.

Using the average and standard deviation calcu-
lated from grid knowledgebase, we set the threshold to kill
a job to average + 3*standard-deviation. If a
job does not complete within that time, we marked that ex-
ecution node as a black hole for our job and rescheduled
the job to execute elsewhere.

The standard deviation takes the performance difference
between grid resources into account. If we want to detect
sooner at the expense of false positives, we can decrease the
threshold to average + 2*standard-deviation.
Even with this threshold, we would only be rejecting around
4% of the machines, these would be the top 4% of slow ma-
chines, and this selective reject may considerably improve
the throughput. Users can tweak this mechanism to improve
throughput by avoiding a certain top fraction of the slow
machines.

It is also possible to parameterize this threshold taking
into account factors like input file size, machine character-
istics and other factors. For this, we need to use regression
techniques to estimate the mean and standard deviation of
job-run-time for a certain input file size and machine char-
acteristics. This parameterization would enable generation
of tighter estimates and quicker detection of black holes.

6. Other Contributions

Grid knowledgebase has other useful contributions that
we did not use during the execution of our two real life data
processing pipelines but would be useful to the grid com-
munity. We list some of them below.

Identifying Misconfigured Machines. We can easily
identify machines where our jobs failed to run. In our and
other environments, we find that it is important for machines
bought under a particular project grant to be able to suc-
cessfully execute job classes belonging to that project. We

also care about failures of other job classes that use our idle
CPUs but they are not that important. To address this, we at-
tach a weight to each of the different job classes. Extracting
the failures observed by the different job classes and mul-
tiplying by the associated weight and sorting, we can get
the list of machines ordered by priority that site administra-
tor needs to look into.

We can also extract additional information by using cor-
relation to help site administrator find the fault. For exam-
ple, we can find that a certain set of machine fails for jobs
that have an input file size that is larger than 2 GB. Site ad-
ministrators can use this information to find the exact prob-
lem and fix it.

Identifying Factors affecting Job Run-Time. Some
users may want to add more computing power to enable ad-
ditional processing. They need to determine the suitable ma-
chine configuration. Using our system, they can extract the
run-time on the different resource and try to extract the sig-
nificant factors affecting the job performance. This would
help them choose appropriate machine configuration.

Bug Hunting. Writing bug-free programs is difficult.
Since the scheduler logs the image-size of the program and
as the log-parser enters this into the database, the data miner
can query this information and pass it to the visualization
layer to graph the growth in memory size. A continuously
growth may indicate the presence of a memory leak. Grid
application developers can use this information to identify
bugs. It is very difficult to find bugs that occur only on
certain inputs. A simple query can find out the inputs that
caused a high growth in memory size. Similarly, if a job fails
on certain inputs, the grid knowledgebase can automatically
derive this and email this information to the application de-
veloper.

Figure 3 shows grid knowledgebase finding a memory-
leaking process. Condor preempted and rescheduled the job
three time before the grid knowledgebase categorized it as a
memory leaking process and notified the job submitter The
submitter fixed the memory leaking code and resubmitted
the job. After resubmission, we see that the image size of
the job stabilized at a certain point and does not increase
any more.

Application Optimization. Many grid applications con-
tain a number of different processing steps executed in par-
allel. Grid application developers want to parallelize the
steps depending on the time each takes to execute. While
they try to do this by executing on a single machine, they
would really like feedback on what happens in a real grid
environment. At present, they find it difficult to extract this
information. With the grid knowledgebase, application de-
veloper can write a simple two-line SQL query to extract
this information and use it to redesign the application.

Adaptation. Smart grid application deployers can come
up with easy triggers to adapt the jobs to improve through-

Job Memory Image Size vs. Time

Apr 21 2004 23:45:34 Apr 22 2004 23:22:45
0
10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180
190

Figure 3. Grid Knowledgebase finds one of
the jobs leaking memory and notifies the
user. The job is resubmitting after fixing the
memory leak. Memory image size of this job
versus time is shown.

put. A simple example is to find the machines that take
the least time to execute this job class and try to prefer-
entially choose them over other machines if those machines
are available.

Extensibility. The log parser parses XML logs. This is
very extensible and users can even extend this mechanism
to parse the logs produced by application itself. This may
yield useful information.

7. Related Work

Parsing of log files to identify possible errors have been
done both manually and in an automated manner for a long
time. Our main contribution are: highlighting the fact that
the logs have sufficient information to perform sophisticated
operations like adaptation, extracting the log data, entering
it into a well understood SQL database, and enabling peo-
ple to perform sophisticated operations on this now easily
queriable data.

Resource selection and work allocation strategies have
been studied extensively in the domain of master-worker
paradigm. Shao et al [17] discuss adaptive scheduling of
master-worker applications on distributed computing re-
sources. They build a model taking into account resource,
work characteristics, and use it to choose an appropriate
master and determine the amount of work to be distributed
to each worker. Our work is different in that we adapt at
job level while they adapt at work chunk level. Their adap-
tation is more fine grain, but it does not use previous his-
tory. Our work proposes a way to collect the history from

a client perspective and uses that to adapt the failed job in-
stances and future job instances of a job class. Our work
is not specific to master-worker and is more general in na-
ture. In addition, we use past experience gained from pre-
vious runs whereas their adaptation is based on a feedback
loop at the time of execution and does not use previous his-
tory.

Application developers have been performing trace
driven program optimization for a long time. Moe and
Carr [13] explain how execution traces can be used to im-
prove distributed systems. Their system captures traces
at CORBA [15] RPC level and enables offline analy-
sis that can be used to improve performance. Grid knowl-
edgebase can be used to perform both online and offline
analysis and optimization.

Chimera [8] is a virtual data system for representing,
querying and automating data derivation. Pegasus [4] is a
configurable system that uses artificial intelligence planning
techniques to map complex workflows and execute them
on the grid. Pegasus in combination with Chimera accepts
abstract workflow and produces a concrete workflow that
DAGMan [3] executes.

While Pegasus evaluates data generation versus recon-
struction costs and makes appropriate decisions, it does not
learn from experience of the job with the grid environment.
Pegasus and grid knowledgebases adaptation layer are sim-
ilar in that they help optimize the job execution using infor-
mation not previously known to the job.

Our grid knowledgebase can work together with Pega-
sus and give it the ability to learn from experience. Pegasus
can make better planning decisions and produce more opti-
mized workflows taking into account the job characteristics
on the different resources.

Our grid knowledgebase adaptation layer is at a lower
level than Pegasus and it constantly monitors job progress
and updates the job requirements accordingly. We believe
that a feedback loop from Grid knowledgebase to Pegasus
combined with Grid knowledgebase’s job adaptation would
result in superior throughput.

8. Future Work

We need to add a mechanism to remove a machine from
the list of avoided machines when its problems have been
resolved. While a simple white list may not suffice because
we a fixed machine may have problems again, we need a
white list with each machine entry having an associated
time-stamp. For each machine in the white list, we do not
use the query results that occurred before this time-stamp.
To trim this white list, we retain only the latest entry for a
machine. We need to experiment with this and see how well
it works in practice.

The data in the grid knowledgebase at present keeps
growing. This problem is not as bad as a typical job takes
only a few hundred bytes. For the short term, creating new
tables every month or whenever the application changes
may be sufficient because we are likely to hit table size lim-
its and not database size limits.

Database size growth may be a problem over a long pe-
riod of time when hundreds of millions of jobs are executed.
Just a log rotating works, we need to clear the old entries pe-
riodically. Instead of throwing away the old data, it may be
better if we can apply some compression operation to re-
tain only the useful information. For instance, if we buy two
clusters from different vendors, we may want to check the
failures that happened in each over a one-year period to de-
termine if one is better than the other. Some logging sys-
tems smartly compress the old data and we need to look
into this to see how we can apply similar techniques to the
database data.

Another issue we need to look into is that we may want
to attach more importance to recent data than old data. We
need to come up with a way of attaching weight to results
sorted by age to accomplish this.

We are working towards applying grid knowledgebase
to other real life grid applications such as BLAST [14] and
CMS [2].

9. Conclusions

We have introduced the concept of grid knowledgebase
that keeps track of the job performance and failure char-
acteristics on different resources as observed by the client
side. We presented the design and implementation of our
prototype grid knowledgebase and evaluated its effective-
ness on two real life grid data processing pipelines. Grid
knowledgebase helped us classify and characterize jobs by
collecting job execution time statistics. It also enabled us to
easily detect and avoid black holes.

Grid knowledgebase has a much wider application area
and we believe it will be very useful to the whole grid com-
munity. It helps users identify misconfigured or faulty ma-
chines and aids in tracking buggy applications.

10. Acknowledgments

We would like to thank Robert Brunner and his group at
NCSA, and Chris Thorn and his group at WCER for collab-
orating with us, letting us use their resources and making it
possible to try the grid knowledgebase on real-life grid ap-
plications. We would also like to thank Mark Silberstein for
useful feedback and suggestions.

References

[1] D. Chamberlin. XQuery: An xml query language. IBM Sys-
tems Journal, 41(4):597–615, 2002.

[2] CMS. The Compact Muon Solenoid Project. http://cmsinfo.
cern.ch/.

[3] Condor. The Directed Acyclic Graph Manager.
http://www.cs.wisc.edu/condor/dagman, 2003.

[4] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Pegasus:
Planning for execution in grids. Technical Report 20, Gri-
PhyN, 2002.

[5] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de Car-
valho, R. Brunner, G. Longo, and R. Scaramella. The Digital
Palomar Sky Survey (DPOSS). Wide Field Surveys in Cos-
mology, 1988.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International
Journal of Supercomputing Applications, 2001.

[7] I. Foster and C. Kesselmann. Globus: A toolkit-based grid
architecture. In The Grid: Blueprints for a New Computing
Infrastructure, pages 259–278. Morgan Kaufmann, 1999.

[8] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A vir-
tual data system for representing, querying, and automating
data derivation. In 14th International Conference on Scien-
tific and Statistical Database Management (SSDBM 2002),
Edinburgh, Scotland, July 2002.

[9] J. Frey, T. Tannenbaum, I. Foster, and S. Tuecke. Condor-
G: A computation management agent for multi-institutional
grid. In Tenth IEEE Symposium on High Performance Dis-
tributed Computing, San Francisco, CA, August 2001.

[10] G. Kola, T. Kosar, and M. Livny. A fully automated fault-
tolerant system for distributed video processing and off-site
replication. In Proceeding of the 14th ACM International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (Nossdav 2004), Kinsale, Ireland,
June 2004.

[11] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. In Proceedings of the 8th In-
ternational Conference of Distributed Computing Systems,
pages 104–111, 1988.

[12] M. Livny and D. Thain. Caveat emptor: Making grid services
dependable from the client side. In 2002 Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC’02),
Tsukuba, Japan, December 2002.

[13] J. Moe and D. A. Carr. Using execution trace data to im-
prove distributed systems. In Software Practice and Experi-
ence, July 2002.

[14] NCBI. Blast project. http://www.ncbi.nlm.nih.gov/BLAST/.
[15] Object Management Group. The common object request bro-

ker: Architecture and specification revision 2.2, 1998.
[16] T. G. Project. The Grid2003 production grid:principles and

practice. http://www.ivdgl.org/grid2003/, February 2004.
[17] G. Shao. Adaptive Scheduling of Master/Worker Applica-

tions on Distributed Computational Resources. PhD thesis,
University of California at San Diego, May 2001.

[18] M. Stonebraker and L. A. Rowe. The design of Postgres. In
SIGMOD Conference, pages 340–355, 1986.

[19] D. Thain and M. Livny. Building reliable clients and servers.
In I. Foster and C. Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
2003.

[20] World Wide Web Consortium. XML path lan-
guage (XPath) version 1.0. w3c recommendation.
http://www.w3.org/TR/xpath.html, November 1999.

