
Process Hijacking

Abstract

Process checkpointing is a basic mechanism required for
providing High Throughput Computing service on
distributively owned resources. We present a new process
checkpoint and migration technique, called process
hijacking, that uses dynamic program re-writing techniques
to add checkpointing capability to a running program.
Process hijacking makes it possible to checkpoint and
migrate proprietary applications that cannot be re-linked
with a checkpoint library, and it makes it possible to
dynamically hand off an ordinary running process to a
distributed resource management system such as Condor.
We discuss the problems of adding checkpointing capability
to a program already in execution: (1) loading new code
into the running process, and (2) replacing functions of the
process with calls to dynamically loaded functions. We use
the DynInst API process editing library, augmented with a
new call for replacing functions, to solve these problems.

We discuss problems associated with migrating a
hijacked process: (1) preserving the uncheckpointable
operating system state of the hijacked process for
migration, and (2) safely restoring the dynamically
assembled address space of the hijacked process from a
checkpoint. We preserve uncheckpointable operating
system state by spawning a shadow process from the
hijacked process. We have used process hijacking to migrate
a variety of programs, including a running, unmodified Java
VM. We show that the migration performance of hijacking
is comparable to that of Condor.

1 INTRODUCTION

Process checkpointing contributes to the flexibility and
power of a distributed resource management system by
allowing processes to be migrated to other hosts during
their execution[8]. Systems such as Condor[7] and Cod-

ine[5] use checkpointing to dynamically schedule long-
running programs. A characteristic of the checkpoint tech-
niques employed by these systems is that the application
must be re-linked with a checkpoint library before it can be
submitted. This requirement prevents the submission of
proprietary executables, since re-linking depends on access
to the original object files of the program. In addition, a
program already in execution cannot be handed over to a
resource manager, since that would require the ability to re-
link a running process. We present a new process check-
pointing technique, called process hijacking, that enables
these types of programs to be submitted to a resource man-
agement system. It includes support for remote I/O to
allow hijacked processes to be migrated to foreign admin-
istrative domains.

Process hijacking uses dynamic program re-writing
techniques to add checkpointing capability and remote I/O
to ordinary processes. It creates an execution context simi-
lar to that created by Condor. A hijacked process is split
into two processes (Figure 1): the application process, and
the shadow process. The application process is the original
process to which the hijacker adds checkpoint and remote

Victor C. Zandy Barton P. Miller Miron Livny
{zandy,bart,miron}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685

This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, NSF grants CDA-9623632 and EIA-9870684, and DARPA contract
N66001-97-C-8532. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright no-
tation thereon.

Figure 1: A Hijacked Process
The shadow process remains on the original submit
host. The application process can be migrated to a

remote host.

Application ProcessShadow Process

Remote

Submit Host Remote Host

Calls

Checkpoint
Library

System Call
RPC Library

RPC
Stubs

System



system call support. It originally runs on the submit host,
and after it is hijacked, it can be migrated to a remote host.
The shadow process is started on the submit host to provide
a stable context for the application process. When the
application makes a context-sensitive system call, the call
is executed by the shadow via remote procedure call. The
RPC stubs for the application are contained in a library
called the remote system call library that is dynamically
loaded into the application by the hijacker. The hijacker re-
writes the application to use the RPC stubs instead of the
standard system calls. The most important type of context-
sensitive system calls are those related to I/O (calls that
involve file descriptors). Remotely executing all I/O opera-
tions on the shadow allows the application process to be
migrated to hosts that do not have the file system resources
or security credentials of the submit host. To add support
for migration, the hijacker also loads a checkpoint library
into the application. Checkpointing is later triggered by
sending a signal to the application. When the process is
restarted, it resumes communication with the shadow pro-
cess, transmitting remote system calls from its new host.

Process hijacking is interesting for three main reasons:

o It expands the scope of checkpointing. Users with
already running or proprietary programs can now ben-
efit from the checkpointing services offered by distrib-
uted resource management systems. Process migration
without the need to re-link in advance makes migra-
tion a viable alternative to program termination or sus-
pension when unanticipated changes in a resource
availablity arise. For example, a process running on a
machine that is close to exhausting its swap space can
be hijacked and checkpointed to convert its swap
space usage into disk usage.

o It introduces technology that can generalize access to
metacomputing. Process hijacking replaces some of
the system call functions of the hijacked process with
dynamically loaded substitutes. In effect, the process
is linked again while it is running, allowing programs
already in execution to be dynamically modified to
redirect I/O, access authentication services, and inter-
act with a scheduling service.

o It is a concrete demonstration of the power of runtime
code modification. Adding checkpointing capability to
a program while it runs requires the ability to modify
its code. With a toolkit that makes editing running pro-
grams simple, as found in the DynInst API[6], these
modifications are as easy as ordinary data manipula-
tion. Process hijacking shows that runtime program re-
writing, previously shown to be useful for debugging
and performance profiling[10], is also useful for
resource management.

To hijack a process, and to support migration of a
hijacked process, we have overcome four main technical
challenges:

o Dynamically inserting code into and controlling the
execution of the hijacked process: We use the DynInst
API runtime code re-writing library to modify and
control the process. This library provides an architec-
ture-independent interface for splicing new code
sequences into a running process, and for installing
new code libraries (see Section 2).

o Replacing the system call functions of a running pro-
cess: We developed a new extension to the DynInst
API, called replaceFunction, to replace the original
system call functions with the remote system call RPC
stubs. replaceFunction provides a general mechanism
for re-linking a running program (see Section 3.2).

o Migrating a process with a dynamically loaded check-
point library: A checkpointed process has an arbi-
trarily arranged address space. The restart code must
be careful to place itself out of the way when it recon-
structs the address space (see Section 4).

o Preserving the operating system state of the hijacked
process for migration. Process state that is hidden in
the operating system, such as open file state, cannot be
checkpointed directly. We preserve this state in the
shadow process, and use remote system calls to allow
system calls involving this state to be serviced (see
Section 3.1).
We have implemented process hijacking in a tool

called the Process Hijacker that runs on UltraSPARC
workstations running Solaris 2.6. The remote system call
and checkpointing libraries are derived from the libraries
used in Condor. Excluding DynInst and the libraries, the
Hijacker is approximately 1000 lines of C and C++. In
Section 2 we briefly describe the DynInst API, the runtime
program re-writing library that we used to implement the
Process Hijacker. The modifications performed to hijack a
process are explained in Section 3. The aspects of migra-
tion unique to process hijacking are described in Section 4.
Section 5 describes the performance of the Process
Hijacker, showing a breakdown of costs.

2 DYNINST API
DynInst is an architecture-independent API for mak-

ing on-the-fly modifications to a running program. Figure 2
shows the organization of a DynInst API application. A
program, called the mutator, is linked with the DynInst
API library and makes API calls to control and modify the
application program, called the mutatee. The mutator
attaches to the mutatee with the usual process debugging
interface provided by the operating system, such as ptrace



or /proc on Unix or the process control API on Win-
dows/NT. Some operations, such as reading and writing the
memory of the mutatee, are performed by DynInst directly
through this interface. Other more complex operations,
such as allocating memory, are executed by a library
installed by DynInst in the mutatee, called the run-time
instrumentation library (RTInst). DynInst can operate on
any dynamically linked executable. It does not require spe-
cial preparation of the executable such as re-compiling or
re-linking, and it is not necessary for the executable to con-
tain debugging symbols.

With DynInst, the mutator can splice code patches,
sequences of machine instructions, at the entry, exit, or call
sites of a function in the mutatee. DynInst provides an
architecture-independent mechanism for specifying code
patches in terms of familiar program data and control flow
operations, including assignment, logic and arithmetic,
branching, and function calls. The mutator can also make
an inferior RPC into the mutatee to cause it to asynchro-
nously execute a code patch.

When a DynInst mutator attaches to a process, it first
parses all of the code in the process to findinstrumentation
points. We have modifiedDynInst to parse only the func-
tions that will be instrumented by the hijacker, to reduce
the parsing time when the hijacker is started.

3 HIJACKER OPERATION

We describe and motivate the operation of the Process
Hijacker. Figure 3 shows a process before and after it is
hijacked. Before (Figure 3a), the application is an ordinary
process linked with the system call functions of the stan-
dard C library. After (Figure 3b), four things are different:
(1) it has loaded the checkpoint library and remote system
call library, (2) it has a new signal handler (not shown) that
triggers a checkpoint, (3) its context-sensitive system calls
have been replaced with remote system calls, and (4) a
shadow process is running to handle the remote system
calls.

Currently system calls cannot be safely replaced if a
system call function is active on the stack(s), because

resuming such a system call may invalidate the state of the
shadow process. The Hijacker can detect this situation by
inspecting the stack. It can be handled by intercepting the
return from the system call, and then proceeding with the
hijacking. Since we inherit the limitations of Condor’s
checkpointing mechanism, processes that spawn children,
communicate with other processes, or run with multiple
kernel-level threads currently cannot be migrated. The
hijacker assumes that all system calls generated by the
application process are handled by the standard C library
system call interface; system calls that bypass this interface
are not forwarded to the shadow process.

To hijack a process, the Process Hijacker performs the
following operations through calls to DynInst (see
Figure 4):

1. Attaches to the application process, stops it, and loads
the RTInst library;

2. Loads the checkpoint and replacement system call
libraries into the application;

3. Saves the open filestate of the application process in
the shadow process by forking the application process
(Section 3.1);

4. Replaces the application’s system calls (Section 3.2);

5. Initializes the shadow communication and installs the
checkpoint signal handler;

6. Restarts the application process and detaches.

Figure 2: DynInst API Operation

Mutator Mutatee
(Process Hijacker) (Application Process)

Process Modifications

Application

RTInst
Library

Process Modifications

DynInst

DynInstAPI
Library

Process

Application Code

Modifications

Figure 3: A Process Before and After Hijack

Application Code

Process Modifications

Application Code

Standard
System Calls

Application Process

Process ModificationsRPC Stubs

Application Process Shadow Process

(a) Before Hijack

(b) After Hijack

Checkpoint
System Call

RPC
RTInst



Steps 1 and 6 use the primitive DynInst operations for
attaching and detaching to a mutatee. Step 2 is performed
with the DynInst operation loadLibrary, which causes the
mutatee to load a new library. Step 5 is performed with
oneTimeCode, the DynInst operation for making inferior
RPC into the mutatee. The most interesting steps are cre-
ation of the shadow process (Step 3), and replacement of
the system calls (Step 4). The remainder of this section
explains these two steps.

3.1 Preserving Process State with the Shadow
The shadow process serves two main functions: (1) as

in Condor, it executes context-sensitive system calls in the
submit host context, and (2) it preserves open-file state
between a checkpoint and subsequent restart of the appli-
cation. We discuss the motivation for using the shadow
process for preserving open-file state.

A running application program may have filedescrip-
tors that were opened before it was hijacked. These
descriptors may include open files,devices, pipes or sock-
ets, and processes. The same filemay be open more than
once with separate position pointers (from separate open
calls) or with a shared position pointer (from dup calls).

Checkpointing this state makes severe demands on an
operating system. Since open works with filenames, the
names of filesopened in the application process must be
known to re-open them. However, findingthe name of a file
from a descriptor requires an inode search of the filesys-
tem, since the operating system only maps descriptors to
inodes, not filenames. If the filehappened to be unlinked
after the descriptor was created, it is not possible to open it
again (it will be deleted when it is closed). Even if it can be
re-opened, the descriptor must be set to its previous posi-
tion and possibly duplicated. Although lseek can be used to
determine the position and duplication state of a descriptor,
not all filetypes support seeking. Device filesmay have
special close semantics (such as rewind or eject on closing)
that must be undone before the device is re-opened.

To avoid addressing these problems directly, the
Hijacker uses the fact that fork copies the filedescriptors of
the parent process to the child to create a complete copy of
the application’s open filestate in the shadow process. An
advantage created by this approach is that it allows the
migration of distributed applications that communicate
with sockets, since the shadow process can be a fixed loca-
tion for the communication ports. A disadvantage of this

Figure 4: The Steps of Hijacking
(1) The hijacker attaches to the application; (2) The application loads the checkpoint and remote system call

libraries; (3) The application spawns the shadow process; (4) The hijacker replaces the application system calls;
(5) The application initializes its shadow connection; (6) The hijacker detaches.

Hijacker Application Hijacker Application Shadow

Hijacker Application Shadow

Ê �
Ë

Ì Í

Î Ï

CKPT
RPC
RTI
DYN
LIBC

Checkpoint
System Call RPC
RTInst
DynInst
Standard System Call

CKPT
RPC
RTI

Hijacker Application Shadow

CKPT
RPC
RTI

Application Shadow

CKPT
RPC
RTI

Hijacker Application Shadow

CKPT
RPC
RTI

RTI
LIBC

LIBC

LIBCDYN

DYN

DYN

DYN

DYN

Libraries

CKPT
RPC
RTI



approach is that the shadow process must live until the
application process terminates. The shadow process is
quite small, so it has trivial performance impact on the sub-
mit host, but if the submit host crashes, the application
must be restarted.

The Condor shadow, in contrast, can be restarted
because the Condor remote system calls are linked with the
application process from the beginning of its execution.
The Condor remote system calls record parameters passed
to context-senstive system calls, such as filenamesused in
open calls and descriptor numbers used in dup calls, to
allow the Condor shadow to reconstruct the filedescriptor
state when it restarts. The Condor shadow is more flexible,
as it can survive a crash of the submit host, but it cannot be
used with unmodified or already-running processes. To
provide the same level of fault-tolerance to hijacking shad-
ows would require an operating system mechanism for
allowing handles to open filesto persist across process ter-
mination and even system shutdown.

3.2 Replacing System Calls
We added a new method to the DynInst API, called

replaceFunction, to replace the original system call func-
tions of the hijacked process with the RPC stubs contained
in the remote system call library. replaceFunction inserts a
code patch at the entry point of the original function that
contains a jump to the replacement function. The jump is
designed so that the replacement function returns directly
to the caller of the original function, not the replaced func-
tion. replaceFunction understands various code optimiza-
tions that affect function calls, such as abbreviated state
saving and tail-calls. Figure 5 shows the operation of
replaceFunction.

There are more powerful applications of replaceFunc-
tion than process hijacking. The code patch it inserts can
contain arbitrary code, including code that references the
parameters of the replaced function. A patch could thus
select one of multiple replacement functions to call
depending on the parameter values, which would be a use-
ful mechanism for calling dynamically specialized func-
tions. It is also a general mechanism for re-linking a
program after it has started running. Conventional dynamic
linking techniques can set the binding time of symbols to
definitionsat the start of execution, but not after. replace-
Function can be applied to change a function binding at any
time during execution.

The costs of replaceFunction are a small amount of
memory for the new code and a small time penalty for each
call to jump from the original function to the replacement.
The memory required does not depend on the number of
potential callers of the function. The time penalty is negli-
gible because usually the replacement function call makes

an RPC to the shadow process, the time for which easily
dominates the cost of the control transfer.

There are other ways to dynamically replace functions,
but the method we chose appears the most general. The
point of modification,the entry point of the replaced func-
tion, is at the convergence of all control paths to the func-
tion. Only one modificationper function is required, and it
never needs to be repeated. Other techniques include modi-
fying every point where the function is called, or modify-
ing the dynamic linkage data structures. These techniques
require that multiple modifications be made for each
replaced function: one for every control path to the func-
tion (modifying call points), or one for every dynamic
library containing a call to the function (modifying linkage
data). They also require that the process be permanently
monitored, so that the modificationscan be applied again
to new code dynamically loaded by the process. Our tech-
nique allows the Hijacker to attach to the process, rewrite
it, and then disappear.

4 PROCESS MIGRATION

After a process has been hijacked, it is ready to be
migrated. Process migration has two parts: checkpointing
and restarting. A process checkpoints itself when a signal
handler contained in the checkpoint library is triggered.
The process is checkpointed (and later restarted) entirely
within the signal handler context. With the exception of the
use of the shadow to preserve filestate, our checkpoint
mechanism is identical to Condor’s and will not be dis-
cussed further.

Figure 5: Function Replacement
The function write is replaced with HIJACKwrite.

foo:

write:

HIJACKwrite:

call write

trap

shadow RPC

return

return

foo:

write:

HIJACKwrite:

call write

shadow RPC

return

return

patch:

jump HIJACKwrite

Ê Ê

Ë

Ë

Ì

Í
jump patch

Before After



A checkpointed process is restarted by a process,
called the Starter, that transforms itself into a continuation
of the checkpoint. A delicate stage of this procedure occurs
when the Starter replaces its own address space with the
checkpointed address space. The Starter process contains a
library, called the Restart library, that contains the code
and data used to perform the address space replacement. If
any region of the checkpointed address space coincides
with the location of the Restart library, the Restart library
will overwrite itself as it replaces that region of the address
space, possibly crashing the restart. To prevent this, the
Restart library must be loaded in a region that is disjoint
from every region used by the checkpointed process.

We delay loading the Restart library until it is certain
that it will be loaded in a safe place. We use the Solaris
dlopen function to load it at runtime. Before it is loaded,
we pre-allocate the regions that are allocated in the check-
pointed address space (and not already allocated for the
Starter). Then we load the Restart library. Since the regions
of checkpointed address space are already allocated, the
loader is forced to load it in a region from which it is safe
to copy the checkpointed address space. A later stage of the
restart procedure unloads the Restart library so that copies
of it do not accumulate over multiple checkpoints.

Our restart mechanism requires two services from the
operating system: (1) a means to discover the address space
of a process (provided by /proc on Solaris) and (2) the

ability to allocate specificregions of virtual memory (pro-
vided by mmap with the MAP_FIXED flag).

The restart code and data location problem does not
occur in systems, such as Condor, that statically link the
Restart library with the application. In these systems the
application executable itself is used to restart a checkpoint
(a command-line parameter determines whether the appli-
cation should run normally or restart a checkpoint). Since
static linking loads the Restart library at the same address
each time the application is run, the checkpointed address
space will contain a copy of the Restart library at the same
address as the process that restarts the checkpoint. The
Restart library will thus be preserved when this region of
the address space is replaced. This arrangement would not
be possible for the Process Hijacker without creating a cus-
tom Starter for each checkpoint that is statically linked
with the Restart library in a safe location.

5 PERFORMANCE

We measured two aspects of the performance of the
Process Hijacker: hijack time and migrate time. Hijack
time is the total running time of the Process Hijacker,
including the time for inserting the checkpoint and remote
system call libraries and replacing the system calls. Migra-
tion time is measured in two parts: checkpoint time and
restart time. Checkpoint time begins when the application
process receives the checkpoint signal and ends when
checkpoint is written. Restart time begins when the restart
program is executed and ends just before the restart pro-
gram returns to the application code of the checkpointed
process.

We report the hijack time and migrate time under the
Hijacker and Condor for five programs: (1) tiny, a small
compute-intensive program, (2) big, a program similar to
tiny, but with a larger data area (10MB), (3) kaffe, a Java
virtual machine (1.6MB text, 8.2MB data) running a 4400
line compute-intensive Java program, (4) ss, a CPU simula-

Program Hijack
Time

Checkpoint Time Restart Time

Condor
(chkpt
server)

Hijack
(chkpt
server)

Hijack
(local
file)

Hijack
(AFS)

Condor
(chkpt
server)

Hijack
(chkpt
server)

Hijack
(local
file)

Hijack
(AFS)

tiny 1,094 2,009 3,192 48 3,641 1,801 3,378 55 3,498

big 1,364 12,876 12,977 221 14,406 14,635 14,702 209 15,330

kaffe 1,357 16,951 17,491 216 21,314 18,072 19,488 279 21,597

ss 1,342 3,168 4,507 67 5,328 2,922 5,004 77 5,250

path 2,088 48,490 48,791 5,254 76,357 54,505 53,334 5,130 82,825

Table 1: Hijack and Migration Times for Condor and the Hijacker
All times in milliseconds.

Program Condor
(MB)

Hijacker
(MB)

tiny 1.6 3.1

big 12.1 13.6

kaffe 15.9 18.4

ss 2.7 4.6

path 50.1 52.2

Table 2: Checkpoint Sizes for Condor and the Hijacker



tor used by architecture researchers at the University of
Wisconsin (1.2MB text, 1MB data), and (5) path, a mixed
complementary solver used by mathematical programming
researchers at the University of Wisconsin (2MB text,
46.6MB data). The performance results are summarized in
Table 1. The checkpoint sizes for the measured programs
are shown in Table 2. The processes were hijacked on and
migrated between 250MHz Sun UltraSPARC 30s with
128MB of memory running Solaris 2.6.

Hijack time is between 1 and 2 seconds. Table 3 shows
a cost breakdown of the major hijacking stages for the ss
program. Real time includes the time spent executing infe-
rior RPCs in the application process, while virtual time
reflects only the CPU time (user and system) of the
Hijacker. The stages are listed in the order they occur (see
Figure 4). Attaching to the application is the most expen-
sive stage, during which DynInst loads the RTInst library
into the application process, scans the executable and
shared libraries of the application to locate its functions,
and parses the code of the replaced system call functions to
identify their entry, exit, and call sites. The entry sites are
the points at which replaceFunction laters inserts jumps to
the RPC stubs. The next most expensive stage is loading
and scanning the checkpoint and remote system call librar-
ies. Replacing the system calls and initializing the shadow
connection is the third most expensive stage. Starting the
shadow process requires only one inferior RPC from the
Hijacker process, but it results in significantactivity by
other processes when the application process executes the
RPC and creates the shadow process, and when the shadow
starts. Detaching from the application process is an inex-
pensive stage in which the Hijacker makes the application
runnable and then exits. Since none of the stages read or
write the data of the application process, data size is not a
factor in hijack time, excluding paging effects.

For the migration time of hijacked processes, we com-
pare the performance of three methods for checkpoint file
I/O: (1) writing to a local disk, (2) writing to the AFS dis-
tributed filesystem, and (3) writing to the Condor check-
point server. The time to transfer a checkpoint fileto a new
host is not included in the times for local disk I/O, but it is
included in the times for AFS and the checkpoint server,
since they both make the checkpoint fileglobally available.

The checkpoint and restart times using the checkpoint
server are comparable to the times of Condor. Our times
are slightly higher because our checkpoints are bigger than
Condor’s (due to large data areas in the DynInst RTInst
library). A user who wants to hijack and migrate a
medium-sized process (10MB) using a checkpoint server
can expect it to take about 30 seconds.

A local disk provides fast checkpoint I/O, and is thus
convenient for users who want to use checkpointing to
yield machine resources, however it requires a user who

wants to migrate the process to manually transfer the
checkpoint to the destination host. Although AFS is a con-
venient mechanism for transferring checkpoint files,it is
significantly slower than using a network checkpoint
server. The performance of the Condor checkpoint server
falls between that of the other two methods.

6 RELATED WORK

Process migration has been an operating system func-
tion since the early 1980s. It was a feature in
DEMOS/MP[11] (1983), LOCUS[9] (1984), V[15] (1985),
and Sprite[3] (1991). These research systems had the
advantage that they could implement kernel primitives for
accessing process state, making checkpointing and migra-
tion transparent to application processes. These systems
were limited to migration between kernels (hosts) that were
under the same administrative control.

More recent systems provide user-level checkpointing
and migration on commodity kernels. These systems
require the user to prepare the executable for checkpointing
by linking with special libraries, inserting calls to check-
pointing libraries in the source code, or using a special
compiler. Condor[7], Codine[5], CoCheck[13,14], and
MIST[1] require the application to be re-linked with a
checkpoint library. Codine is a distributed resource man-
agement system that provides checkpoint and migration
service to applications re-linked with a checkpoint library.
CoCheck adds the Condor checkpoint library to PVM and
MPI applications. MIST allows migration of PVM tasks by
providing a special version of the PVM library that
includes checkpoint fuctionality.

Other migration systems require access to the applica-
tion source code. CLIP[2] is a checkpoint system for Intel
Paragon multi-computers that requires insertion of calls to
the checkpoint library into source code. Tui[12] and the
Process Introspection Project[4] are heterogeneous process
migration systems that provide special compilers to gener-
ate checkpoint capable programs. Tui supports heteroge-
neous process migration of programs written in common
languages such as ANSI C. It uses a custom compiler that

Hijack Stage Real
Time

Virtual
Time

Attach 683 417

Load libraries 389 352

Start shadow 108 41

Replace syscalls 157 104

Detach 35 0

Table 3: Breakdown of Hijacking Costs for ss
All times in milliseconds.



identifiesproperties of program data and execution points
for the checkpoint system. The Process Introspection
Project definesa platform-independent design pattern for
expressing checkpointing information within the source
code of an application. A special library and compiler auto-
matically generate checkpoint capable executables from
programs written in compliance with the pattern.

7 CONCLUSIONS

Process migration is one of the basic mechanisms
required to provide High Throughput Computing service
on distributively owned resources[8]. In this paper we
report on a new checkpointing tool, the Process Hijacker,
that expands the scope and range of process migration.
With the help of the Hijacker, users with long-running pro-
prietary programs can now benefitfrom the checkpointing
and migration services offered by distributed resource
management systems. They are freed from the requirement
to re-link their application in advance and can pass at any
time the control over a process that was started interac-
tively to a resource management system. The Hijacker
splits the running process into two processes: the original
application process augmented with checkpoint and remote
system call libraries, and a shadow process that remains in
the original execution environment to preserve the I/O state
of the application process and to remotely execute its
future I/O system calls. The Hijacker employs dynamic
program re-writing techniques to insert the checkpoint and
remote system call libraries into the application and to
replace the standard I/O system calls of the process with
remote system calls to the shadow. We have used the
Hijacker to dynamically migrate several ordinary pro-
grams, including a Java VM. We have shown that process
hijacking is a reasonably inexpensive operation, and that
the cost of migrating a hijacked process is comparable to
the costs incurred by Condor when migrating a pre-linked
process.

ACKNOWLEDGMENTS

We thank Jim Basney, Todd Tannenbaum, and Derek
Wright of the Condor Team for their assistance with Con-
dor, and Bryan Buck, Tia Newhall, Christopher Serra,
Ariel Tamches, Brian Wylie, and Zhichen Xu for their
assistance with DynInst. Jim Basney and Jin Zhang came
up with the idea of restart library relocation for safely
restarting checkpoints of hijacked processes.

REFERENCES

[1] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty,
and J. Walpole. MPVM: A Migration Transparent Version
of PVM. Computing Systems 8, 2, Spring 1995, pp. 171-
216.

[2] Y. Chen, J.S. Plank, and K. Li. CLIP: A Checkpointing
Library for Intel Paragon. SuperComputing ‘97, San Jose,
CA, 1997.

[3] F. Douglis and J. Ousterhout. Transparent Process
Migration: Design Alternatives and the Sprite
Implementation. Software Practice and Experience 21, 8,
August 1991, pp. 757-785.

[4] A.J. Ferrari, S.J. Chapin, and A.S. Grimshaw. Process
Introspection: A Heterogeneous Checkpoint/Restart
Mechanism Based on Automatic Code Modification.
Technical Report CS-97-05, Department of Computer
Science, University of Virginia.

[5] GENIAS Software. Codine.
http://www.genias.de/products/codine.

[6] J.K Hollingsworth and B. Buck. DynInstAPI
Programmer’s Guide.
http://www.cs.umd.edu/projects/dyninst
API.

[7] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and Migration of UNIX Processes in the
Condor Distributed Processing System. Technical Report
#1346, Computer Sciences Department, University of
Wisconsin, April 1997.

[8] M. Livny and R. Raman. High-Throughput Resource
Management. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999,
pp. 331-337.

[9] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS Distributed Operating System. Distributed
Computing Systems: Concepts and Structures, IEEE
Computer Society Press, 1992, pp. 145-164.

[10] B. P. Miller, M.D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall. The Paradyn Parallel
Performance Measurement Tools. IEEE Computer 28, 11,
November 1995, pp 37-46.

[11] M.L. Powell and B.P. Miller. Process Migration in
DEMOS/MP. 9th ACM Symposium on Operating System
Principles, October 1983.

[12] P. Smith and N.C. Hutchinson. Heterogeneous Process
Migration: The Tui System. Software Practice and
Experience 28, 6, May 1998.

[13] G. Stellner. CoCheck: Checkpointing and Process
Migration for MPI. 10th International Parallel
Processing Symposium, Honolulu, HI, 1996.

[14] G. Stellner and J. Pruyne. Resource Management and
Checkpointing for PVM. 2nd European PVM User Group
Meeting, Lyon, France, 1995.

[15] M.M. Theimer, K.A. Lantaz, and D.R. Cheriton.
Preemptable Remote Execution Facilities for the V-
System. 10th ACM Symposium on Operating System
Principles, Orcas Island, WA, December 1985.


