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Abstract. The HTCondor high throughput computing system is heavily used in the high
energy physics (HEP) community as the batch system for several WorldWide LHC Computing
Grid (WLCG) resources. Moreover, it is the backbone of GlideInWMS, the pilot system used by
the computing organization of the Compact Muon Solenoid (CMS) experiment. To prepare for
LHC Run 2, we probed the scalability limits of new versions and configurations of HT'Condor
with a goal of reaching 200,000 simultaneous running jobs in a single internationally distributed
dynamic pool.

In this paper, we first describe how we created an opportunistic distributed testbed capable
of exercising runs with 200,000 simultaneous jobs without impacting production. This testbed
methodology is appropriate not only for scale testing HT'Condor, but potentially for many other
services. In addition to the test conditions and the testbed topology, we include the suggested
configuration options used to obtain the scaling results, and describe some of the changes to
HTCondor inspired by our testing that enabled sustained operations at scales well beyond
previous limits.

1. Introduction

HTCondor is a distributed high throughput computing system, providing batch services and
other features [1]. The High Energy Physics (HEP) community has broadly adopted it
on numerous Worldwide LHC Computing Grid (WLCG) computing clusters. Furthermore
HTCondor is the central piece of GlideinWMS [2], the resource provisioning layer for the
Compact Muon Solenoid (CMS) experiment as well as other physics and non-physics Virtual
Organizations (VOs).

CMS anticipates that, during LHC Run II (2015-2017), up to 200,000 cores would be available
for it to utilize. The proper and efficient use of these resources will be essential to achieve its
physics research goals. However, as any other distributed system, HTCondor does not infinitely
scale with the number of resources to manage. In Section 2, we describe the requirements and
the challenge of scaling HTCondor to those limits. Afterwards, Section 4 explains the different
improvements the HTCondor development team made to meet CMS scalability requirements.
For the purpose of better understanding of the enhancements done we also included overview
Sections 1.1 and 1.2 for the readers not familiar with HTCondor and GlideinWMS respectively.

Although CMS plans to have 200,000 cores available at peak times, having such resources
available for a testing setup was too costly. Therefore a novel approach for the testing was
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needed. In Section 3 we show the solutions to this problem as well as the final setup for testing
that allowed us to reach the proposed goal. Finally, while this work was motivated by CMS
requirements, in Section 5 we discuss lessons learned and how any other VO or computing cluster
will benefit from the improvements in HT'Condor and GlideinWMS software that resulted from
this work.

1.1. Owverview of HTCondor Components

An HTCondor pool consists of three pieces: a central manager running both a Collector and
a Negotiator daemon, one or more execute nodes running a Startd daemon, and one or more
submit nodes running a Schedd daemon [1]. Users typically login to a submit node and use
command-line tools that communicate with the local Schedd to submit jobs, query the state of
a job, cancel jobs, etc. The Schedd manages the job queue and serves as a scheduler, mapping
jobs onto execute nodes which it has claimed for its own use. If a Schedd does not have have
enough claimed execute node resources, it sends requests for more resources from the central
manager. The Negotiator receives these resource requests and attempts to locate additional
execute nodes that can be assigned to the requesting Schedd via a matchmaking process [3].
On the execute node, the Startd daemon manages the compute resources and instances of jobs
running on that node. All daemons in the HTCondor system also send regular status information
to the Collector daemon running on the central manager. The Collector serves as a database of
semi-structured data and can provide a centralized view of the status of all execute nodes in the
compute pool.

1.2. Owverview of GlideinWMS Components
GlideinWMS is a system for creating a dynamically growing HTCondor pool of execute nodes
from a set of grid entry points, growing or shrinking the available resources based on job workload
demand. To achieve this goal, it separates the grid submission and node validation tasks to a
component called the Factory (serving multiple VOs) [4] and demand computation and resource
requests to the Glideln Frontend (serving a single VO). The frontend consists of a running
daemon and is meant to be matched with a single HT'Condor pool. The fronted queries Schedds
to derive resource demands based upon enqueued jobs and passes this information to the factory.
The factory as directed by the fronted can submit pilots (also referred to as glideins within
the HTCondor ecosystem) to grid, cloud and opportunistic resources. Once a resource has
been acquired and validated - a pilot job is successfully running on a computing resource - the
pilot launches a properly configured HTCondor Startd binary on the execute node. In terms of
functionality, the Startd run by GlideinWMS is identical to a Startd run in a “regular” pool.

2. The Scaling Challenge
During the LHC Run I, CMS collected and processed data taken from proton-proton collisions
at a center-of-mass energy of 7 TeV in 2011 and at 8 TeV in 2012. However for Run II, it
plans to increase the collision energy up to 13.5 TeV along with increased luminosity [5]. Thus
the amount of data to be processed will increase as well as the pressure on the computing
infrastructure to operate efficiently. To successfully achieve its physics research goals, WLCG
sites have pledged CMS approximately 110,000 cores; adding in the resources at CERN, these
may peak at 130,000 cores. Taking into account growth over the next three years, cloud, and
opportunistic resources, we expect the core count may reach 200,000 during LHC Run II. Unlike
Run I, during Run IT CMS will have all of its resources provisioned by a single HTCondor pool [6]
to maximize flexibility. Hence, we set out to demonstrate a single HTCondor pool, provisioned
by GlideinWMS, which can run stably at that level.

Given that all resources will join a single pool, the central manager resiliency becomes
essential. Fortunately HTCondor already provides resiliency for the central manager in the
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form of the high availability (HA) mode [7].

Although it is usual to have several Schedds serving a single pool, the previous best result
for parallel running jobs in a single scheduler is 41,000 jobs [8]. Thus to fill a 200,000 core pool
(accounting for room for upgrades/downtimes) around seven Schedds would be needed. As each
host requires a marginal operational effort to maintain and operate, we aimed to leverage recent
scalability improvements to increase the per-host results. These are explained in Section 4.5; we
doubled prior results.

Even though the original challenge was to reach 200, 000 parallel running jobs in an HTCondor
pool, obtaining that amount of available cores for testing purposes proved a challenge on its own.
Such resources could be purchased from commercial clouds such as Amazon Web Services (AWS).
The bill - based on current AWS “spot” pricing [9] - would have been approximately:

$0.013 24 hours 30 days $1,872,000
* * * 200k cores = ————
hour * core day month month

(1)

As the cycles of test-report-fix-test for HT'Condor took several months, the bill would have
been in the orders of millions of US dollars. We decided to performed this taskon CMS resources
during the Long Shutdown 1 (LS1). However, CMS does not currently have 200,000 cores and
additional kept resources busy with user analysis and simulation workflows. Hence the need for
a novel approach to obtain the required resources: the Uber Glideln.

3. Uber Glidein

In a typical GlideinWMS glidein, a single pilot acquires one core and then runs several payloads
sequentially through its lifetime. Since we were not interested on the payload results, decided to
run sleep jobs (payloads which use close to no CPU). Our objective was on scaling the number
of startds a single HTCondor pool can handle - hence we modified the pilot to start n instances
of startd per core. In most of the tests, we used n = 64. We term such a pilot an Uber Glideln.
Figure 1 illustrates the difference between a normal Glideln and an Uber glidein. The Uber
glidein is a natural extension of a sleeper slot (usually provided by a site) [10] into a pilot, and
might as well change the way Internet-facing grid services are scale tested in the future.

In addition to idle CMS resources, we ran Uber Glideins in some Open Science Grid (OSG)[11]
and European Grid Initiative (EGI)[12] opportunistic resources. The driver was not necessarily
an economic one (versus cloud resources), but that the complexity also made the testing
environment closer to the production one. In production, the network latency of running
executing nodes over the WAN spread all over the world are known to cause problems[13]. This
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approached turned out to be successful as can be seen in Figure 2, in which 150,000 HT Condor
execution nodes were reached only using 20,000 real grid cores.

4. Scaling Results

Once we devised a mechanism for acquiring the required testbed resources, we focused on the
“testing, reporting, fixing” cycle for scaling HT'Condor. The results of the various improvements
are shown in Figure 3. Not all improvements came from new HT Condor releases; some were also
a result of configuration changes in HTCondor, GlideinWMS, or the host/kernel parameters.

4.1. Central Manager

As a highly-available and centralized component in HTCondor’s architecture, the central
manager is sensitive to scaling issues. In a standard setup, a single Collector runs in the same
host as the Negotiator. The Collector, which receives status updates from all executing nodes,
had scaling problems when the number of Startds was larger 2,000 for nodes located on the
local-area network, or just 200 for remote Startds communicating over a high-latency wide-area
network largely due to the number of network round-trips required to securely authenticate a
Startd joining the compute pool. Accordingly, a two-tier Collector architecture has been in use
by GlideinWMS case [13] since 2010. In the two-tier architecture, a set of “child” collectors
receives updates from a subset of the remote Startds, and then the children forward the updates
a top-level Collector over the local network interface. This hides the network latency from the
parent collector, improving overall scalability. Prior to HT'Condor 8.3.0, the recommended ratio
between Startds and child collectors was 200 to one [8, 13]. To achieve 200,000 running jobs, we
would need 1,000 child-collectors, which proved difficult to manage. Working with the HT'Condor
team, the Grid Security Infrastructure (GSI) [14] authentication implementation was changed
from blocking to non-blocking. Because a single GSI authentication requires multiple network
round-trips, with execute nodes are distributed across continents a single synchronous GSI
authentication would take 500+ milliseconds with the Collector process blocked on network I/0
for most of that time. The asynchronous re-implementation allows the Collector to authenticate
many Startds in parallel. In addition we performed some kernel tweaking and HT'Condor and
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GlideinWMS configuration changes: the value of the UDP Buffer size was increased the order
of 10M B and “renicing” the parent Collector process. The configuration changes modified
the periodicity in which the startd reported back to the Secondary Collector from the default
average of every 5 minutes to every 10 miuntes. Additionally, we decreased the frequency the
VO Frontent queried the parent Collector. The reasoning behind those changes was to reduce
the load on the parent Collector to allow it to process more updates from the children. All
together, these changes allowed us to change our ratio of Startds per child collector to 1,000 to
one.

4.2. Condor Connection Broker

Standard HTCondor deployments have the Scheduler initiate connections to the Startd directly;
this assumes that the Startd is either on the public Internet or the submit and execute hosts
are on the same private network. This is not true in the Glidein WMS use case as the worker
nodes may be behind restrictive firewalls or NAT. To establish connections in such a case,
HTCondor utilizes the Condor Connection Broker (CCB) and Shared Port [15]. The CCB acts
as a trusted “middle man” between the executing node and the scheduler. The Startd maintains
an authenticated outgoing TCP connection to the CCB; instead of the Schedd connecting to the
Startd directly, it will first connect to the CCB and request the CCB to forward a connection
request to the Startd. Within the connection request, the Schedd instructs the Startd contact it
on a specific TCP port. The Startd establishes a new outgoing TCP connection to the Schedd,
completing the CCB-assisted connection reversing procedure.

The default GlideinWMS deployment embeds the CCB daemon in each of the child collectors.
When running at 150,000 parallel jobs, we found this dual-role for the child collectors caused
sufficient network load that the system became unresponsive. We patched our GlideinWMS
setup to move the CCB functionality to a separate host. As each Startd maintains separate
TCP connections for job updates and CCB functionality, this halved the number of connections
on the central hosts.

4.3. High Availability
The HA mode consists on running two parallel central managers in two physically separate
nodes; a heartbeat / fencing protocol is used to keep only one Negotiator active at any given time.
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To perform this coordination, a HA daemon is run on both hosts. If it detects the primary one
to have gone off it kicks in the secondary Negotiator. As mentioned in Section 2 High Availability
will be a key factor in CMS operation for LHC Run II. Hence the requirement to include this
recovery scenarios at higher scales in our tests. Due to last sections outcome on removing the
CCB tree out of the same node as the Collectors, a new single point of failure was added. This
was later fixed by adding a secondary CCB node and having all the startd registering to both.
In this operational mode our final and recommended testbed for GlideinWMS deployments can
be seen in Figure 4.

Never before the HA mode has never been tested before to fully work when running at the
scales mentioned in this paper. The highest scale at which it has been known to run is at O(30k)
running jobs[16]. But we tested and probed that given this topology and the recommend versions
and configuration changes mentioned in the section before, O(200k) parallel running jobs can be
achieved while maintaining resiliency on the system. We performed the test of bringing down a
single CCB or a single Collector while running O(120k) running jobs for more than 12 hours,
and discovered the jobs were able to reconnect as seen in Figure 5.

4.4. Outgoing long-lived TCP streams

Although our initial topology depicted in Figure 4 consisting of dual redundant Collectors and
dual redundant CCB servers yielded good results in terms of scalability and fail-over resiliency,
it also doubled the number of outgoing long-lived TCP streams per execution node, potentially
causing problems at large site border firewalls, NATs, or routers. Our initial topology resulting
in 11 TCP streams from the worker node to the outside: 2 connecting the Startd to each
Collector, 2 for Master to each Collector, 2 for Startd to each CCB server, 2 for Master to each
CCB server, plus when a job is running, 2 more for Starter to each CCB server and 1 more for
the Schedd to the Startd.

To reduce the number of required TCP connections, two configuration changes were added.
First the SharedPort daemon, which previously was configured to run at just the submit nodes,
was enabled on the execute nodes as well to handle CCB connections for all daemons on the
execute node with just 2 streams. Second the connection from the Master daemon in the
execution node to the collector(s) was shut down. The aftermath was that only 5 long-lived
TCP connections were needed from the execution node to the outside: 2 for Startd to each
Collector, 2 for SharedPort to each CCB server, and 1 more for the Schedd to the Startd.
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4.5. Scheduler

The Schedd piece of HTCondor architecture that manages the submit machine is suitable for
horizontally scaling. It is common to have several of them serving a single pool, since HT Condor
provides for correct accountability for jobs submitted by the same user from different schedulers.
However as explained in Section 2 the until now results would not entirely satisfy the needs on
a 200k Startd pool. By leveraging access to the large testbed created as part of this work,
throughout the past year we have been able to identify and remedy several bottlenecks in the
implementation of the Schedd. A few examples include:

e Batched Resource Requests Previously the Schedd would send one resource request
to the Negotiator, and then await a response before sending another request. While
acceptable on a LAN, the latency of this many network turnarounds on the WAN increased
negotiation times significantly; for instance, processing 1000 resources requests on a LAN
took 30 seconds, but over 1153 seconds on a WAN w/ 100ms latency. By batching requests,
negotiation times on the WAN dropped by 70%.

e Remove file locking The Schedd used to obtain a write file lock when writing job and
audit events to disk. Because Linux does not schedule lock requests but simply grants them
in random order, lock starvation could cause the Schedd to become blocked for minutes
at a time when 75k+ jobs were running. By leveraging the POSIX guarantee that write()
system calls on a file opened in append mode will occur atomically, we removed several
instances of file locking from the Schedd.

¢ Reduce incoming TCP connections To handle the case where either a submit or execute
node disappears, each claimed execute node sends a keep-alive lease message to the Schedd
every 20 minutes. On a Schedd managing 75k+ jobs, this meant 60+ TCP connections to
accept, authenticate, and decrypt each second. We removed this Schedd burden by utilizing
the TCP’s stack’s KEEP_ALIVE socket option on the long-lived socket between the Shadow
and Starter process.

As a result of the above and numerous other scalability improvements added to HTCondor
over the past few years, we were able to manage to get in a stable fashion a single Schedd
instance to run O(90k) parallel running jobs as seen in Figure 6.
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5. Conclusions

The OSG Software team, in conjunction with HTCondor and GlideinWMS development teams
have collaborated to push the scalability limits of a single HTCondor pool. Achieving a pool
size of 200,000 execution nodes has required continuous, iterative work (as illustrated by Figure
7) by all participants. This allows HTCondor to continue to deliver functionality and resiliency
to match the scientific needs of its stakeholders - CMS in particular.
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