
The Kangaroo Approach to Data Movement on the Grid

Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny
Computer Sciences Department,

University of Wisconsin-Madison
{thain,jbasney,sschang,miron}@cs.wisc.edu

Abstract

Access to remote data is one of the principal challenges
of grid computing. While performing I/O, grid applications
must be prepared for server crashes, performance varia-
tions, and exhausted resources. To achieve high throughput
in such a hostile environment, applications need a resilient
service that moves data while hiding errors and latencies.
We illustrate this idea with Kangaroo, a simple data move-
ment system that makes opportunistic use of disks and net-
works to keep applications running. We demonstrate that
Kangaroo can achieve better end-to-end performance than
traditional data movement techniques, even though its indi-
vidual components do not achieve high performance.

1 Introduction

Grid computing introduces a host of problems into the
matter of attaching an application to its storage. Distributed
systems are prone to performance variations, failed connec-
tions, and exhausted resources. These problems cannot be
solved merely by increasing hardware capacity or reliabil-
ity. They are often integral properties of distributed hard-
ware [6], opportunistic resources [21], and social schedul-
ing constraints.

Grid applications are not prepared to deal with any of
these conditions. Often designed to run in the relatively
predictable environment of a standalone machine, they ex-
pect low latency, reliable delivery, and unlimited storage.
They don’t schedule I/O operations or recover gracefully
from unexpected failures.

We can solve these problems by re-using an old idea
[14]. Traditional operating systems deal with the vagaries
of disks by making a background process responsible for
scheduling, coalescing, and retrying operations. Applica-
tions are not bothered with seek delays, damaged blocks, or
spin-up times. As a pleasant side effect, throughput is in-
creased by performing I/O and CPU tasks simultaneously.

The same principle can be applied to grid computing.

Tier 0

Tier 1

3 3 3

Tier 2 Tier 2 Tier 2

Sites
Execution

Repository
Authoritative

A
n

alytic R
esu

lts

E
xp

er
im

en
ta

l D
at

a

Figure 1. Hierarchical Data Grid

In this paper, we illustrate a data-movement system
called Kangaroo. Kangaroo improves the reliability and
throughput of grid applications by hiding network storage
devices behind memory and disk buffers. Background pro-
cesses are made responsible for moving data and handling
errors. Applications perceive Kangaroo to be a mere file
system and need not be re-written or re-compiled to become
grid-aware. Kangaroo is user-level software that does not
require special permissions to install or use.

Kangaroo offers a highly-available and highly-reliable
service by sacrificing some consistency guarantees. Al-
though this would be unacceptable for a general-purpose
local file system, it is sensible for distributed data analysis.
Major grid data efforts [3, 9, 15] note that many scientific
data sets are created once and then remain read only. Orga-
nizations such as the Grid Physics Network [1] emphasize
the use of hierarchical facilities for accessing large data sets,
as shown in Figure 1. In such a system, experimentally-
produced data flows from a central repository toward the
leaves, while results computed from data move in the op-
posite direction. In such systems, read/write consistency is
not a problem. Availability, reliability, and throughput are
the main concerns.



����
����
����
����

���
���
���
������
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���
����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

CPU Burst

Overlapped Kangaroo I/O

Staging I/O

Streaming I/O

Key:

Network Output

Network Input

Stage to Disk

Figure 2. I/O Models

Kangaroo seeks to improve total application perfor-
mance by making good use of limited resources. However,
if viewed through a narrow lens, individual components of
Kangaroo are clearly not high performance. We intend to
make up any small-scale losses by using multiple resources
at once.

An example of this principle is shown in Figure 2, which
gives a time line for an application using three different I/O
models – streaming, staging, and Kangaroo. Astreaming
application performs blocking I/O directly over the network
while it executes. Astaging application performs I/O on a
local buffer, and then performs a blocking write of all dirty
data after execution completes. In the Kangaroo I/O model,
write bursts are written to a buffer and then performed con-
currently with CPU bursts. As we will show below, the ex-
act performance of the I/O bursts doesn’t matter – an overall
speedup is gained by using the CPU and performing I/O at
the same time.

2 Design Principles

Kangaroo draws ideas from many previous works, but
differs in its goals and assumptions. Before embarking upon
on a description of Kangaroo, we would like to lay out the
principles that have guided its design.

1. Keep it simple. [20]

2. Use all available resources to hide latency. Appli-
cations rarely use all available resources to capacity.
If one resource is a bottleneck then other excess re-
sources can be used to satisfy the demand. In practice,
this means using memory and disk to handle overflow
network traffic.

3. Stop errors from reaching applications. Scientific ap-
plications respond to errors such as “host not found”
or “connection lost” by crashing or simply terminat-
ing. Delivering such errors produces no useful results.
A data movement system should squash such errors by
retrying, delaying, or reporting the error to a scheduler
or a human operator.

4. Sacrifice consistency for availability. Many Grid ap-
plications are not concerned with read/write consis-
tency. Those that are must manage a larger problem
involving multiple storage sites and administrative do-
mains. Kangaroo is only a part of this picture. We will
provide an interface sufficient to manage consistency,
but not to enforce it in all cases. We note that other
popular file systems, such as NFS [23] and AFS [16]
have bent the rules of Unix consistency with consider-
able success.

5. Consider output first. Managing inputs is harder than
managing outputs. Output needs can be delayed ar-
bitrarily, but input needs can only be anticipated using
explicit information or accurate speculation. In this pa-
per, we have concentrated upon the problem of output
while maintaining a trivial system for input. With these
mechanisms in place, we plan to address the problem
of input in the future.

3 Architecture

The Kangaroo architecture is centered around a chain-
able series of servers that implement a simple interface,
shown in Figure 3.

The native interface to Kangaroo is shown in Figure 3.
get andput are stateless read and write operations that
operate on a particular location in a target file.get causes
the client to block until the necessary data are retrieved.
put is a non-blocking message with no response.com-
mit causes the caller to block until all outstandingputs
have been accepted for delivery.push causes the caller to
block until all outstandingputs have been transferred to
their ultimate destination.

Each call includes an explicit reference to the host at
which the primary data copy is stored. This (host,file) com-
bination serves as a system-wide unique name for a data
object. A Kangaroo system may service requests for this
object from many different replicas, but the client need not
know of or refer to such copies. The client may communi-
cate with any server – preferably the closest – to accomplish
I/O on any object.

With these four calls, we may implement a simple file
service with a single server process. This is calleddirect
Kangaroo and is shown in Figure 4. A client makes a TCP
connection to the server to performgets andputs on the
files that it needs. The server simply executes the operations
on the attached file system. This configuration is similar
in form, reliability, and performance to RPC-based systems
such as NFS [23].

The next step in complexity isone-hop Kangaroo, shown
in Figure 5. Here, a second server is placed at the execution
site. It satisfiesput requests by immediately spooling them

2



Figure 3. Client Interface
int kangaroo_get (host,path,offset,length,data)
void kangaroo_put (host,path,offset,length,data)
int kangaroo_commit ()
int kangaroo_push (host,path)

Figure 4. Direct Kangaroo

Server

Destination

Client

writes

reads

Storage SiteExecution Site

Figure 5. One Hop Kangaroo

Server

Spool

Mover Server

Destination

Client

writes

reads

Storage SiteExecution Site

Figure 6. Two Hop Kangaroo

Server

Spool

Mover Server Mover

Spool

Server

Destination

Client

writes

reads

Storage SiteExecution Site Intermediate Site

Figure 7. “Escaping” Remote Storage

Server

Destination

Mover

Spool

Client

Client

Client

Server

Storage SiteFront-End BufferExecution Sites

to disk. A background process, the mover, is responsible for
reading these requests and forwarding them to the destina-
tion as the network permits. get requests are satisfied by
first consulting the local spool. If the data are not present,
then get is invoked on the destination server.

One-hop Kangaroo insulates the client from many diffi-
culties. If the network should fail or the destination machine
should crash, the client will still be able to write to the local
spool disk. Likewise, if traffic or scheduling concerns pre-
vent the application from getting the necessary output band-
width, it will be able to run at full speed while the mover
does its job. Read operations may be satisfied from cached
data without contacting the destination server.

More hops may be added, as demonstrated by two-hop
Kangaroo in Figure 6. A multi-hop Kangaroo system can
provide a number of benefits.

Multiple hops allow transfers over many network seg-
ments to be performed incrementally, avoiding the need to
co-allocate network resources along all hops. This can be
particularly useful for transfers over links with significant
performance variations or outages. Without intermediate
buffering, the performance of end-to-end connections is de-
termined by the slowest link at any given time and end-to-
end reliability is determined by the product of the up-times
of the individual links.

Multiple hops can also increase the available spooling
space. Kangaroo can only hide network latencies if it has
space to store all extant data. If a spool disk fills, the appli-
cation’s I/O will be reduced to end-to-end network speeds,
because the application will be able to insert new data only
as fast as Kangaroo can move it out. When local spool space
becomes full, a server can offload spooled blocks in order
to avoid slowing down the application.

Multiple servers can be used to free certain resources a
quickly as possible, as shown in Figure 7. In many batch
scheduling scenarios, the user is charged for occupying any
resource on a compute node. To avoid holding on to a node
longer than necessary, Kangaroo can be used to ’escape’
the execution sites by offloading all data to a nearby storage
resource. The data can then be transferred over the wide-
area network as conditions permit.

3.1 Interface

The Kangaroo interface is very simple, and application
writers might choose to use it directly. However, given
the wide variety of available storage systems and the num-
ber of extant grid applications, it is unreasonable to expect
programmers to convert existing applications to work with
Kangaroo or any other newcomer to distributed systems.

To ease such transitions, we have built, using By-
pass [24], an adaptation layer that converts standard POSIX
operations into Kangaroo operations. This adaptation layer

3



close

lseek

open with create

open without create 

K
an

g
aro

o
 In

terfaceP
O

S
IX

 In
te

rf
ac

e

(If get succeeds,
open succeeds)

(Just update table)

fd kind host

0

1

2

3

4

Unix

Kang

Kang

Unix

Kang

... ... ...

dbhost

offset

1056

0

/etc/hosts

/data/db

/tmp/err.2

/tmp/out.2

/dev/null

path

coral

coral

... ...

read get

write put

fsync push

exit commit

785

3122

59687

Figure 8. Adaptation Layer

can be transparently applied to any dynamically linked pro-
gram without special privileges. The layer does not af-
fect the operation of normal filenames, but transparently
’mounts’ Kangaroo into the root filesystem. Operations
on filenames such as /kangaroo/host/path are trans-
parently converted into Kangaroo client operations. Be-
cause Kangaroo gets and puts are stateless, the adap-
tation layer must remember such process-specific state such
as file descriptors and seek pointers. Figure 8 illustrates how
these transformations take place.

In addition, we have provided command-line utilities
that invoke the client library to get, put, and push whole
files between Kangaroo and local files or pipes. This pro-
vides a simple method of attaching input and output streams
to Kangaroo when the use of Bypass is not desired.

Because Kangaroo is intended as a drop-in replacement
for a file system, it is important that it provide sufficient
operations for applications to work. However, it is not cur-
rently (and perhaps will never be) a full-featured distributed
file system. Like a tape or a terminal, Kangaroo presents a
file-like interface without all of the trappings of a real file
system.

A number of operations are missing from the Kangaroo
interface. For example, there is no support for deleting files,
checking access permissions, or retrieving meta-data. The
adaptation layer has several strategies for dealing with ap-
plications that request these features. For most unsupported
operations, it can be plainly honest: an attempt to delete a
file will return the error “operation not supported” . Some
operations can be converted: a small get serves to satisfy

a check for read permissions. Other operations must sim-
ply return dummy values. Although this practice prevents
the application of some standard system tools such as ls or
make, it is sufficient to admit a large number of grid appli-
cations that simply must read and write data. We may add
further operations to the interface as applications require.

3.2 Consistency

Like a local file system, Kangaroo maintains read/write
consistency for applications using the same first-hop server.
For every data block spooled for writing, a server maintains
an entry in memory. Incoming gets first examine this data
structure and attempt to satisfy the operation locally before
requesting data from another server. If data can be served
entirely from the local copy, no contact is made with any
other server.

Kangaroo does not enforce consistency between appli-
cations at multiple sites. Applications that need consistency
guarantees must explicitly synchronize using the primitives
commit and push. The former is used to make data safe
from crashes, while the latter is used to make changes visi-
ble to others.
commit causes the caller to block until all outstanding

changes have been written to some stable storage. This does
not mean the changes are visible to all other callers! In
practice, commit causes the receiving server to flush all
buffered data and all file systems to disk. An application
that commits may safely exit knowing that its results will
eventually flow back to the destination, even if some inter-
vening links or servers fail.
push causes the caller to block until all outstanding

changes have been delivered to their respective destinations.
In practice, push causes the receiver server to block until
the mover has drained all dirty blocks to the next server
in line. Then, the push is recursively called on the next
server. At the target host, push succeeds when all out-
standing data are committed into the local file system. The
success message is then passed back, step-by-step, to the
caller. Of course, any of these links may fail due to network
or server problems. In each case, a push is free to retry the
error or return it the caller. An error return does not mean
the delivery has failed, but rather that the system cannot de-
termine if the data have yet arrived. The responsibility of
retrying until success lies with the top-level caller.

The adaptation layer converts POSIX operations into the
appropriate Kangaroo consistency operations. When a pro-
gram exits, the adaptation layer forces a commit to the lo-
cal Kangaroo server. This prevents the system from entering
a state where a program reports successful completion but
loses its output to a subsequent server crash. If the user (or
scheduler) that started the job wishes to wait until all data
arrives, then a manual push should be issued. During exe-

4



cution, a POSIX fsync is also converted into a push. This
allows existing applications that synchronize with fsync
to operate correctly with Kangaroo.

Because output data may be arbitrarily delayed – even
beyond the end of the program – puts are not allowed to
fail and thus return no value. If a temporary resource limit,
such as a full disk, prevents a server from accepting a put,
it is free to block the caller simply by not consuming any
more data from the connection. If some other error prevents
committing data to the target file system, for example, insuf-
ficient privilege, then data may be stored in a local buffer.
In this case, the server should contact the user to rectify the
problem. A commit will succeed on data buffered for an
’unsolvable’ problem, but a push will not.

As the mover process flows data in the background, it
uses the same primitives as any other client of the system.
As it reads dirty blocks out of the local spool, it performs
puts on the target server. Blocks are not deleted out of the
local spool until the mover successfully performs a com-
mit on the target.

Any catastrophic errors must be communicated back to
the scheduling system. For example, if a server crashes or
suffers an unrecoverable error, the process at the other end
of the connection will be abrubtly disconnected. If it can,
the process should roll back to the last commit. For the
mover, this is easy – it simply throws out its list of sent
blocks and starts over. For an application, things are more
complicated. An application written to the native Kangaroo
interface should be desined to either roll back or abort. If
using the adapation layer, a process is forcibly killed when
the connection is lost. This action must be understood by
the CPU scheduling system to indicate a rollback. In the
case of Condor [21], a killed process is restarted from the
beginning or from the last checkpoint, if available.

3.3 Scheduling

Although this architecture has been primarily cast as an
on-demand data movement system, it has a natural method
of integrating with a network scheduler. The mover pro-
cess is implemented with Cedar, a general-purpose network
socket library that supports bandwidth allocation. When es-
tablishing a new connection, the library first requests a net-
work allocation from a site network manager. The network
manager allocates bandwidth fairly among active Kanga-
roo connections without exceeding maximum rates config-
ured by an administrator. Periodically, the network manager
requests reports from all clients and re-allocates the band-
width based on recent usage. At our site, this is used to
enforce an upper limit on network resources consumed by
opportunistically scheduled jobs.

4 Implementation

4.1 Status

We have built a Kangaroo prototype that implements the
architecture described above. The basic architecture leaves
a number of things unspecified to the implementation. Cur-
rently, these are:

1. Caching discipline. Because files are assumed to be
write-once, a server is free to cache any data that
passes through it. Currently, no caching is done. All
get operations read through to the destination server.
We will address this in a future work.

2. Server discovery. A client is free to use any server it
can locate. Naturally, it has a vested interest in finding
the closest one. Currently, the client library consults an
environment variable for the name of the closest server
and falls back on the local host.

3. Routing mechanism. A wide variety of route-finding
protcols and mechanisms are available for computer
networks. Currently, each server is equipped with a
static routing table. This has not proven to be a bur-
den, as the default behavior is to route all operations
directly to the server named in the request. All one-
hop configurations work without any manual routing
configuration.

4. Authentication. Two authentication mechanisms are
currently implemented: address-based and Globus GSI
[12]. Each server runs as a non-privileged user and de-
cides when a connection is made whether to trust all
incoming operations.

5. Management Tools. To allow the user to locate data
in transit and diagnose problems in the system, addi-
tional tools allow the user to query the contents of each
spool directory and retrieve messages detailing failure
(or success) of delivery. We envision that the server
will eventually report problems to the user, instead of
making the user manually query.

4.2 Performance

We evaluated our prototype in three aspects: reliabil-
ity, burst performance, and overlap performance. Briefly,
we confirmed that the prototype provides improved appli-
cation throughput, even though individual components are
not high performance. All experiments were performed
on commodity workstations running Linux 2.2.17 with 512
MB of memory, a 25 MB/s disk/adapter combination, and a
100 Mb/s switched ethernet.

5



0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

ou
tp

ut
 d

at
a 

(K
B

)

time (seconds)

produced
delivered

Figure 9. Response to Failures

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

File Size (MB)

Stream
Kangaroo

Stage

Figure 10. Burst Response Time

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

T
ur

na
ro

un
d 

T
im

e 
(s

ec
on

ds
)

File Size (MB)

Kangaroo
Stage

Stream

Figure 11. Burst Turnaround Time

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)

Available Bandwidth (MB/s)

Stream
Kangaroo

Stage

Figure 12. Images Response Time

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12

T
ur

na
ro

un
d 

T
im

e 
(s

ec
on

ds
)

Available Bandwidth (MB/s)

Stage
Stream

Kangaroo

Figure 13. Images Turnaround Time

6



To demonstrate reliability, we used a one-hop Kangaroo
system to deliver an output file generated by Gaussian [13],
a popular chemistry application. Gaussian has very modest
I/O needs. A typical run reads a small input file and pro-
duces a log of megabytes to gigabytes over the course of
hours or days. A large amount of temporary storage is used
during the run, but is not relevant to the final result.

Figure 9 shows the output behavior of a typical Gaussian
run with its log file delivered through a one-hop Kangaroo
system. The thin line shows the total amount of data pro-
duced by the application. The thick line shows the total
amount of data actually delivered to the storage site. Ser-
vice interruptions were created at 1000 and 5750 seconds
by forcibly killing the destination server. As shown, an in-
terruption simply causes data to queue up at the execution
site until conditions permit output to continue. The program
successfully terminated at about 6000 seconds, but service
was not restored until about 11000 seconds, whereupon the
output was delivered.

Of course, the improved reliability given by Kangaroo
must come at a price. To quantify the cost of using the inter-
mediate spool disk, we compared the performance of a one-
hop Kangaroo system against two traditional grid transfer
techniques: streaming and staging. A streaming application
application writes its output directly to the network without
any intervening storage. A staging application writes its
whole output to the local disk and then transfers the whole
file at the end of execution.

To compare the three, we created a program which gen-
erated a single burst of data as fast as possible. We mea-
sured the response and turnaround time for the generation
of 10-2000 MB of data. The former was defined simply as
the interval of execution, while the latter included the exe-
cution time plus any additional time to move the output to
its destination.

The results of this comparison are shown in Figures 10
and 11. By definition, streaming has the same response
and turnaround time. Staging gives better response time by
using the faster disk during execution, but takes longer to
eventually deliver the output. One-hop Kangaroo fits some-
where in between. For all files, it provides response time
between staging and streaming. For files that fit in memory,
it gives better turnaround time than staging. For files larger
than memory, it is slightly slower.

The real benefit from Kangaroo comes from its ability to
overlap CPU and I/O intervals. To demonstrate the poten-
tial benefits of overlap, we constructed a synthetic image-
processing application with moderate output needs. This
application approximates a number of scientific applica-
tions that produce multiple derivative data sets from an orig-
inal. The application reads a single image of 5.5 MB and
then produces ten output images of the same size, each a
slightly different enhancement of the original. Each output

required 6.1 seconds of cpu time to generate.
This application was run in three different configurations

as in the previous experiment. These correspond to the three
models shown in figure 2. The benefit to be gained from
overlapping depends heavily on the actual ratio of CPU time
to I/O time. To vary this ratio, we artificially restricted the
I/O bandwidth accepted by the destination server.

Figure 12 shows the response time for this application.
As expected, the streaming variant is controlled solely by
the available network bandwidth. The response time for the
staging and Kangaroo variants is constant, Kangaroo only
slightly slower.

Figure 13 shows that Kangaroo provides a better
turnaround time in all cases to its ability to overlap CPU
with I/O. The turnaround time with Kangaroo remains al-
most constant until the available bandwidth begins to fall
below the application’s true I/O needs: about 1 MB/s. The
other I/O disciplines are sensitive to available bandwidth in
every region, even when CPU requirements are the major
bottleneck.

5 Related Work

Our work is indebted to a large body of research on file
systems, but we must emphasize that the usual formulation
of a file system as a kernel-provided resource is not suit-
able for grid computing. No single file system meets the
needs of users and administrators everywhere, and visiting
applications do not have the permissions necessary to install
privileged software.

To combat this, a grid application must bring along its
own I/O system and a method for attaching to it. Sev-
eral mechanisms have been proposed. Kangaroo uses li-
brary preloading, facilitated by Bypass [24]. Many other
mechanisms are possible, including system call intercep-
tion [2, 18], static relinking [22], binary rewriting [27, 17]
and emulation through an existing interface [26].

Using these mechanisms, a variety of data-movement
systems may be attached. Representative examples include
Condor [22], GASS [7], and Legion [26]. The Condor re-
mote system call facility performs all application I/O as
fine-grained read and write operations over a TCP connec-
tion to the submission site. GASS allows an application
to pull and push whole files synchronously when they are
opened and closed, respectively. GASS also allows files
opened for appending to stream data directly over a TCP
connection. Legion provides a ’ legacy’ interface similar to
GASS and a ’native’ interface similar to Condor.

None of these systems address the issues of reliability
or latency hiding. A Condor job that is disconnected will
be immediately killed and rolled back to the last check-
point. Failed operations in GASS and Legion result in a
error propagated to the application. All of these systems

7



cause the caller to be blocked while I/O operations are per-
formed synchronously.

Reliability has been explored by several kernel-level file
systems, such as Coda [19] and Echo [8]. These systems
are very concerned with maintaining wide-area consistency,
but make ‘optimistic’ assumptions when the network is not
available. Latency hiding has been explored with the con-
cept of buffer servers [5], particularly in the use of micro-
proxies [4] to intercept and buffer NFS operations.

It has been suggested that Kangaroo bears a certain sim-
ilarity to peer-to-peer file-sharing systems, such as Gnutella
or Freenet [10]. Although the interface is similar – a client
may perform I/O from any node in a cloud of Kangaroo
servers – the naming is not. Kangaroo relies on the author-
ity of a central server to provide a file’s canonical name and
data. Although a lack of interest may cause data to even-
tually be flushed from Kangaroo’s distributed caches, the
decision to keep or a delete a primary copy rests with the
central repository.

6 Conclusion

There remain a number of avenues to explore with Kan-
garoo.

Foremost, we have not yet address the matter of making
input data arrive exactly when it is needed. Other work [11]
has suggested that bandwidth-limited prefetching is a useful
model. In a large data grid, there may be multiple servers
from which a read cache miss may be satisfied. Kangaroo
could be coupled with a replica management system [3, 25]
in order to find the ’best’ replica to bring into the cache.

Currently, the application, server, and mover rely on the
local operating system to mediate their demands for mem-
ory, disk, and network resources. This may not always
provide for optimal end-to-end throughput. Allocating re-
sources to the server improves the application’s short-term
latency, but allocating resources to the mover reduces the to-
tal storage consumed. A more informed allocation system
is needed.

Finally, our current implementation authenticates client-
server and server-server connections using the Globus
tools [12]. This is only suitable when one person owns all of
the participating servers. We wish to investigate techniques
that sign individual data items, thus allowing the participat-
ing servers to be shared among multiple users.

In this paper, we have shown that a simple, unopti-
mized system can improve the reliability and throughput
of grid applications. We have emphasized that Kangaroo
offers higher throughput through flexible use of available
resources, even though individual components are not high
performance.

References

[1] The Grid Physics Network (GriPhyN).
http://www.griphyn.org, June 2001.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
UFO: A personal global file system based on user-level ex-
tensions to the operating system. ACM Transactions on
Computer Systems, pages 207–233, August 1998.

[3] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke. Secure, efficient data transport and replica
management for high-performance data-intensive comput-
ing. submitted for publication.

[4] D. Anderson, J. Chase, and A. Vahdat. Interposed request
routing for scalable network storage. In Proceedings of the
Fourth Symposium on Operating Systems Design and Imple-
mentation, 2000.

[5] D. Anderson, K. Yocum, and J. Chase. A case for buffer
servers. In Proceedings of the IEEE Workshop on Hot Topics
on Operating Systems, April 1999.

[6] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E.
Culler, J. M. Hellerstein, D. Patterson, and K. Yelick. Clus-
ter I/O with River: Making the fast case common. In Pro-
ceedings of IOPADS, May 1999.

[7] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A Data Movement and Access Service for Wide
Area Computing Systems. In Proceedings of the Sixth Work-
shop on I/O in Parallel and Distributed Systems, May 1999.

[8] A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart.
The Echo distributed file system. Technical Report 111, Dig-
ital Equipment Corporation, Palo Alto, CA, USA, 1993.

[9] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The Data Grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. In Proceedings of the Network Storage Symposium,
October 1999.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In H. Federrath, editor, Designing Privacy Enhancing
Technologies: International Workshop on Design Issues in
Anonymity and Unobservability, New York, 2001. Springer.

[11] M. Crovella and P. Barford. The network effects of prefetch-
ing. In Proceedings of the IEEE INFOCOM, February 1997.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational grids. In Proceedings of
the 5th ACM Conference on Computer and Communications
Security Conference, pages 83–92, 1998.

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuse-
ria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. J. A. Montgomery, R. E. Stratmann, J. C. Burant,
S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Mo-
rokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,

8



R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Chal-
lacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle,
and J. A. Pople. Gaussian 98 revision a.7, 1998.

[14] H. Hellerman and H. J. Smith. Throughput analysis of some
idealized input, output, and compute overlap configurations.
ACM Computing Surveys, 2(2), 1970.

[15] W. Hoscheck, J. Jaen-Martinex, A. Samar, H. Stockinger,
and K. Stockinger. Data management in an international
data grid project. In Proceedings of the 1st IEEE/ACM In-
ternational Workshop on Grid Computing, 2000.

[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and per-
formance in a distributed file system. ACM Transactions on
Computer Systmes, 6(1):51–81, February 1988.

[17] G. Hunt and D. Brubacher. Detours: Binary interception
of Win32 functions. Technical Report MSR-TR-98-33, Mi-
crosoft Research, February 1999.

[18] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In Proceedings of the 14th
ACM symposium on operating systems principles, pages 80–
93, 1993.

[19] J. Kistler and M. Satyanarayanan. Disconnected operation
the Coda file system. Operating Systems Review, 23(5):213–
225, December 1989.

[20] B. W. Lampson. Hints for computer system design. In Pro-
ceedings of the 9th ACM Symposium on Operating Systems
Principles, volume 17, pages 33–48, 1983.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - A hunter
of idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[22] M. J. Litzkow. Remote UNIX: Turning Idle Workstations
into Cycle Servers. In Proceedings of the 1987 Usenix Sum-
mer Conference, pages 381–384, 1987.

[23] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Summer 1985 USENIX
Conference, pages 119–130, 1985.

[24] D. Thain and M. Livny. Multiple Bypass: Interposition
agents for distributed computing. Journal of Cluster Com-
puting, 2:39–47, 2001.

[25] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in
the Globus data grid. In Proceedings of the International
Workshop on Data Models and Databases on Clusters and
the Grid, 2001.

[26] B. White, A. Grimshaw, and A. Nguyen-Tuong. Grid-Based
File Access: The Legion I/O Model. In Proceedings of the
9th IEEE Symposium on High Performance Distributed Sys-
tems, August 2000.

[27] V. C. Zandy, B. P. Miller, and M. Livny. Process hijacking.
In Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing, 1999.

9


