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L-1 
Absts act 

The multiplicity and autonomy of resources in f d y  distrihted procesSing system make task 
migration an attractive method for enhancing the response time of these systems, how eve^, 
the communication delays and processing overheads associated with the migration of a task 
raises doubts as to the capabilitg of load balancing methods to improve the performance of 
distributed systems. 

This thesis investigates the problem of load balancing in distributed systems. A 
comparative performance study of several load balancing algorithms is presented. The 
methodology used in this study is based on the idea that the load balancing prrrblem,.like 
many other problems related to distributed systems, is a two dimensional one. The fimt 
dimension captures parameters that d e h e  the algorithm itself, while the second represents 
the characteristics of the distributed system. An understanding of the interdependence 
between the algorithm performance and the system’s attributes is essential for acquiring an 
insight into the load balancing process. A number of new load balancing algorithms for both 
broadcast and point-to-point systems are presented and analyzed. Performance models of 
the various algorithms and systems are deiined and solved. It is demonstrated that even 
when the communication delays and processing overheads are non-trivial, load b h c i n g  can 

significantly improve the response time of the system. 
Different approaches are used for defining and solving the performance models of 

the algorithms. Depending on the complexity of the model and the level of detail required, 
analysis or discrete and continuous simulation are used. A method for modeling and simnlat- 

ing distributed systems is presented and used for deriving performance measures. The models 
and simulation programs built according to this methodologg reflect the loose coupling and 
autonomy of the elements of the system. Consequently the models are endowed with the 
modularity of the distributed system 
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f 1 1 Motivation 

What would have been your reaction if while j d i  the end of a seemingly exdess be-of 
customers at the banks soothsayer would have wispered in your ear: ‘Be omwe of the idle 
tellera at the brunch on the ned block I ”? Would yon have decided to run across the block 
hoping that you are the ody one that heard the wisper, or would y o u h v e  used some kind 
of reasoning to justify a decision to stay. Whatever your decision would have been it might 
have saved you time. By becoming a m e  of the state of the other branch you were faced 
with the problem of load balancing in a multi-reaource system. As a user of su& a system 
you have realized that while you were waiting for a resource at one location a resource which 
belongs to the same system but is located at a different place was available. By selectingthe 
‘right’ resource to wait for (you can later change your mind) the amount of time that you 
would have to wait could have been reduced considerably. However, due to the stochastic 
properties of most users and systems it seems that one has to be a soothsayer in order to 
know who i s  the ‘right’ server. 

Various goals may motivate the construction of mnlti-resource systems. One of 
the main motivations for such systems is the need for rewurce ahuring. This need has 
always existed as far as processing systems were concerned. The great progress m the field 
of computer networks in the last decade made multi-resource processing a reality. The 

primary goal of the projects in which the first computer networks were designed was to 
developed means by which a large and widely spread community can share hardware and 



software resources flawr7OJ. The computer to computer interconnections and communication 
protocols that were developed gave the user the ability to access resources that they could 
not use before since these resources were not part of the users’ local environment. By doing 
so these networks gave an answer to the permanent resource availability problem. However 
users of processing systems face an instantaneous resource avadabi2ity problem whenever a 
local resource is not accessible at a given instance due to resource contention. In such a case 
the user may be willing to use any non-local resource although a resource with similar or 
even superior properties is part of his Iocd system. The need for resource sharing under such 
circumstances is motivated by the desire to  obtain a better response time. 

When a given resource is permanently not available at the local system the selection 
of the non-local resource to be used can be carried out by the user. But in the case 
where resources are selected according to their instantaneous availability the assignment of 
resources has to be executed by the system. Due to the frequent changes in. the state of the 
resources and the system load distribution, the binding between users and resources has to 
be a dynamic process. By migrating tasks from one location to the other according to the 
instantaneous system load the assignment algorithm may reduce the response time of the 
multi-resource system. The realization of the potentiality of the task migration process to 
enhance the perforlhance of such systems motivated this study of load balancing algorithms 
for Distributed Piocessing Systems (DPSs). This study attempts to answer the questions of 

how under what conditions and t o  what eztent the expected queueing time of a user of such 
a system can be reduced by means of load balancing. 

* 

5 1.2 Distributed Systems 

The extensive experience that has been accumulated in the operation, maintenance and 
upgrading of centralized computer systems revealed the disadvantage of this type of com- 
puter organizations. An analysis of these drawbacks led to the development of the ideas 
that by distributing the resources and control of a processing system some of them may be 
eliminated. A great many advantages are claimed for distributed systems [Ens178], some of 
which are listed in Table 1.1. The attractivity of distributed systems brought many scientists 
and vendors to add the title “distribufed’ to any system with more than one processor. As a 
result of this the term “Distn’buted processing“ was left devoid of any substantive meaning. 

1-2 



I High Availability and Reliability 
High System Performance 
Ease of Modular and Incremental Growth 
Automatic Load and Resource Sharing 
Good Response to Temporary Overloads 
Easy Expansion in Capacity and/or Function 

Table 1.1. 
I Claimes for “benefits” provided by Distributed Processing systems 

ii. 

iii. 

iv. 

v. 

Only few attempts have been made to establish a set of definitional criteria for a 

Distributed Procesing System ~ml78],[Jens78] and [Ensl81]. The DPSs that were analyzed 
in this study posessed the five criteria of a Fully Distributed Processing System as defined by 
Enslow in [EnsM]. According to this dehition a processing system has to meet the following 
criteria in order to be considered as fully distributed: 

i. Multiplicity of resources: The system should provide a number of assignable resources 
for any type of service demand. The greater the degree of replication of resources, the 
better the ability of the system to maintain high reliability and performance. 

Component interconnection: A Distributed System should include a communication 
subnet which interconnects the elements of the system. The transfer of information via 
the subnet should be controlled by a two-party, cooperative protocol (loose coupling). 

7 

Unity of control: All the components of the system should be unified in their desire 
to achieve a common goal. This goal will determine the rules according to which each 
of these elements will be controlled. 

System transpsrencyt From the users point of view the set of resources that con- 
stitutes the DPS acts like a ‘single virtual system’. When requesting a service the user 
should not be required to be aware of the physical location or the instantaneous load of 
the various resources. 

Component autonomy: The components of the system, both the logical and physical, 
should be autonomoue and are thus afforded the ability to refuse a request for service 
made by another element. However in order to achieve the system’s goals they have to 
interact in a cooperative manner and thus adhere to a common set of policies. These 
policies should be carried out by the control schemes of each element. 

The salient characteristics of DPSs is the multiplicity and autonomy of its resources. Most 
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r 
of the advantages which DPSs provide depend on these two properties. E m r  dTte f;o 

multiplicity and autonomy of its resources a DPS may be in a W d  :while idle cwr) state 

which is a state in which a task is waiting for service while a resource that is capableof 
serving it is idleing. Any system which aims at  achieving minimal response time Gll consider 
a WI state as undesired and thus attempt to minimize its duration. The WI state is a 
fundamental phenomenon associated with distributed systems and may occur even when a 
number of tasks are waiting for a single res0urce.l.h such a case the distributianof the access 
control scheme is the cause for the WI state. 

$1.3 Load Balancing Algorithms 

A Load Balancing (LB) algorithm for a DPS is a distributed decision process that contmls 
the assignment of the system resources. The algorithm is motivated by the desire to achiew 
better overall performance relative to some selected metric. The algorithm utilizes a tnak 
migration mechanism in order to place the tasks at the ‘right’ resources. This study focuses 
on LB algorithms whose goal is to minimize the expected turnaround time of a task. 

The nature of a DPS adds another dimension of complexity to the development of 
decision processes. I Because of the existence of more than one decision maker (controller) 
in the system and the absence of information on the current system state at the paint: the 
process takes place, the control problem of such systems,is nonclassical [Scho78]. In such 
control problems the selection and collection of information for the decision process - the 
information rule - is almost as important as the decision rule - the conttol Iota. 

The control law of a distributed LB algorithm determines when, from;where and 
to whom to transfer a waiting task. The decision is made according to the cmrent a-le 
information on the system’s load. It is the function of the information policy to collect the  
data concerning the instantaneous load of the various resources. Each of these two element 
has to reside at every resource and the communication system is used by both of them in 
order to carry out their functions. The control element sends dutu m.essages that describe 
tasks and the information element sends statua messages that contain data concerningthe 
resource load. 

Since the operation of the algorithm relies on an  efficient exchange of information, 
the balancing process faces a transmission dilemmu because of the two opposing effects.the 

‘In an ETHERNET netspork a number of stations may be in a ’backoff’ state while the channel is free 
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transmission of a message may have. On the one hand, the t r d s i o n  of a rnessqphnpmves 
the ability of the algorithm to level out the instantaneous system load and to mabskain 

an updated picture of the system load at different locations. On the other h d ,  it raises 
the expected queueing time of a message due to the increase in channel utilization. Long 
transmission delays lower the ability of the LB algorithm to achieve its g o d  

51.4 Previous Work 

The problem of resource allocation in an environment of cooperating autonomaw resotmes 
and its relationship to system performance is a major issue associated with the design of 
distributed systems [Echh78]. A number of studies of this issue have beemeported. H o m r ,  
most of these studies deal with processing systems that utilize central elements, such as a job 
dispatcher, a shared memory or a main processor. In all these studies processing overhead 
due to the balancing process are not included m the performance models. 

Stone in [Ston771 presents a centralized resource allocation algorithm for mdti- 
processor systems. The algorithm assumes that the cost (including communication costs) of 
each assigment is given. Under this assumption the optimal assignment problem is transferred 
to the problem of findilig the minimum cutset of a graph. 

A homogeneous two-server system with a central job dispatcher has been studid 
by Chow and Kohler [Chow77]. A load balancing algorithm that aspires ta miTlimize the 
difference between the queue length of the two servers has been presented. The system 
has been modeled as a two-dimensional Markov process and has been solved by means of a 
recursive method. 

The complexity of the load leveling problem has been analyzed by Kratzer asd 
Hammerstrom [Krat80]. In their study they have shown that the CPU load levdingproblemis 
NP complete. A stable decentralized algorithm has been defined €or a unifornrally structnred 
network. 

Bryant and Finkel [Brya81] have presented a preemptive stable load balancing 
algorithm for homogeneous distributed systems. The service discipline of the processors, is: 
assumed to be processor sharing and they are interconnected in a point-to-point fashion. The 
preformance of the algorithm for a given topology and different operating conditions has been 
investigated through simulation. 

A number of load balancing strategies for a class of local area networks have been 
defined by Ni and Abani in [Ni 811. In their performance models they have assumed that 
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the communication delays due to  job routing are very small compared with the jobaecukion 
time. Both analysis and discrete event simulation have been employed for abt-g the 
desired performance measures. 

$1.5 Organization of Dissertation 

This thesis takes a tree structure approach in describing the study of load bz- Ago- 
rithms for DPSs. Chapter 2 is the root of the structure and chapters 3 to 5 are the leaves. 
In each of the later chapters interaction between the load balancing process and a different 
type of distributed system is analized. These three chapters describe t h e e  p d e l  investiga- 
tions of different aspects of the task migration phenomenon. The factors that nnifs these 
investig2Tons are discussed in the-'root' chapter. 

In chapter 2 the m*(M/M/l) family of distributed system models is. d&ed and a 
taxonomy of load balancing is proposed. Some of the properties of multi-remume systems 

and the balancing process are demonstrated by means of simple analytical models. 

__ - 

Load balancing in a two-server distributed system is the subject of the, third chapter. 
A LB algorithm with a parameterized and state dependent threshold is presented. Boththe 
steady-state and the transient behaviour of the algorithm are analyzed and guidelines €or the 
design of LB algorithms are concluded. 

1 

Chapter 4 focuses on broadcast distributed systems. Three lo& bahciug &go- 
rithms which utilize the advantages of a broadcast communication media are presentedand 
their performance analyzed. The performance models of the broadcast systems include a 
detailed description of the ETHERNET communication protocol. 

In Chapter 5 a LB algorithm for store-and-forward distributed systems is defined. 
The chapter focuses on the interdependency between the topology of the system and the load 
balancing phenomenon. Performance models of DPSs with various topologies me simu&ed 
and their performance analyzed. 

Performance predication is a cohesive element of an investigation of the load b h -  
ing phenomenon. Due to the characteristics of distributed processing systems performance 
prediction of such a system almost always entails a simulation study. A novel approach 
for modeling and simulating distributed processing systems is presented and discussed in 
Chapter 6. An example of a model and a simulator which were developed according to this 
methodology are included in Appendix C. 

1.-6 



The problem of load bh&gin.DPSs,  like other problemxdated to t h e p e r f o m c e  of this 
type of systems, is a two dimensional one. The first dimension represents the characteristics 
of the distributed system, while the second captures parameters that defhe the LB algcxrithm 
itself. There is a great variew in both the structure and the intended. usage of DPSs. Various 
communication systems as well as processing elements are used for building DPSs and di.f€erent 
approaches are employed when. designing them to .meet3 the needs of various users. Because 
of this variety a quantitative analysis of the interdependence between the performance of 
LB algorithms and the characteristics of the DPS is essential for acquiring an insight of 
the task migration.phe5omenon. A sensitivity analysis performed along the first dime&im, 

the system axis, will provide means for determining which of the system's attributes are 
detrimental and which are advvantageou-9 to the load balancing process. A similar analysis 
along the second dimension, the algorithm axis, will point at ways in which the taskmigration 
process can take advantage of certain properties of the system, and how obstacles caused by 
other attributes can be overcome. 

I 

' In order to carry out the above analysis, various performance models of DPSs which 
are controlled by merent LB algorithms must be defined and solved. The performance 
.measures obtained from the solution will give a quantitative description of the relation 
between the algorithms and the systems. The family of DPSs models selected for this analysis 
has a major impact on the scope and nature of the study of the LB problem. On the one hand, 
the conclusions drawn from a study based on complex and detailed models will be applicable 
t o  a particular implementation but, in most cases, will have a limited significance as far as the 
basic characteristics of the phenomenon are concerned. On the other hand, results obtained 



from solving simple and abstract models reflect the basic characteristics of the problem but 
in the model itself some important characteristics of DPSs may be overlooked. The stochastic 
properties and complexity of the models determine which methods can be employed for solving 
them and thus they define the nature of the study. When the model meets the assumptions 
of the numerical methods which have been developed for solving performance models the 
study will be ‘analytical’. However, the investigation will turn into a ‘simulation study’ when 
these methods fail to solve the model. 

92.1 Definition of an rn*(M/M/l) System 

The family of distributed system models selected for this study are the rn*(M/M/i) systems. 
An m*(M/M/1) system consists of m processing elemats that are interconnected by a 
communication subnet (Fig 2.1). The family is characterized by the structure of its processors 
and the profle of the workload. The specification of the family does not impose any 
restriction upon the structure or the protocol of the communication subnet. Every node 
of an m*(M/M/l) system can serve it’s own users autonomously and therefore the operation 
of the system does not rely on communication. The processing elements were integrated 
into one system in order to provide their users with a better response time. The system is 
controlled by a load balancing algorithm which tends to reduce the expected queueing time 
of a task by means of task migration. This algorithm is the sole user of the communication 
system. 
The specification of the m*(M/M/l) is the following: 

1. Processors- Each of the m processing elements consists of a processor, Pi , and an 
infmite queue. The queueing discipline is First Come First Serve (FCFS) and all the 
processors provide the same functional capabilities. 

2. WoPk-Load Profile. Tasks arrive independently at  each node and join the queue. The 
inter-arrival time has a negative exponential distribution and thus the task arrival process 
of the entire system consists of m independent Poisaon processes. The service d e m d  
of the tasks is exponentially distributed and the structure of the nodes and tasks is such 
that every processor can serve any task. When a task has not been served by the node 
at which it had arrived, that is its entrance site, the results of its execution have to be 
transferred from the node at which it has been executed, back to the entrance node. The 
node which has served the task is called the execution site of the task. 
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Figure 2.1. An m*(M/M/l) System 

The operating conditions of the processing elements and the workload of an 
m*(M/M/l) system are defined by the structure 

0 =< ( P I , . .  .yP~)y(~ly...,~~),(~l~...,~~)~~(7~~.--~~)~(71 0 r * * - ~ 7 m )  0 > 

where 

1.1; - is the service rate of processor i given in Execution Unitts (eu) per Time Unit 

(W. 
X; 

a; 

7; 

7:’ 

- is the rate at which tasks arrive at processor i. 
- is the expected execution demand, in em, of the tasks that arrive at node i. 
- is the expected number of Data Umih (des) a processor needs in order to identify 

and serve a task that has arrived at node i. 
- is the expected number of dsls required to describe the results of a task that 

has arrived at node i. 



As indicated by the above specifications the m*(M/M/l) systems, are in a way, the simplest 
models of a distributed systems. They have simple processing elements, their tasks have 
nice - memoryfess - stochastic behaviour and they do not perform any distributed processing 
except for the LB process. Nevertheless, despite their simplicity, these models capture the 
main properties of a distributed system. They have resource multiplicity, their resources are 

loosely coupled and autonomous, and all the processing elements cooperate in the achievement 
of a common goal. 

In this study only models with homogeneow processors and tasks will be considered. 
The processing elements of an m*(M/M/l) system will be dehed as homogeneous processors 
if p ;  = p €or every 0 < i 5 on. The tasks will be dehed  as homogeneous if a; = a, 7; - 
and 7 y  = for 0 < i 5 m. The egective service rate of a system with homogenous 
processors and users will be deked  by the ratio j.i= a. The system will be homogeneously 
loaded if both the processors and tasks are homogeneous and X i  = X for 0 < i 5 m. 

I - 

A P  

2.1.1 The Probability of a W State 

The load balancing process aspires to improve the response time of the distributed system 
by mlnimia&g the probability that the system will be in a WI state. The value of that 
probability for a system in which no task migration takes place, will point at the potential 
capability of the load balancing process to enhance the performance of the system. The 
extent to which this probability can be reduced by means of task migration and the net 
impact of the balancing process on the expected response time of the system, depend on the 
characteristics of both the system and the algorithm. 

Assume a homogeneously loaded m*(M/M/l) system in which no task migration 
takes place and let P,i(n) be debed  as1 

?wi(n) = P[at least n tasks are waiting and at least n processors idle] (1) 

.. then from the uniformity and the independency of the nodes it follows that 

lThe notation P[E] denotes the ‘probability of event E’. 
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where 
(TI is the number of Merent ways a set of i processors can be selected from the m 
processors of the system. 
1,. = (1 - p)' is the probability that a given set of i processors will be idle. 
Wj(n) is the probability that a given set of j processors will be busy and at least n 
tasks will be waiting for service in their queues. 
p = is the utilization of the processors. 

Because each of the nodes is an independent M/M/l queueing system it follows that 

P[k tasks in a given distribution wait for service 
pi j+k o p  in a given set of j busy processors] = 

where Po = (I - p )  is the probability that an M/M/l  system is empty. From (3) it foIIows 
that 

where 
p i  is the probability that j processors are busy. 
p-i+k) is the number of ways in which k tasks can be distributed among j queues. 

From (2) , (3) and (4) it follows 

When the system is a WI state, at least one task. is waiting and at least m e  processor is 
idle. Therefore the probability that a homogeneously loaded m*(M/M/l) will be observed in 
a WI state if no task migration takes place, Pw;, is given by Pwi(l). Thus from (5) it follows 
that 

m-1 

Pw; Pwi(l) = c (?)P;(p-' a - (Pop)"--') 
i- 1 

= 1 - (1 - Po)m(l - P,m) - PF(2 -Po)m 

Fig. 2.2 presents Pwi for different values of m with processor utilizations, p, as a parameter. 
The curves of the figure indicate that for practical values of p, the probability of a WI state 
is remarkably high and that in systems with more than ten processors there is almost always 
a task waiting for service while a processor is idling. Pwi reaches its maximum value when 

2-5 



n 
T a 

W 

td 
P 
0 
k a 

I 

0..20 0.40 0.60 0.80 1.00 
Server Utilization (p)  
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the processors are utilized during 85%, of the time. As. the  utilization of the processurs 
increases past the level of 65% P,,,; decreases. This property of Pw; indicates that a 
load balancing algorithm should perform less work when the system-is heavily-utilized. It is 
clear that the same holds true for systems that are idle most of the time. 

2.1.2 Balancing Distance 

In various areas the distance between twu objects is measured in time unita. Years, hours 
and minutes are used for describing the distance between stars, towns and houses. Time is 
also used as a measure for the distance between elements of a DPS but in a different way. 
From the point of view of a scheduling or resource allocation algorithm for such a system, 
the distance between resource A and B is the time required for moving a given amount of 
data from A to B, whereas in the other examples the distance is the time it takes to go from 
A to B at a given velocity. Unlike the other cases the measure used for a DPS has no relation 
to the physical distance between the resources. It reflects the capacity of the communication 
link through which the resources are connected and the processing overheads associated with 
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the communication process. Thus two processors which are located at M e r e n t  corrtinenta 

may be ‘closer’ than two computers situated in the same room. 
The degree to which task migration can reduce the probalditg of a WEstate in it 

multi-resource system depends mainly on the ratio of the transfer time to execation h e z  
of a task. Therefore from the point of view of the LB process the distance between two 
resources is determined by this ratio. Let TJi,j(z) be the trammission time of a task of 
length z dus from resource i to i than the belencing didance between i and i is dehed  

. .  The resources will be considered as being cloee to one another when the expected tranarmssr OZL 

time is negligible relative to the mean execution time, i.e. a small BD, and as d i a t u t  when 
the time required for transferring a task is much longer than the time required €or executing 
it, i.e. a large BD. The balancing diemeter of an m*(M/M/l) system will be defined as the 

largest balancing distance between two of its processors. 

2.1.3 Processing Overheads 

In addition to commusication resources, the LB process requires processing reso?t~ces: The 
execution of both the control element of the algorithm and the various functions of the com- 
munication protocol require processing capacity [Tane81]. The processing capacity utilized by 
the LB process is the overheud which the distributed system has to pay in order to achieve a 
reduction in Pwi. As a result of this overhead the LB process reduces the amount of process- 
ing capacity available to the users. The effect of this reduction on the expected response time 
of the system is the opposite of the effect of the reduction in Pwi-  

The protocols of communication systems that meet the requirements of a ‘reliable 
network’are complex and require a considerable amount of bookkeeping whereas the control 
laws of LB algorithms are relativly simple. Therefore, only processing overheads due to 
activities of the different layers of the communication protocol will be considered in this 
study. The manner in which these overheads will be introduced into the m*(M/M/l) model 
will depend on the characterestics of the communication subnet. 

Pwi can be reduced to zero only if the balancing diameter and overhead of the 
system are zero. In such a case the system can be viewed as a single queue multiple processor 

2the execution and transmission times are the actual service times and do not include qaeneingdelays. 
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Determinestic (cb = 0) .214 ,500 .750 1.166 2.000 4.500 
Ezponentid f c b  = 1) .428 1.000 1.500 2.333 4.000 9.000 
Gamma(k=2) (cb = 2 )  1.071 2.500 3.750 5.883 10.00 22.500 
Hu~erez~onedial @h = 31 2.142 5.000 7.500 11.667 20.00 45.000 

Ta6fe 2.1. Norm. Expected Waiting Time lkq for Different Distributions 

queueing system where the queue consists of n cells. Each cell has an independent stream 
of tasks and a processor that serves tasks that were allocated to this cell according t o  an 
FCFS discipline. Tasks are moved instantaneously from one cell to the other according to  the 
migration criterion of the LB algorithm. An m*(M/M/l) system with no balancing overhead 
and where BDi,j = 0 for all 0 < d, j, 5 m will be called an M/M/m-like system. 

82.2 M/G/l and M/M/m Queueing Systems 

Processing systems are usually shared by several users. The stochastic behaviour of the tasks 
submitted by these users - their arrival times and service demands - cause reaource contention 
that leads to the establishment of queues and consequently the tasks have to waste time while 
waiting for service. The factor by which the system inconveniences the users due to the fact 
that they are sharing the same resources is represented by the mean normalized queueing 
time of the system ,fiq, which is the ratio of average time a task spends in a queue to average 
service time required by the task. 

The &,', of a single processor system that serves a Poisson stream of customers 
according to an FCFS discipline, an M/G/1 queueing system, is given by il 

I 

which is the Poilaczek-Khinchin (P-K) meun value formulu and where Cb is the coeficient of 

variation for service time demand distribution. It follows from (8) that @q is an unbounded 
monotonic increacling function of the variance of the service time demand distribution. 
Therefore a system with a moderate utilization might have a large &,q when the standard 
deviation of the service time is large. Table 2.1. presents some numerical values of lkq for 
systems with different p and cb. Note that the coeEcient of variation for CPU service time 
distributions is assumed to  be greater than one [Coff73]. Samples of these times form, in 
most cases, a hyperezponentiul distribution. 

I 
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The service time demand distribution in an m*(M/M/ 1) system is exponential and 

therefore the mean normalized queueing time of such a system, in which the balancing 
distance between any two resources is infinite, without load balancing, is given by 

(9) is the upper bound for the Wq of an m*(M/M/l) system and serves as a means for 
evaluating the improvement in performance due to the LB process. The best mean normalized 
queueing time that m Poisson streams of customers3 can obtain from m exponential processors 
is given by 

which is the mean normalized queueing time of an M/M/m system [Klei75]. Eq. (10) can 
serve as a lower bound,on the Wq of an m*(M/M/l). It follows from (10) that the lower 
bound on Wq is a monotonic decreasing function of the number of processors. 
The greater the number of M/M/l  systems which are integrated into one M/M/m-liike system, 
the smaller the expected queueing time of a task is- Fig 2.3. shows the d u e  of Wq for an 
M/M/m system as a function of m for different values of p .  

The rate at which tasks must be transferred from one queue to  the other in order to minimize 

the probability of a WI state in an m*(M/M/l) system, is a major argument in justifying a 
study of task migTation criteria for such systems. Only when a significant percentage of tasks 
are transferred, a change in the control law of the LB algorithm will affect the utilization of 
the communication system and thus change the performance of the system. In this section a 

lower bound on the transfer rate for a M/M/m-like system is derived and used for evaluating 
the amount of transfers required for minimizing the mean queueing time of a task in an 
m*(M/M/l) system. 

-- 
m Poisson streams can be considered as one Poisson stream with a rate equal to the sum of the rates of the 

individual streams. 
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A s s h e  a homogeneously loaded M/M/m-lie system and let TR be the rate in 
which task transfers are initiated by the LB algorithm. Since the probability of a WI state 
in such a system is zero, a task must be tr  
occures: 

EB 

E2 

From 

A task arrives at a busy processor while at least one of the processors is idling. 

A processor completes the service of a task, no other tasks are waiting in its queue 
and there is at least one task waiting in another queue. 

the above it follows that 

P[transfer in (t, t + At)] 5 P[E1 in (t, t + At)] + PfE2 in (t, t -I- At)] (13.1 

The number of busy processors at time t is mia(a(t), m) where a(t) is the number of tasks in 
the system at time t. When k processors are busy at time t ,  the probability that a task will 
arrive at a busy processor in (t, t + At) is l cMt  and therefore 

4Because the system is a birth and death system (Klei751 multiple events are prohibited. 
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m-1 CQ 

P[arrival 0t 0 busy processor in (t,t + At)] = A( iP;(t)At 6 mPi(t)dt) (12) 

where P;(t) is the probability that n(t) = i. In order that an arrival will meet the conditions 
of El, at least one of the processors has to be idle. Since the number of idling processors at 
time t is m - mia(n(t), m) it follows from (12) that 

i 
Tn-1 i 

PIE1 in (t,t + At)] = X iPi(t)At 

i i== 1 

The number of tasks waiting for service at time t is maz(n(t) - m, 0) and therefore when 
m < a(t) < 2m all processors are busy, and in at least 2m - n(t) nodes no task is waiting 
to be served. The probability that one of the busy processors which has only one task in its 
queue will complete the service of that task in the interval (t,t + At) is (2 m -n(t)) fidt. So 

it follows that 
m-1 

P[E2 in (t,t+ At)] 2 )i C (m - i)fm+i(t)At 
i-1 

api(t) 
t 

The system is assumed to be in a steady state, 7 = 0. By replacing Pi(*) by Pi = 
limt,, Pi(t) and integrating over a time unit interval it follows from (13) and (14) that 

m-1 

TI2 2 [XiP,.-tfi(rn-i)P,+i] (15) 
i- 1 

by replac,ag Pi by the expression for the probability of having i tasks in an M/M/m system 
it can concluded from (13) that 

BL = 

k=O 

is a lower bound on TR. 
In many cases it is natural to use the expected excution time of a task , fi-', as 

a time unit when andyzing a queueing system. Fig. 2.4 presents the Iower bound on the 
normalized transfer rate per node, &= f i ,  as a function of p for systems with different 
numbers of processors. Note that a considerable number of tasks have to be transferred in 
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Fiaure 2.4. BL vs. p for an M/M/mcke system 

order to achieve the pe 

processors almost one out of X-l tasks are transferred. 

These results indicate that in an rn*(M/M/l) system where task t r d s s i o n  time 
is not negligible the load balancing process might utilize a large portion of the capacity of 
the communication system. The utilization of the communication system will determine the 
delays associated with the transmission of a task or any other message, These delays will 
cause an increase in PW; and therefore an increase in The amount of traffic generated by 
the balancing algorithm has a major effect on its ability to  improve the performance of tht 
system. Fig. 2.4 shows that in order to  achieve the optimal performance, Pm; = 0, a largf 

* " 

rmance Of an M/M/m system. For withmore than ten 

portion of the tasks have to be transferred. 

2.2.1.1 Two policies €or an M/M/2-like system 

In order to demonstrate the effect of a change in the migration criterion on the expected 
number of task transfers initiated by an LB algoritbm, assume an M/MJ2-l&e system (zero 
balancing distance) and consider the follosiving two migration policies: 
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1. ‘Look ahead’ poliey- A transfer is initiated whenever the difference between the 
number of tasks in the two queues is greater than one and the channel is idle. 
‘Trouble shooting’ policy- According to this policy a task that is waiting to be served 
at one queue will be transferred to the other queue only when the other processor is not 

busy. 

2. 

Under the above assumption the mean normalized queueing time of a task, in both cases, 
will be the same as in an M/M/2 queueing system since the probability of a WI state is zero. 
Let TR1 and 2’82 be the expected rates at which transfers are initiated by the ‘look ahead’ 
and ‘trouble shooting’ migration policies respectivly. It is shown in Appendix A that TRl is 

given by 

and that TR2 is bounded by 

and 

, . -  
Fig. 2.5 presents the value of TR1 (the dashed line) and the two bounds of TR2 

(the cross-hatched line) as a function of p for fi = 1. The curves presented in the figure 
demonstrate the wide range of d u e s  which the transfer rate of the balancing algorithm 

can receive and points at the harmful effect that a balancing algorithm with a too ‘Zibetd’ 
migration criterion may have on the performance of the system. 

The interdependency between the performance of the m*(M/M/l) system and the 
migration criteria of the LB algorithm will be discussed in the course of the presentation of 

the results obtained from the solution of the performance model of these systems. It is clear 
that the optimal policy depends on the balancing distance between the systems’ resources 
and the penalties associated with the transfer of a task. 

$2.3 Unbdance Factor 

The LB algorithm is distributed among the processing elements of the system. Every processor 
has its own local LB control element which governs the migration of tasks into and out of 
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Figure 2.5. Transfer Rate vs. p for M/M/2-like system 
) 

its queue. The' decisions made by this control element. are based on the infomatian supplied 
to it by the LB information elements which reside at  other processors. The control scheme 
of the algorithm is usually based on a comparison between the load of the processor and 
the load of other processors which are included in a subset of processors called the baluncing 
region of the processor. This region consists of those processors which the owner of the region 
considers as candidates for receiving one of its tasks. The region c 

defined ' changed randomIy or adapted dynamically to the instantaneous st 

The migration criterion is basically a comparison between the degree to which the 
load distribution of the balancing region is unbalanced, and a predefined threshold. The 
evaluation of the load distribution is made according to the information available to the 
processor at that instance. Although the evaluation method may differ from one LB a l g o r i b  
to the other a scheme for scaling the degree to which a load distribution is unbalanced ha: 
to be established in order to enable the characterization of task migration criteria. 

In an m*(M/M/l) system the degree to which a load distribution is unbalance( 
should be measured according to the effect which an instantaneous task transfer has o n  thi 
probability that the system will reach a WI state in the future. The likelihood that at leas 
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one processor will become idle depends on the load level of the least bad& processor, whereas 
the probability that a task will be waiting is dected mainly by the number of tasks at the 
most loaded processor. Therefore in an m*[M/M/l) system with homogeneous tasks and 
processors the enhation of a load distribution can be based on the minimal nnmber of tasks 
resident at one processor and the difference between this number and the queue length of the 
most loaded processor. 

The migration of a task is a binary operation between the source and the t q e k  
nodes. Therefore, although the probability that a WI state will be reached is not determined 
only by the maximal and minimal queue length of the system, a scaling scheme based on the 
extreme loads of the system was selected. Let A be a subset of processors of an m*(M/M/l) 
system with homogeneous tasks and processors and ni(t) the number of tasks at processor i 
at time t then the unbalance factor of A at time t is dehed  as 

( u ( A , t )  > 1) (&jeA(nj(t)) =o) 
(AL(A,t) > 1) A ( h j E A ( * i ( t ) )  > 0) 

A where AL(A, t )  = maxk,jcA(nk(t) - nj(t)) is the load-diference of A at time t .  
The above definition is based on a global point of view. All processors of A are 

considered as potential sources or targets for a migration operation. However the co-ntrol. 
element of a given processor evaluates the load distribution of the balancing region in order 
to decide whether to send out one of its tasks. Therefore an unbalance factor of the load of 
a given processor relative to its balancing region, is required. Let BR;(t) be the balancing 
region of processor k at time t and mu($) be the number of tasks at processor j as known to 
processor i at time t, then the relative unbalance factor of i at time t is defined as 

A where dL(k, t )  = maxk,=BRi(tl(mi,j(t) - rni ,k(t))  is the relative load-diflerence of i at time t. 
Note that only when a task is waiting for service at processor i and one of the processors 
of BR;(t) is idling, according to the information available to 6,5 U&F(k, t )  becomes infinite. 

-- 
‘from this point on, unless stated explicitly otherwise, when the load distribution of BRi(t) is considered it 
is the distribution as known to processor i at time t. 
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In all other cases where no task is waiting at processor s' or no processor is idle in BR;(t) 
the relative unbalance factor of i is finite. When the factor is zero, the load distribution is 
such that there is no processor whose queue length is smaller by two or more than the queue 
length of processor i, and thus a task transfer should not be executed. 

According to the value of the relative unbalance factor of the source of a migration 
at the time it has been initiated, task transfers can be classified into two types - last-minute 
and anticipatory transfers. 

2.3.1 Last-minute transfers 

A transfer initiated when the U&'(i,t) is infinite will be classSed as a.fast-m'nvte transfer. 
Although the infinite value of the factor indicates that the balancing region is in a WI state, 
it is not always advantageous to initiate a transfer under such conditions. The beneficial 

. effect of such a transfer depends on both the balancing distance between the two processors 

and the relative load-difference of the source Drocessor. 

2.3.2 Anticipatory Transfers 

A trans hi tewil l  be called 
an anticipatory transfer. When o < ~ i i ~ ( i ,  t )  < oo ~ ~ i ( t )  is not in a WI state. However, 
an instantaneous transfer of a task from i to the processor with the minimal number of tasks 
in B&(t) decreases the probability that the region will reach a WI state in the future. A 

transfer initiated under such conditions can be considered as a preparative step taken t o  
prevent the occurrence of a WI st . The advantage of h a transfer depends on t h e  
balance distance between the sour nd target of the transfer. The effect of the distance 

t 

ed by processor %' n Uh'(i, t )  is greater than zero b 

is not monotonic. When the distance is very small or too big the beneficial effect of an 
anticipatory transfer is limited. In the case of a big distance the load distribution of the 
system at the time the task arrives at the target might be considerably different than the 
distribution at the initiation time of the transfer. Consequently a decrease in the distance 
increases the power of such a transfer. However when the distance is very small there is nc 
need for anticipatory transfers. Last-minute transfers are sufficient when the transfer time 
of a task is much smaller than its execution time. Therefore in such a case an increase in the 
distance will increase the beneficial effect of this type of transfer. 
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$3.1 Introduction 

In order to be considered as a distribntedsystem, a processing system should include at  least 
two  processors. Although &vo is the minimal number of processors, a 2*(M/M/1) system 
is sufliciently large to serve as a vehicle for studying the basic characteristics of the Load 
Balancing process. The interaction between the two processors due to the migration of 
tasks captures fundamental aspects of the LB phenomenon. By analyzing the performance 
of 2*(M/M/1) systems which are controlled by different LB algorithms, an insight of this 
phenomenon may be acquired. On the basis of the results obtained from such a performance 
study a range of acceptable balancing distances can be determined and the break-even point at  
which the overheads of the algorithm diminishes the advantages of the reduction in Pwi can 
be located. The manner in which such a system operates under various operating conditions, 
offers answers to questions like “can processor d take advantage of processor j when BDi,j 
is 2 ?”, or “what happens when the communication activities require 10% of the systems 
processing capacity?”. These answers may guide the design of LB algorithms for larger and 
more complex systems. The study of task migration in a two processor distributed system is 
the first step towards the development of an intuition for the LB phenomena. 

: *  

This chapter presents a study of task migration criteria for 2*(M/M/1) distributed 
systems. An analysis of both the transient and deady  state behaviour of the system and 
algorithms is included in the study. Since this study is the first step of an investigation of the 

LB process it was decided to  use numerical methods (as opposed to discrete event simulation) 



to derive the performance measures. It was assumed that by wing stochastic models a better 
understanding of the dynamic properties of the migration phenomena may be obtained. The 
system is modeled by a multi dimensional birth and death process [Klei75]. The desire t o  use 
analytical methods for solving the performance models of the system motivated the selection 
of the communication system and the specification of the algorithm. Continuous simulation 
[numerical integration) is used for obtaining the time-dependent behaviour whereas the steady 

state performance models are solved by means of an iterative solution scheme. An analysis 
of the characteristics of a single task transfer, based on the system's transient behaviour, is 
presented. 

$3.2 The BTSQSS System 
The Balanced Two Single Queue Single Server (BTSQSS) system consists of two 
servers and a communication channel (Fig. 3.1,). The system is a 2*(M/M/1) distributed 
system with homogeneous users and processors. The channel interconnects the two queues 
and is capable of transferring one task at a time (half duplex link). The data rate of the 
channel is j? du/tu? and the amount of data that has to be transferred when a task is migrated 
from one queue t o  the other, is a random variable with a negative exponential distribution 
and expectation 7I. It is assumed that the expected number of dus that describe the results 
of a task ( 7 9  is much smaller than 7' and thus the transmission of the results hack to the 
entrance site is neglected. 

The operation of the channel can either be cont:olled by the processors or be 
autonomous. In the first case the transmission of a task can be stopped in the middIe and 
the system is thus defined as a atop system (S-BTSQSS), while in the latter case the system 
is defined as a no-stop system (NS-BTSQSS). In a no-stop system the initiation af a transfer 
will always result in a transfer of a task from one queue to the other. Regardless of the type 
of the system, the communication process may require processing capacity. It is assumed 
that when the channel is active the service rate of the processors, p ,  is degraded by 6%. 
This degradation represents the processing overhead associated with the transfer of a task. 
The overhead is proportional t o  the duration of the transfer and is spread evenly along the 
transmission period. Therefore the service rate of each processor is p ( l  - Sf) during the 
channel busy periods, where 6f = 

The task distribution of the system at time t ,  TD(t) ,  is dehed  by the ordered pair 
(nl(t>,n2(t)), where nl(t)  and n2(t) are the number of tasks in the Srst and second queue 

is the degradation factor of the system. 
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respectivly. In an S-BTSQSS system a task which is being transferredremains Ln the quene 
of the source processor during the transmission period, whereas in an NS-BTSQSS system 
the task is removed from the source queue when the transfer is initiated. and is placed in the 
channel. The task will remain in the channel for the duration of the transmission. 

The penalties associated with the LR process in S-BTSQSS systems are smaller 
than in equivalent no-stop systems. When the activity- of the channel is controlled by the 
processors, the algorithm can intervene and stop a transfer in the middle. Thus a decision 
made at an earlier stage can be reconsidered and cancelled. Due to this capability, the number 
of ‘wrong’ transfers can be reduced. Although in most cases the communication system. is 
autonomous (most probably a reliable network), stop systems were considered in this study. 
Their performance was studied in order to evaluate the degree to which the ability to stop 

a transfer assists the task migration process. The results of the study give an indication 
of the conditions under which an attempt should be made to implement a stop system1 

‘In special purpose systems, control lines may be added t o  support such a facility. 
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because of the superiority of its performance. 
The LB algorithms defined for the BTSQSS system do not include aninformation 

policy. Introducing the exchange of state-information into the model would have caused a 
considerable increase in its complexity and would have imposed the usage of simulation as a 
solution technique. In light of the motivation and focus of the study it was decided to assume 
that both processors are aware of the current task distribution of the system and thus there 
is no exchange of state-information in the model. Systems that utilize special control lines 
for controlling the migration process or system where the amount of state information is 
negligible relative to 7I, meet this assumption. 

53.3 The AT algorithm 

An anticipatory approach towards the load balancing process has iniluenced the definition of 
the Adaptive Threshold (AT) LB algorithm for BTSQSS systems. The migration criterion 
of the algorithm is based on a parameterized state dependent threshold. Inspite of its 

anticipatory nature the algorithm attempts to reduce the amount of communication capacity 
which it utilizes. The motivation for such efforts result from the assumption that the usage 
of the commpication system has a price.  Such an assumption is especially valid when the 
LB algorithm is not the sole user of communication resources. Since the system has only 

two processors each balancing region. includes both of them. The migration criterion of the 
algorithm is evaluated according to the current task distribution of the system The ‘load 
history’ of the processors is not considered by the control element of the AT algorithm. 

P h E G O R ~ T ~  AT (adaptive threshold] 

Control Law: Upon the arrival or departure of a task or when a task transfer terminates 
the control element is evoked at both servers. Processor i will initiate a transfer to its ‘buddy’ 
processor at time t if the channel is idle and the instantaneous task distribution meets the 
following criterion: 

(kL(i,t) - 1 > Lp) A ( U k ’ ( i , t )  > Ap) 

where Lp and Ap are the ‘last-minute’ and anticipatory parameters of the algorithm. If 
the system has a stop channel, the control element will stop a transmission in the middle 
whenever the system enters a state which does not fulfill the above criterion while the channel 
is busy. 
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The degree to  which the algorithm initiates anticipatory transfers depends mainly on 
the value of its anticipatory parameter. A large positive value for Ap will prevent almost any 
transfer when the system is not in a WI state. Since Ui)P(i,  t) is infinite when the system is 
in such a state, the initiation of ‘last-minute’ transfers is controlled by the second parameter, 
Lp. When Lp = 0 a migration will be initiated whenever U b F ( i , t )  = 00. However, when 
Lp > 0 a ‘last-minute’ transfer will be initiated only when at least lp tasks wait for senrice 
at the non-idling processor. 

Chow and Kohler in [Chow771 have suggested and analyzed an EB algorithm for 
an S-BTSQSS system. The algorithm deihed there is a private case of the AT algorithm 
(Ap = Lp = 0). There where no penalties associated with the migration of a task in their 
model. It was assumed that the transmission process does not affect the service rate of the 
processors (6 = 0) and that the processors possess full control of the channel activity (stop 
system). A simulation study of the expected turnaround time of a task as a function of the 
utilization of the servers and the transmission rate of the channel was presented in [Chow77]. 

13.4 The Model 

Markov chains are widely dmployed for modeling the performance of queueing systems. Most 
of the studies in the area of Queueing Theory are based on this type of stochastics process. 
When a queueing system does not meet the assumptions of a Markov Process a common 
approach for analyzing the system is first to imbed it on a Markov chain and only then solve 
it [Klei?S]. 

.-. 

The BTSQSS system with the AT load balancing algorithm forms a continuous 
multi-dimensional rncrrkov chain. The system and algorithm meet the assumption of this type 
of stochastic process since all the system state-time distributions are exponential (memoryless) 
and the decisions made by the algorithm are based only on the current state of the system. 
None of the system attributes are time dependent and therefore the chain which describes the 
behaviour of the system and algorithm, is homogeneous. Due to the exponential distribution 
of state-times - inter-arrival, service and transfer time - the probability of multiple events 
in a small time interval At is of the order of O(At), and thus simultaneous events do not 
occur. Each of the chain events - task arrival, task departure and transfer termination - 
relate to a particular processor, Because of this property of the system and since the chain is 
homogeneous the stochastic model of the system meets the assumptions of a birth-and-death 
process, 
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The dimensionality of the process depends on the characteristics of the communica- 
tion channel. A three dimensional chain is required in order to describe the behaviour of an 
NS-BTSQSS system, whereas a two dimensional state space is sufficient for describing a stop 
system. In order to simplify the notations and expressions used in the study it is assumed 
from this point on that service and transfer rates of the system are normalized according 
to the execution and data demands of a task respectively, i.e a = 7I = 1. The balancing 
distance of the two processors assuming the above normalization is BD1,2 = f .  

3.4.1 The NS-BTSQSS Model 

The state of the NS-BTSQSS at time t is described by the ordered triplet (n,m,k) where ra 
and m are the number of tasks in the Grst and second queue respectivly, and k is the state of 
the channel. k = 0 means no transmission at time t and k > 0 indicates that a transmission 
from processor k to the other one is currently on its way. 

be (i, j, k) at  time t ,  then transition equations of the NS-BTSQSS model are the following: 
Let p ( i , j ,  k, t )  denote the probability that the state of an NS-BTSQSS system will 

1 ( i - j - l >  LP/z  (i-j > jA,)  uj,j = 
0 otherwise 

A A A A 
ande;=min(i,l) , ~ ~ , j = t L ~ , j + ~ ~ , j a n d ~ ( - l , i , k , t ) = p ( i , - l , k , t ) = O f o r ~  > 0, k =0,1,2.  
The state-transition-rate diagrams for the state (i, j ,  0) and (i, j ,  1) are presented in Fig. 3.2 
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A A 
where u;,j and e; are as dehed  in (l), and p(-l,i,  t )  = p ( j ,  -1, t )  = 0 for all if j > 0. 
The state-transition-rate diagmm for the S-BTSQSS model is presented in Fig. 3.4. 

$3.5 Price and Benefit of a Transfer 

Whenever a control element of the LB algorithm is evoked the 'transmission dilemma' is faced 
and a decision whether to transfer a task has to  be made. Since the EB algorithm aspires 
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Figure 8.4. state-transition-rate diagram (S-BTSQSS) 
to minimize the response time of the system, the algorithm is evaluated according to  the 
net impact these decisions have on the expected queueing time of a task. This performance 
measure, which is a long-range steady-state measure, is affected by each individual migration. 
Therefore in order to establish an understanding for the relation between the control law of 
the algorithm and the performance of the system the properties of a transfer ought to be 
scrutinized. In this section a study of the ‘price’ and ‘benefit’ of a transfer are presented. The 
study is based on the transient behaviour of the BTSQSS, and all the performance measures 
were obtained from the differential difference equations of the model by means of continuous 
simulation. 

By migrating a task from one queue to the other the LB process reduces the 
probability of a WP state, Pw;(t), in the future. Fig. 3.5 presents Pw;fi, j ,  t )  which is defined 
as : 
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Figure 3.5. Pwi(i, j ,  t) for a BTSQSS system with no migration (A = -8) 
, 

A Pw;(i, j ,  t )  = P[ of (L WI state crt time t I TD(0) = (i, j )  and 
(3) no transfers in the interval (U,t) ] 

for different initial task distributions and with t as an argument. The curves of Fig 3.5 
demonstrate the effect that a single task 
the system task distribution from (3’1) to (2’2) the probability of a WI state is considerabl3 
reduced. 

is an increase in the probability of a WI state during the transmission 
NS-BTSQSS system). Fig. 3.6 presents P,i(2,0, t tJ  t)  which is defined as: 

However, the migration of a task has penalties associated with i 

A Pwi(iJ j ,  it, t )  = P[of a WI state at time t I TD(U)=(i,j) and 
(4 a tranafer was initiated at t = 0 and terminated at tt ] 

for different values of tt. From the figure one my conclude that when the transfer time i 
‘too long’ a task transfer should not be initiated when TD(t)=(2,0) 
the transfer is higher than its benefits. These two figures demonstrat 
dilemma which the load balancing process is faced with. For every TD(.E) the ‘price’ and t h  
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Figure 3.6. p>,;(2,0, t*,t) for an NS-BTSQSS system (1 = .8) 

'benefit' of a transfer hake' to be evaluated and weighted one against the other. Ii order t o  
assists this process two factors which quantitively d e h e  these two aspects of a transfer, were 

defined. 

.I The Price of a Transfer 

The transmission of a task may reduce the throughput of the system during the transmission 
period. This degradation is caused by either one or both of the following factors: 

1. At least one task is being served when a transfer is initiated. Because of the reduction 

in the service rate caused by the transmission process this task will stay in the system a 
longer period then it would has stayed if the transfer was not initiated. The system time 
of other tasks that have been in the system when the transfer was initiated or that have 

arrived during the transfer period may be affected in a similar way. 
In an NS-BTSQSS system a task that is being transmitted can not be served. Therefore 

it might happen that the server that initiated the transfer becomes idle while the task is 
still being transferred. In such a case the task could have been served during this period 

2. 
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if it had not been decided to  migrate it. An NSBTSQSS syxtem might r e d  a state 

in which both processors are idle while a task is being transferred and thns can not be 
served by either one of them. 

The instantoneow thtoughptd degradation fador, TDFij of a transfer initiated when 
TD(0) = ( i , j )  is given by: 

where: 

L;,i(t) is the expectation of number of tasks in the system at time t ,  (N(t)) ,  given that a 

transfer has been initiated at t = 0 when TD(0) = ( i , j )  and has not terminated 

in (0 , t ) .  
is the expectation of N(t)  given that TD(0) = ( i , j )  and no transfer was initiated 
in [ O , t ) .  

at t = 0 when TD(0) = (i,j). 

.h;,j(t) 

ft,(;,j)(t) is the probability density function (p.d.f) of the length of a transmissim initiated 

The expressions for Li,j(t),Li,j(t) and ftr(i,j)(t) are given in APP~XMSX A. T D Q  will be 
considered as the ‘price’ of the transfer and will be used for deriving guidelines for the 
development of migration criteria. 

A 

3.5.2 The Success Factor of a Transfer 

Tasks are migrated in order to reduce the queueing time of tasks that reside in the system 
and of those that will arrive at it in the future. The beneitt of a transfer is its effect on 
the system’s behaviour after it was successfully completed. No method has been found by 
which the contribution of a single transmission to the overdl performance of the system can 

be evaluated. In the absence of such a measure the only way to evaluate the contribution of 
a transfer is to study its effect on the unbalance factor of the system. 

Not all transmissions result in a reduction in this factor. In an S-BTSQSS system a 
transmission may be stopped in the middle and thus have no effect on the load distribution 
of the system. In an NS-BTSQSS a transfer may even cause an increase in the unbalance 
factor of the system when the load of the sender at the end of the transfer is smaller than 
the load of the receiver. The probability that a transmission initiated when TD(t) = (i,j) 
will cause a reduction in the unbalance factor of the system, is d e h e d  as the 8uccea8 f d o r ,  
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SF;,i , of a transmission. The expression for this factor for the two types of systems is given 

in Appendix A. 
Note that the probability that a transfer will cause an increase in the load-difference 

of the system shouId be included in the ‘price’ of the transfer, However, since no way was 
found to evaluate the effect of such a ‘wrong’ transfer on the future behaviour of the system 
it was not included in the definition of the ‘price’. 

8.5.9 Case Study 

The impact of the initial conditions and the parameters of the AT algorithm on TDF;,i and 
SF;j have been analized. The transition quation-for €lie potabili ty func3,ions included in 
the expressions for the two factors and the expressions themselves (see A.4) were solved by 
meam of numerical integraiion. The time dependent model defined bjr these equations and 
expressions was translated into a C-SIMSCRIPT II.52 program. 

Some of the results obtained from these solutions are given in Figures 3.7, 3.8 and 
3.9. Each figure consists of four graphs which present TDF;,j and SFc,j, for both types of 
systems, with /3 as a parameter. The f is t  two figures demonstrate the properties of two 
transmissions whose initi21 task distributions were (2,O) and (5,3) respectivly. The third 
graph presents the relation between. the Ap fador of the AT algorithm and the TDF;,j and 
SF;,,. of a transfer which was initiated by a processor with 5 tasks in its queue. The number of 
tasks in the other queue is the maximal number which permits the initiation of a transmission 

for the given value of the anticipatory factor. 
From these three graphs the following can be concluded 

1. In a no-stop system with /3 < 2, a transfer should not be initiated by a processor with 
less than three tasks. TDF2,o for this type of systems is considerably high and SF2,o is 
less than .6. As can be seen from Fig. 3.8, TDFJ,~ is relativly low and SF5,3 is about 
.7. Therefore it is suggested that under such conditions a processor will. wait until more 
than two tasks will be waiting in its queue before shipping out one of them. Note that 
since TDF2,0 is almost independent of 6, the cause for throughput reduction in this case 
is the increase in Pw;(t) (see Fig. 3.6). TDF2,o for 6 = 0 is almost the same as TDF5,3 
for 6 = 10. 

2C-SIMSCRPT [CACI78] is a combined (continuous & discrete event) simulation language. The continuous 
part of the language is based on the Range - Katta [Rds65] method for numericd integration. 
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Benefit @ Price of Task Transfer f o r  TD(O)=(2 ,0) 
( X=.8 , A,=&=O ' , x 6=0% ; 0 6=3.% ; 0 6=10.% ) 
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Figure 3.7. TDFi,: and SF+ for (it j )  = (2,O) 
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models. The method is discussed in the coming section, and a performance study based on 
the performance measures that were obtained is presented in the following sections. 

3.6.1 The Iterative SoIution Method 

The coefficients matrix of the linear transition equations which define the model falls into 
the category that is commonly solved by iterative methods. A number of such methods 
for general linear equations [Rals65] and transition equations [Gave761 have been developed. 
Brandwajn in [Bran791 has presented the “always converging scheme” for solving the balance 
equations of two-dimensional birth and death processes. As indicated by its name the method 
has an unconditional convergence and does not require normalization steps. Because of these 
properties and due to the low computational complexity of its iteration this method has been 

selected for solving the BTSQSS models. 
The method has been extended for three-dimensional processes and has been imple- 

mented in PASCAL.3 Table 3.1 presents the iterative step for the S-BTSQSS model. The 
conversion criterion used for both models is based on the difference between two consecutive 
iterations, of the value of fhe conditional probability of having nl tasb in the first server, 
given that there are pt2 tasks in the second, p(n€ I s ~ Z ) . ~  The maximal value of the above 
difference for all feasible values of n1 and a2 for the iterations d and i - 1 will be denoted 

by dcon;. In the implementation of the two dimensional model the iterative process will 
terminate after the first iteration for which dconi < lo-’. As a result of the nonponotonic 
behaviour of deon; in the case of the three disensional model it was decided to terminate 
the iterative process only when dconi was smaller than for the last 100 iterations. The 
thresholds used in the conversion test were selected empirically on the basis of a number of 
case studies. 

Iterative solution schemes for a birth and death process assume a finite space-state. 
The value at which the state variables of the BTSQSS model are truncated affect the quality 
of the derived approximated solution. This truncation causes a degradation of the arrival 
rate due to customers’ rejecteon and thus may distort the probability distributions. Since 
the size of the state-space affects the computation time of each iteration and their number, 
a space that causes a marginal degradation of the arrival rate and keeps the computation 

3T7;v0 programs were written - one for each model, 

4For the sake of this definition a task being transferred belongs to the source processor in both models. 
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p k ( i , j )  = (1 + ’p{ - [h(ei + ej) + .j,ial~~(i,j)}-’I[1- ~ M e i  + e j )  + w,~sIIP!,T~ 
k + vOIpL1,j + ~i , j - lI  

+ /J[(I - 6fzi+1,jlpt<:,j + (1 - ~~Zi,j+l)p”-l~,  j + 11 
k-1 k + B[Ui+l,j-lPi+l,j-1 + ~j+1,i-1~i-1,j+11}1 

where the superscript k denotes the value at the kth iteration, y3 = 

[ma~(p,@)]-~ and pR(-l , j )  = pk(j,-l) = pk(N + 1 , j )  = pk( i ,N  + 
1) = 0 for all k > 0 and 0 5 j 5 N -- - 

Table 3.2. The iteration step for an S-BTSQSS model 

.Attribute N=20 N=25 N=30 N=32 N=35 N=37 N=48 
4.62 4.95 5.00 5.03 5.06 5.07 5.08 
0.90 0.90 0.90 0.90 0.90 0.90 0.90 P 

I P[reject] 310-3 61Oe4 310-4 210-4 1lOW4 410-5 110-5 
# iter. 59 1 899 1029 1114 1239 7 1442 1676 
time(sec) 17.0 45.7 64.2 78.6 104.1 157.0 I 239.7 

_I 

Table 3.2. Attributes of the iterative method 

-. - 
wq 

1 
j3 = .5,Ap = Lp = 0 

~ 

time at a practical level, has to be selected. Table 3.2 presents the various attributes of the 
solution process with space size as an argument. Using the data presented in the table and 
information which was derived from similar case studies, a space-state of 35 has been selected 
for each processor. It was found that for all cases that where solved in the course of the study 
the rejection probability was less than 

13.7 Performance study 

The expected normalized queueing time of a task in both types of systems and under various 
operating conditions are shown in Fig. 3.10 and 3.11. The curves of the figures demonstrate 
the impact of the migration process on the response time of the system. The upper curves in 
the two figures represent the of the system if no task migration takes place (BD1,2 = 00). 

The lower bound for fiq is given by the c w e  for BD1,2 = 0. The two figures are a clear 
display of the significant gain that can be achieved by migrating tasks in a distributed system. 
Even when S = 10 and BDp2 = 2 the LB algorithm considerably improves the performance 
of the system. Note that when BD1,2 = l., the response time of the system is almost as 
good as the response time of an M/M/2 system. Therefore when the expected transfer time 
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f a task is less then half, its expected execution time of the two servers can be considered 
as a single M/M/2 system. The relation between the balancing distance of the system and 

s performance, as demonstrated by the figures, lead t o  the conclusion that systems with 
alancing distances in range of .5 to 2.) had to be used in the study of the migration criteria. 

3.7.1 Channel Utilization 

It was shown in 2.2.1 that the load balancing process may require a high rate of task transfers. 
By limiting the rate at which anticipatory transfers are initiated this rate can be significantly 
reduced. However, such a reduction may cause an increase in the Pwi and thus an increa 
in the response time of the system. The degree to which the AT algorithm initiates such 
transfers is controlled by the Ap parameter. 

The effect of the value of Ap on the utilization of the channel and W, for a stop 
system with 6 = 0 is shown in Fig. 3.12 and Table 3.3. Note that at the price of a 
small increase in the expected queueing time of a task, the utilization of the channel can 
be considerably reduced. For highly u+i ilized systems an increase in the arrival rate causes a 
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Figure 3.12. Channel utilization va p for S-BTSQSS system (8  = 0, Lp = 0, BD1,2 = 1) 

3.7.2 The Migration Criterion 

The effect of the migration policy on the normalized expected queueing time of a task, tirB, 
is demonstrated by Fig. 3.13, 3.14 and 3.15. The figures present $kq of the two systems with 
4 and Lp as parameters for different server utilization and service degradation factors. The 
values presented in these figures indicate the strong impact that the values assigned to  Ap 
and Lp haye dn the expected turnaround time of a task. Note that for no-stop systems with 
p = .9 and S = 10% , Wq is greater than that of an equivalent M/M/1 system if the ‘wrong’ 
migration criterion, (4 = 0, Lp = 0), is selected, whereas the Wq of the same system with 
the ‘correct’ criterion (Ap = 2) will be 30% smaller than in an M/M/l. 

For most values of Ap and Lp a stop system has a smaller Gq then an equivalent 
norstop system. In some cases the difference between the performance of the two systems 
with the same migration criterion may be considerably large. However, when each of the 
systems is controlled by a migration policy that is best suited to the system’s attributes, the 
difference will, in most cases, be less than 5% . From the above observation it follows that the 
ability of the server to control the operation of the channel does not considerably improve the 
efficiency of the balancing process although the penalties associated with the transmission of 
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NS-BTSQSS - S-BTSQSS -- p . 6  BD,S=1 (+ &OX X 65.3% +lo%) 

a task are higher in an NS-BTSQSS system. 

Results obtained for systems with different balancingdistances.are presented inEigs. 
3.16 and 3.17. These two figures together with Fig. 3.1.4 demonstrate the relation between 
the balancing distance between the two processors and the manner in which a migrdon 
policy affects the performance of the system. Note that even when the distmce is 2 (the 
expected transmission time of a task is twice as long as it’s expected service time) and when 

6 = 10% , as in Fig 3.16, the @, is reduced by 20% relative to  an M/M/l system. 
From all the results presented above the following guidelines for the selection of 2 

migration criterion can be concluded 
1. When BD;,j 5 1 by selecting Ap = 1 the changes in *, due to an increase in 6 (up 

to 10%) can be kept low. For all the cases that where analyzed it was found that this 
difference can be kept below 10%. 

2. In a stop system ‘last-minute’ transfers should be initiated regardless of the queuesize 
of the initiator. In all cases (except when Ap is too small Fig. 3.1.3) assigning a non-zero 
value to Lp caused an increase in 

3. For all no-stop systems with B D I , ~  >, .5 , the last-minute parameter should be greater 
than zero. In such systems a ‘last-minute’ transfer should be initiated only when there 
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chaptez 4 

Broadcast Distributed Systems 

54.1 Introduction 

Broadcast communication subnets are widely used. for intercrannectbg processing elements. 
A broadcast subnet consists of a single communication channel which is shared by all the 
switching elements of the system. An arbitration mechanism, centralized or distributed, is 
required for resolving conflicts when two or more stations attempt to transmit simultaneously. 
Although cities or even continents are linked together by broadcast channels [Abra771, in 
most cases the elements that communicate via a broadcast medium are less than a; few 
kilometers apart. The processing units are usually located in the same room, same building 
or at the same institute and thus establish a local network. The increasing demand for 
ofice out omotion and distributed processing motivated the development of various protocols 
and high bandwidth channels for this type of networks. High communication capacity is a 
distinguishing feature of local networks. The bit rate of their communication channels is in 
the range of .l-30 Mbit/sec. An erlier version of these algorithms has been presented in 
[Livn82]. 

In this chapter three load balancing algorithms for broadcast m*(M/M/l) systems 
are defined and the results of a simulation study of their performance is presented. 

54.2 The Broadcast Model 

The model describes a broadcast m* (M/M/l) distributed system with homogeneous proces- 
sors and users (Fig. 4.1). The communication subnet of the model is a passive broadcast 
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Figure 41. The Broadcast m*(M/M/l) model 

medium with the ETHERNET [Metc76] communication protocol. The commnnication ac- 
tivities of a node are controlled either by the processor or by a dedicated Cummunicdow 
Processor, CF?, that serves as a fpont-end for the node. Each node maintains an input and an 
output message queue in which arriving and departing messages are placed respectivly. It is 
assumed that the buffering space available at  each node is unlimited. 

The processing time required for the transmission or reception of a balancing mes- 
sage is determined by the OVerHead parameter of the node, OVHi = (ovhi ovh;, ovh& 
The processing time, at node i, required by a message whose transmission time is T m8 is, 
ovhi 4- T ouhi ms, where k = 1 for a data message and k = 2 for a control message. A data 
message is a message that carries a description of a task or the results of its execution. The 
information needed for controlling the migration process is exchanged via control messages. 

Each node has a front-end boolean parameter, FEi, which determines whether the 
node has a CP. In a node that has no CP, FEi = 0, the arrival or departure of a message 
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interruptes the nodal processing element. If the processor is not occupied by another message 
the current task is preempted and is resumed only after all processing demands made by the 
communication protocol or balancing algorithm are fulfYled. However, when a front-end 
processor is part of the node, FEi = 1, messages are served by this processor and none of 
the processing capacity of the node is utilized by the balancing process. 

4.2.1 ETHERNET PROTOCOL 

The communication protocol selected €or the broadcast subnet is the ETHERNET. The 
ETHERNET is based on a Carrier Sense Murtiple Access with Collision Detection (CSMA- 
CD) access method and was first described by Metcalfe and Boggs in &fetc76]. After being 
in use for several years the protocol was recently given a detailed specification Pigi801 which 
establishes a standard for the protocol. The specification gives a detailed definition of the 
Physical and Data-Link layers of the protocol which are the lowest two layers of the Open 
Syatema Interconnection (OSI) reference model [Tanesl]. Several vendors have developed 
hardware to realize the ETHERNET md82] ,  Plli821 and a considerable amount of effort 
has been devoted to the analysis of its performance IStuc83). 

The Physical Layer is a coaxial cable with bade-band signalling. Its bit ra€e is 
lOMbit/sec and up to 1024 stations which are less than 2.5Km apart can be interconnected 
by one ETHERNET network. The Data Link Layer senses the state of the cable by means of 
the currier dense signal. This signal is controled by the Physical Layer and indicates whether 
a packet is or is not present on the cable. Each Data Link defera transmission as long as 
the carrier is set and during an interfiame apacing gap of 9.6psec after the carrier drops. 
Simultaneous transmissions by two or more stations cause a cdliuion which is detected by 
the Physical Layer. Following the detection of a colIision the collision detected signal is set 
by the Physical layer for each station that has participated in the collision. The contending 
Data Link Layers respond to the setting of this signal by transmitting a 48 bit jam message 
and by suspending any further transmission attempts for a 6ackof period. The duration of 
this period is determined according the binary czponentid backoff scheme. 

94.3 Load Balancing Algorithms for Broadcast Systems 

From the point of view of the load balancing process, broadcast communication system have 
two advantageous properties. The fist one is the uniformity of balancing distance and the 
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second is Lhe message broadccrst propertg. The time required for transferring amessage from 
one node to the other via a broadcast systemis the same1 for all pairs of nodes. Therefore the 
balancing distance between all nodes is equal to the balancing diameter of the system. Due 
to the uniformity of distance, all nodes whose load is the same are equal-priority candidates 
for receiving a waiting task. The control element of the LB algorithm resident at the node 
has to consider only the load distribution of the balancing region, which may include the 
entire set of processors. A large nodal balancing region provides the control law a broad view 
of the instantaneous system load and thus improves the ability of the algorithm to minimize 
the probability of a WI state. 

The message broadcast facility of this tspe of communication system supports the 
information component of the algorithm in providing global and updated information about 
the instantaneous load distribution of the system to the control element. By sending one 
message a node can inform the entire system about its current state or to describe a balancing 
dicision it has made. The information policy is free of touting and %o~-controlconsiderations. 
However the broadcast property is actually a double-edge sword because it indicates that 
the system has only a single communication resource. A broadcast communication system 
can not transfer a number of messages simultaneously.2 Simultaneous transmission attempts 
by any subset of statiandeads to contention and thus to queueing delays that increase the 
turnaround time of a message. 

Using the above analysis of the characteristics of a broadcast system as a guideline 
three different load balancing algorithms for this type of system have been developed. An 
attempt was made to encapture in the three algorithms the various aspects of the task migra- 
tion phenomena in broadcast systems. The algorithms differ in their informatim and task 
migration policies and each of them represents a different approach to the balancing prob- 
lem. All the LB algorithms dehed  are for broadcast m*(M/M/l) with uniform processors 
and users. 

4.3.1, RST Algorithm 

The Broadcrrst STatus (BST) load balancing algorithm is a natural extention of the task 

'propagation delays are negligible for such systems and thus the geographical location does not affect the 

'A number of messages can be transferred over the same medium if frequency modulation techniques are 
transmission time. 

used. However in such a case the communication system is no more a single system. 



migration criterion of the BTSQSS system (see Chap. 3.). Thealgorithm is Cmticiprrtory h i t s  
nature, and has a liberal information policy that provides each node with a complete picture 
of the instantaneous load distribution of the system. The control-law of the algorithm aspires 
to keep the unbalance factor of the system below a given value. This value is a parameter 
of the algorithm and can be adapted to the properties of the system. The algorithm takes 
advantage of both the uniformity of the balancing distance and the broadcast facility of the 
communication network. 

ALGORITHM BST (Broadcad every changes in atute) 

Information Policy: Wbenever the length of its queue changes the node broadczsts a stnhia 
message that describes the new size of the queue. Each node records the information it 
receives via this messages in its Load Di8tdndion, LDi, vector. The information stored in 
this vector describes the instantaneous load distribution of the system as seen bynode i. The 
node updates the element in LDi which describes its current load, Id:, upon the successful 
completion of the transmission of a status messag. I- 

BaIancing Region: The balancing region of a node is the entire system. 
Control Law: Whenever LDi = (Id:, . . ., Id;) is updated and the output message q e n e  is 
empty the nodd LB control element is invoked. The algorithm will initiate the migration of 
a task from node i to node j if all the following conditions are fulfilled 

1. (Zdf > Ed;) V (ldf = Id: A i 3 k) for  0 < k 5 m. (maximal) 

i has to be the node with the longest queue. When two or more have the 
maximal load, ties are broken according to node numbers. 

2. Zdi 5 Id); for  0 < k 5 m. (minimal) 

j has to be the node with the shortest queue. When more than one node has 
a minimal number of waiting tasks the selection of the target node for the 
migrated task is done randomly. 

3. U i F ( i , t )  > BT (three hold) 

the unalance factor of BR;(t) has to be greater than BT which is a parameter 
of the algorithm. 



I Note that since the control element of the BST dgoritlm-will &der 
migration only after all previous messages have been transferred, all the nodes wiULbase 
their migration decisions on the same information. The BST algorithm .atiliees the broadcast 
media as a means for synchronizing the distributed control process w far as the information 
on the instantaneous load distribution is concerned. The messages are analized by all the 
nodes in the same order and therefore at each stage all nodes have the same picture o€ the 
system load. 

4.8.2 The BID Algorithm 

The Broadcast when IDle (BID) load balancing dgorithm is based on Laat ddinute task 
transfers. The control element of the algorithm is invoked only when one of the systems’ 
nodes becomes idle. The information policy of the BID dgorithm is less litmd than the 

previous one and utilizes three types of messages. Iike the BST algorithm this, dgmikhm 

takes advantage of the two advantageous properties of the broadcast medium. 

ALGORITHM BID( broodcast when idle) 

Information Policy: A node broadcasts an idle message vzhenever it enters iin ide &&e. 

Following the transmission of such a message the node receives reserodion messages to whom 
it replies with accept/reject messages. 

Control Law: The control element of the BID algorithm consists of the two compmznts - 
the loaded and the idle component. The 5rst one is invoked when an idIe message  arrive^ 

and consists of the following steps (for node i whose queue length is si): 

i. If n; > 1 go to step ii, else terminate the algorithm. 
ii. Wait DnT1 units of time. D is a parameter of the algorithm and its value depends on 

the characteristics of the communication medium (proporgation and round-trip delays). 
iii. Send a reservation message to the node that has been declared idle. 
iv. Wait for a reply message from the idling node. 
v. If the reply is an accept message and ni > 1, initiate a task transfer to the node which 

has accepted the reservation, else terminate the algorithm. 
The purpose of the state-dependent time-out period in step ii is to give n d e s  with mure 
tasks higher priority in sending reservation messages and thus to give them a better chance 
to migrate a task to the idle node. Note however, that due to the backoff algorithm of 
the ETHERNET it is not guarantied that the node whose message has arrived f is t  will be 
transmitted first. 



arrives at the node that has broadcasted an idle message. .If the node is still idle and no 
previous reservation has been accepted, an accept message is sent as a response to the reser- 
vation request. In all other cases a reject message is transmitted. 

Balancing Region: The Balancing Region of node i at time t, B&(t), includes all those I 

4.3.3 The PID Algorithm 

Unlike the two previous algorithms the Poll when mle (PID) load balancing algorithmdues 
not utilize the broadcast capability of the communication system. The algorithm is based on 
a polling strategy and its migration criteria initiates only ‘last-minute’ transfers. The Polling 
procedure takes advzntage of the uniformity of the balancing distance of the system. 

ALGORITHM PID(PoZZ when idle)  

Information Policy: An idling node sends request messages by which it not35es;the nudes 
to whom the messages are directed that it is willing to receive a task. The node receives as 
a reply a data message which contains the description of a task or an empty message. 

Control Law: Two components constitute the control element of the PID algorithm - the 
poll  and reply components. As a node enters an idle state it invokes the poll component that 
consist of the following sequence of steps: 

i. Randomly select a set of R nodes (a1 , . . .I a& and set the counter j to 1. R is a parameter 
of the algorithm that determines the size of the Polled set. 

11. Send a request message to node ~j and wait for a reply message. 

iii. Receive the reply message. Node ui will either send back a task or an empw reply. 

iv. If the node is still idle and j < R , increment j and go to step ii., else terminate the 
polling. 

.. 

The reply element of the control law is executed when a request message arrives. If the nade 
has more than one task in its queue, one of the waiting tasks is migrated t o  the node that 
has sent the request. An empty message is sent back if no task is waiting in the queue. 
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channel transmiasion rate (@) 
dot time 51.2 psec 
tranami~ion time of control measage 

5u msec 
BT parameter of STB algorithm 2.1 

i m e c  
R parameter of PID 5 

overhead (OVH? - (U., u., 0.) 
simulation length m > 8 

10 Mbit/aee: 

202.4 yeec 
expected task service time(:) 

B parameter of BID algorithm 

balancing didance(BDi, j )  -025,. 05,-1,.2 
3Dci  = .025 meam 9 tw 1.5Kbyte 

40 8ec 

simulation length m 5 8 
except ir&?.l> ezcept in 

80 aec 

ezcept for 4.8.3 

Table 4.1. Simulation parameters for study of braadcast rn*(M/M/l) systems 

44.4 simulation Study 

A simulator for the broadcast m*(M/M/l)  system has been developed using the DiIsS 
simulation language (see chapter 6). The system is mapped onto a stat topology with the 
ETHERNET subnet as a center (Fig. 4.2). Each of the system nodes is modeled by a DBS 
process and there are three types of such processes - one for each algorithm. The ETHERNET 
node is a realizationof the ETHERNET aubnet model, as ia described in [P/le183bj, and includes 
both the Physical and Data-Link.Layers of the protocol. Due to this mapping none of the 
communication protocol elements is incladed in the nodal process. Therefore by replacing 
the central node of the Simulator, broadcast m*(M/M/l) distributed systems with dif€erent 
coIpmunication suhnets can be simulated; In the coming subsections a performance study 
of the three algorithms will be presented. The study focuses on the effect which the three 
algorithms have on the expected normalized queueing time of a task, Gq . Table 4.1 lists 
the numerical values of the simulation parameters. In all the cases it was assumed that the 
amount of data units needed to describe the results of a task is equal to the amount needed 
t o  define the task, i.e. qr = 7'. 

, 

4.4.1 Algorithmic Parameters 

The behaviour of both the BST and PID algorithm is determined by the values of their 
parameters. The selection of the values to  be assigned to the BT and R parameters should 



(7 NODE # 1 

_- 

be guided by the properties of the system for which the algorithmsaw intendeck The mzin 

factors to be considered are the balancing distance between the system processors. and their 
number. 

Fig. 4.3 presents eq and c h e l  utilization (91) for systems with diflerent;balancing 
distances and number of processors (m) with BT as parameter. Note that an increase in BT, 
i.e less anticipatory transfers, causes a decrease in wq in most of the cases. This improvement 
in the response time of the system is due to the reduction in the number of ‘unnecessary’ 
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transfers. In a highly utilized ETHERNET a small reduction in the load has a signiScany 
effect oh the turnaround time of a message. But there is a point where any further reduction 
in the rate of anticipatory transfers causes an increase . The location of this 'turning 
point' is system dependent. 

The communication activity of the PID algorithm can be easily controlled by the 
value of the R parameter: Fig. 4.4 shows how q and eq depend on the size of the polling 
set. When the balancing distance is small (BDi,; = .025) 'CiT, is a monotonic decreasing 
function of R. However, when BDi,j = .2 and R> 5 an increase in the size of the set causes 
a degradation in the performance of the system. Note that even when R = 3, t@q is reduced 
due to the balancing process from 4 to3 1.7 for BDi,; = .2 and to .75 for BDi,j = .025. 

4.4.2 Number of Nodes 

The fiq of an M/M/m queueing system with a task arrival rate of mX is a monotonic 
decreasing function of m (see 2.2). Although the addition of another server increases the rate 
at which tasks arrive at the system the supplemental node decreases the expected queueing 
time of a task. 

The effect of the number of nodes, m, on the @q of a broadcast m*(M/M/l) 
system is demonstrated by Fig. 4.5, 4.6 ,4.7 and 4.8. The figures present the Wq of the 

34 is the expected normalized queueing time of a task in an M/M/l system with a utilization of .8. 
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three algorithms for four different balancing distances (BDi,i). In all the cases the balanced 
system has a considerably better Wq than the unbalanced system, M/M/l.  

For a system with BDi , j  = .2 the expected waiting time of a task is decreased 
by at least 70%. The degree to which the balancing algorithm approaches the optimal Wq 
of an m server system (M/M/m) depends both on the balancing distance of the system and 
on the number of nodes, The curves show that an increase in the number of nodes in a 
balanced distributed system has two counteracting effects. On the one hand, it improves the 
probability that a waiting task will be transferred to an idle server, as in an M/M/m system. 
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e other hand, it raises the utilization of the communication channel. Higher dmmel 
1 causes a slow-down in the balancing process resulting from an increase in message 
aelays. The net result of these two effects will determine whether the increase in 
s, does not affect, or deteriorates the expected turnaround time of a task Every 
reaches a point, mm, at which an addition of another server will came an increase B e value of mm depends on the algorithm and balancing rate of the system. Note 
cases when m is less than the mm of the BST algorithm the *q of this algorithm is 
ft. After it reaches its minimal value the @q of the STB algorithm increases until 
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it becomes greater than the 
of the STB algorithm is caused by the increase in transmission delays. 

of the PID algurithm. The degradatian in tlmperfammuce 

Both the BST and BID algorithms are sensitive to changes in the t r e o n & &  

of a message. By waiting for ail previous messages to. be transferred before a newmigrationis 
considered, The B’sT algorithm adaptes its activity dynamically to the, load an the chamrei. 
Therefore even when the channel is highly utilized the algorithm succeeds to enhance the 

response time of the system. Whereas the BID algorithm may reach a point wheze it becames 
a came for performance degradation as a result of its attempts to make a r e s e d o n  a& any 

idling node reaches a point where it turns to be a cause of performance degradation. 

The PID algorithm is less sensitive to the utilization of the channel. As demonstratied 
by the f o u  curves of Wq for this algorithm, there is a wide range of m-values for which the 
algorithm has almost the same performance. The ‘hand shaking’ mechanism of thisalgorithm 
minimizes the number of ‘wrong transfers’. For low and moderated channel utilizations the 
PID and BID algorithm have similar eq . 

4.4.3 Processing Overhead 

In all previous cases it was assumed that the load balancing process has no processing 
overheads. Table 4.2 demonstrates how processing ovefheads affect the eq of the BST 
and PII) algorithm for three merent arrival rates. 
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Table 4.2. Wq for Different arrival rates (FEi = 0, m = 16, BDi,j = .05) 

I 0 VE- 0, 0, 4 0 VH-1,0, 4 OVH-I,. 5,4 0 VH-5,0,4 OVH-5,. 5,d - X a  

.85 PfD .9 I. 02 I .  02 1.64 1.5 
.79 .88 .85 1.10 L18 BST 

BST .35 . 3 9  648 .61 .67 

-. 
.7u PID .4 6 .57 .59 .75 -77 

.60 PID J4 .41 -42 .58 .80 
BST .19 -24 .28 .43 4 5  

~ 

Table 4.3. Wq for Different arrival rates (FE; = 1, m = 16, BDi,j = .05) 

An increase in the task arrival rate, X, has opposite effects on the activity of the 
BST and PID algorithm;. The information exchange activity of the BST algorithm increases 
due to an increase in X, since more tasks per time unit mean more state changes. The 
BST algorithm broadcasts at least 2 X control messages! per station per time Unit. The PID 
algorithm reacts in an opposite manner to an increase in X. Due to the increase in server 
utilization, the length of the nodal busy periods increases and thus the rate at which the 
polling element of the algorithm is invoked, decreases. Nevertheless, the expected number 
of stations which a node has to poll each time, decreases, as well, due to the increase h . p .  
There is a higher probability that the first nodes to be polled are willing to migrate a task. 

The values presented in Table 4.2 reflect these characteristics of the two algorithms. 
Note that the effect of the increase in the information exchange activity of the BST algorithm 
is amplified because all the control messages are broadcast messages. So that every time a 
message is transmitted every processor has to devote some processing capacity in order to 
receive and decode the message. 

Table 4.3 demonstrates the advantageous effect with the addition of a communica- 
tion processor to every node. The of the BST algorithm is considerably improved due 
to the increase in the processing power of the node. As far as the PID algorithm is con- 



cerned, this increase does not si@;nificantly improve its perfurmance. Since in most o€ the 
cases this algorithm utilizes processing capacities when the node is idling, the reduction in 
the utilization of the processor does not reduce its wq . 
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Store and Forward Systems 



The data rate of the communication lines used in store-and-forward subnets is in 
most cases, less than .1 Mbitlsec. Although attempts are made to utilize fiber-optic tech- 
nology in point-to-point subnets there is no such operational subnet yet and all commercial 
networks are based on leased lines. Because of the low bandwidth of the communication lines 
and the requirement for intermediate buffering space, store-and-forward protocols require 
procedures for touting management, for bufer allocation and for the detection or prevention 
of deadlocks. Due to the complexity of these issues and the urgent need for efficient protocols 
for point-to-point networks, a considerable amount of effort has been devoted to the develop- 
ment and analysis of protocols for this type of networks [Klei80], [Schw80]. Various protocols 
have been implemented and their characteristics analyzed. Most of these protocols utilize 
complex flow control algorithms that require a high level of control activities [MaQu80]. 

One of the main issues associated with the design of point-to-point subnets is their 
topology. This chapter focuses on the interdependency between the topology of the system 
and the load balancing phenomena. An LB algorithms for store-and-forward m*(M/M/l) 
distributed systems with homogeneous processors and users is defined. The results of a 
simulation study of the performance of this algorithm for systems with different topologies 
are presented. These results shed light on the way load balancing consideration should affect 
the topology selectiorf procedure. 

5.1.1 The Store and Forward Model 

The topology of the communication subnet of the store and forward model is dehed  by a 
reguZa9 graph, G = ( V , E ) .  The nodes of the graph, V, are switching processors and the 
edges, E, are fdl-duplez communication links. Every processor of the m*(M/M/l) system is 
attached to a different IMP Fig. 5.1. The IMP and the processor share the same data storage 
facilities. The processing elements and users of the system are homogeneous and all links 
have the same data rate, j3 du/tu. Each link has a queue in which messages that are waiting 
to be transmitted are placed. It is assumed that each node has an unlimited buffering space. 

In the view of the motivation of this study and the characteristics of the model 
a ‘simple’ communication protocol for the store and forward m*(hl/M/l) model has been 
selected. The protocoI implements a message smxching strategy which does not impose any 
limitation on the size of the transmitted data blocks. The routing scheme of the protocol 

3The Graph Theory terminology used in this chapter followes the de3nitiona given in (Tane%l] (Chap. 2.). 
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Figwe 5.1. A nade of the store-and-farwwdm*(M/M/l) system 

is 8tatice Messages are routed along the shortest pass, the geodeaic, beheen the:sam:and. 
the destination. When several geodesics exist between two nodes one of thernisiselected at  
the time the system is established. The messages are transmitted according to an FCFS 
discipline. Due to the dimited buffering space available at each node no b d e r  Teservation 
or deadlock detectionlprevention mechanisms are required. Trmsient messages are directed 
upon arrival at the input queue of their next link. It is assumed that the processingtiie of 
the protocol is much smaller than the transmission time of a message and thns negligible. 

f 

$5.2 Load Balancing Algorithms 

Unless the graph G = (E ,V)  that defines the intercomection scheme of the model is it 
complete graph, the balancing distance between the processors in a store and forward sgrstem 

is not the same for all pairs of nades. The balancing distance between processor d and j of 
the system is dilp7I with, di,j  being the length of the geodesic between the two processors 
in G. The non-uniformity of the balancing distances together with the lack of a broadcast 
facility in this type of system imposes iocaiity on the load balancing process. The di€liculQ in 
maintaining a global up-to-date picture of the instantaneous load distributionof the system-at 
every node and the need to consider balancing distances, prohibit the establishment of large 
balancing regions. Unlike broadcast systems, not all the processors with the same load have 



equal priority as candidates for being a target for a migration operation. Those processom 
which are closer, have higher priority. A natural criterion for including a processor in a 
balancing region will be its balancing distance from the owner of the region. Theregion of a 
processor will, most probobly, include only those nodes which are adjacent to the processor. 
In such a case the control element which resides at node i has to consider only the load 
distribution of BRift) and is free of topological considerations. 

An algorithm for store-and-forward m*(M/M/I) systems with homogeneous users, 
processors and subnet4 is defined in this section. The algorithm is based on an adjacent 
balancing region. Performance models of systems with various tapologies are de6ned and 
solved. 

5.2.1 The H01 Algorithm 

The control law of the Hop One (HO1) algorithm aspires to keep the load & i b ~ t i ~ ~ . o f '  
BRift) balanced at all times. The algorithm is anticipatory in its nature and amer  might 
be migrated several times before being executed. 

ALGORITHM. HOl[ migrate one hap) 

Information Policy: The load of a processor is n; + rci where, n; is the -1engiA of its 
queue and rc; is the reservdim counter. This counter is incremented when a reserntion.is 
accepted and decremented upon the arrival of the task for which the reservation has been 
made. Whenever the load of the node changes the processor sends all its adjacent processors 
a status message that describes the new load. Each node records the information it obtains 
from these messages in a Load Distribution vector, LD;. Before a task is migrated from ane 
processor to the other a reservation message is sent to the target processor. 

Balancing Region: The balancing region of nude i at  time t consists of the following 
processors: 

* 

BR;(t) (j E V 1 (i, j )  E Eand no data 
message at input queue of (i,j) at time t). 

The above definition for balancing region is motivated by the desire to prevent 
unsuccessful task transfers (see 3.3). In order t o  minimize the probabilitythak due 

4A point-to-point snbnet is dehed  as homogeneous if G is  a regular graph and all its links have the same 
capacity. 

5 - 4  



to long communication queueing time such a transfer will take place, an adjacent 
node to which the link is currently occupied by a data message is not included 
in the balancing region. Note that the load of a node is defhed according to its 
current state and does not reflect its ability to 'fan-out' additional load. This 
ability depends on the load of the nodes which constitute the balancing region 
of the node. The algorithm is motivated by a 'one step at a time' approach and 
therefore does not consider the ability of the target node to ship the migrated 
task one step further. 

Control Law: the control element of the H 0 1  algorithm is invoked whenever a status or 
reservation message arrives. Processor i with LJ)i = (bdi, . . ., Ed',) will initiate a user transfer 
to processor j E BR;(t) when all the following conditions hold true: 

1. 

Due to t-e hig 

ni > 2 " (wuiting) 

throughput degradation .&or of last minute transfers initiated 
when only one task is waiting in systems with long balancing distances (see 
3.5.3), the algorith initiates transfers only when at least two tasks are waiting 
for service. 

, 

2. 14 2 14 for all k E BR;(t) (mimmul) 

j has to be the node with the minimal load in the balancing region of i. When 
several processors have the minimal load, one of them is randomly selected. 

3. rci+n,--td: > 1 (threshold) 

The load-difference of the BR;(t) has to be greater than one. 

55.3 Effect of Interconnection Scheme 

The expected turnaround time of a task in a store-and-forward m*(M/M/l) system depends 
on the expected queueing length of the processors and the length of the geodesic between the 
execution and entrance sites of the task. The expected number of tasks in a queue depends 
on the ability of the node at which the queue resides to distribute its load among the other 
processors of the system. This ability depends on the structure of the Didance Tree, DTi = 
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(i, V), 5 E E,  of the processor. DT; is a spanning free of G such that i is its root and for 
all j E V, di,i = d;,;, where d;,j and &,i are the length of the geodesic between i and j in 
G and DT; respectivly. A quantitative description of the ability of the processor to ‘fan-out’ 
its load can be given by means of the following function 

- 

n-2 

BL;(n) = C(n - j)Uj 
j-0 

where Uj is the number of nodes at the jth level of DT;.5 The value of RLi(n) is the minimal 
number of tasks that ought to be in the system so that a load distribution with n; = n will 
be a no-migrate distribution. The system is deftned to be in a no-migrate distribution if a) 
the queues of all links are empty b) (1 ni - ni 15 1 V n; 5 2) for all (i, j) E E .  A processor 
with n tasks at its queue would ‘prefer’ that the system would be in a no-migrate state only 

if nj >, n - 1 for j = i, j € V, i. e. that R&(n) = n + (n - I)([ V [ -1) for all n. The 
function RLi will have the above form only if the out degree of server i is I V 1 -I which 
means that the graph G has to be a complete graph. 

$5.4 Simulation6tudy 

The DISS (see chapter 6) methodology and simulation language have been used for developing 
a simulator for the store-and-forward m*(M/M/l) system with the HOl LB algorithm. Each 
of the model nodes describes the behaviour of a processor and its adjacent IMP. The specific 
properties of DES have made the construction of simulators for systems with different 
toplogies, an easy task. In the course of this simulation study five different system topologies 
have been analyzed. These topologies and the corresponding nodal distancetrees are shown 
in Fig. 5.2. Note that for all the topologies which were selected all the nodes have the same 
distance tree. In Table 5.1 the values of the RLi(n) function for the different topologies are 
displayed. The table demonstrates the interdependency between the values of the function 
and the interconnection scheme of the communication subsystem. 

In this study it was assumed that the length of the control messages is much smaller 
than that of the data messages. Consequently, the transmission time of these messages was 
neglected and a control message is considered to be transferred instantaneously. However, 
the communication link has to be free when such a transfer is executed. One time unit, 

5The root of the tree is at level zero. 
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Tubh 5.1. RL;(n) for the Merent toplogies (m=24) 

7' 2 -lo m=4 m = 8  
.l , 0. 2.4 1.4 1.2 1.2 
.I 1 I. 3.3 2.6 2.5 2.6 
I .  . 0. 3.9 2.6 2.5 2.5 

I 1. , 1. 3.1 I 3.2 1 

Table 5.2. W,, for Rings of different sizes (A = .9) 

ty in the simulation runs was equal to the expected execution time of a task [fi-') and the 
length of each run was 2500 tus. The various systems were analyzed under two different 
task-arrival patterns - the Hom9 and Lo19 patterns. According to the Hom9 pattern, the 
system is homogenebusly loaded and X = .9, i.e the utilization of all servers is .9. When the 

i 

tasks arrive according to the Lo19 pattern, the system is not homogeneously loaded. The 
arrival rate of processor 1 is 3.2 and the arrival rates for all the others is .8. Note that the 
sum of all arrival rates for the two patterns is the same. 

The manner in which the number of processors affect the ability of the H01 algo- 

rithm to reduce the response time of the system is demonstrated by Table 5.2. For all four 
combinations of and 7 O  that where simulated when m goes from 4 to 8; Wq improves 
considerably. However, any further increase in the system's size does not aflect . Note 
that even in a 4*(MM/M/1) system with 7' = 7 O  = 1, w,, is reduced due to the LB process 
from 9 to6 3.9. 

The results presented in Table 5.3 show that when a store-and-forward m*(M/M/l) 
system is homogeneously loaded, a change in the interconnection scheme of the communica- 
tion subnet has only a marginal effect on * q  . Although the distance tree of a node defined 
by the Ring3 topology has better properties than the one dehed  by the Ring1 and the Ring 

' 9  is the &q of an M/M/l system with a utilization of .9. 
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I I I t- ' .l; 1. 1.67 1.69 1.67 
1. J 0. 2.20 817 2-26 
1. * 1. 2.94 2* 98 2.94 

Table 5.3. Wg for toplogies with 4 m  l i i  (A = .9) 

topologies, these differences in the structure of TDj do not affect ~q w h a  tasks anive 
according to the Hom9 pattern. However, when the arrival pattern of the tasksis:LolS these 

differences do affect . Table 5.4 clearly displays the interdependency between. the &(n) 

node is higher than the arrival rate of the other, the structure of its &stance tree plays an 
important role in determining Wg . The table presents the expected normaliied queueing 
time of a task which has arrived at node 1 , (l), and Wq for different d u e s o f  7' and 

The results displayed at the  second row of the Table 5.4 demonstrate an impoEtut 
aspect of the H 0 1  algorithm. When 7' is small (.1) the algorithm may migrate a task several 
times and thus the executiqn site of a task might be several hops away from its entrance site. 
Therefore if 7O is not negligible the task might be considerably delayed on its way back%o 
the node at which it had entered the system. In the case represented by the second row of 
Table 5.4, tasks are transferred without any delay 'down the stream' to their execution site 
but are queued up on their way back. Note that due to this behavior of the HO1 algorithm 
the response time of the system is better for 7' = = 1. than for 7l = .l, yo = 1. 
Thiri property of the algorithm is also demonstrated by Table 5.5. This table shows the inter- 
dependency between the number of communication links and the performance of the system 
for the HL19 arrival pattern. When each node has only two links the system is 'choked-up' 
under such conditions unless 7' is small and 7 O  is negligible. However, when the system has 
three or four links per node it can serve all tasks and even provide them with better response 
time than an M/M/l  system which is busy 90% of the time. 

function of a topology and the performance of the system. When the arrivdzateofme - _ _  

7O * 
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Ring Fring Ring3 
7 I  , To wq (1) ti.'q - wq (1) wq wq (1) w; 
.1 1 0. 1.0 .75 .80 .63 .77 .63 
. l >  1. 18.2 4.4 34.0 7.0 12.5 3.3 

1. , 1. 5.1 3.1 5.1 3.2 4.75 3.2 
1. , 0. 3.2 2.3 2.9 2.2 2.8 2.2 

Table 5.4. ti.', and Wq (1) for toplogies with 4m links (XI = 32, X i  = .8 1 < %' 5 m) 

i 1 Ring I Tring 1 Ring3 1 
TI f 7 O  wq (1) wq wq (1) wq (1) w q  

.I , 0. 2.5 1.4 1.2 .80 .77 -63 
-1 , 1. 00 60. 11.3 12.5 3.3 

I 

4.2 2.5 2.8 2.2 
9.4 3.9 4.75 3.2 

Table 5.5. wq and (1) for different numbers of links (XI = 3.2, X i  = .8 1 < i 5 m) 

1 

5-10 



16.1 Introduction 

Performance prediction is an essentid step in the process of system. design and system 
upgrading. When differed alternatives are examined by a designer or manager their relative 
performance may constitute a cardinal argument for regarding one as superior .to the other. 
In order to predict the performance of a non-existing system under an est 
a performance model of the devised system has to be defined and so 
load. A quantitative description of the desired perfomam atires is then derived from 
the solution. The characteristics of the model and the p e measures consictered, 
determine whether analyaia can be used as a sol whether a i d a t i o n  is 
the only means by which the measures can be derived. A considerable amaunt of effort 
has been devoted to the study of analytic solution schemes for performance models and 
several methods for solving queueing network modeIs have been developed and. implemented 
[Bask75],[Chan80]. Although these methods are remarkably general and useful in system 
modeling, there are many interesting models that do not meet their assumptions and thus 
have no known traceable numerical solution. In order to reiease some of the canstrains of 
these methods, approzimation schemes for solving performance models have been developed 
[SaueSO]. The main shortcoming of this approach is its inability to bound the error in the 
results. 

Because of the limited scope of numerical solution schemes, simulation, in spite of 
its drawbacks, is widely used for predicting system perfarmance. Simulation is a technique 

v 



which can predict the characteristics of a model by following the state changes it undergoes 
over a period of time. When simulated, the evolution of the model under stimuli that model 
its inputs is observed, and the desired behavioural measures are derived. In most cases 
simulation is a repetitive process and is, thus, executed, most likely, by a computer. The 
computer simulates the model according to a behavionral description, a s h d o t o r ,  written in 
a programming language. Languages that address themselves to such descriptions are called 
simulation languages. 

Simulation is computationally expensive and requires a considerable amount of 
programming effort. In order to assist the programmer in writing simulation programs, a 
number of simulation languages have been designed. The various languages differ in their 
programming approach and simulation strategy. In this chapter the Distributed System 
S'rmulafion (DISS) approach for modeling and simulating distributed systems is defined. 
DES views both the model and the simulation program as modular structures which consist 
of eelf-contained building blocks. The language is a macro extention of the SIMSCRIPT II.5 
simulation language and implements a process interaction simulation strategy. 

6.1.1 Motivation 

The continuous growth in the size and complexity of Distributed Processing Systems (DPS) 
increases the need for efficient methods for predicting their performance. The complexity 
of these systems and the variee of services they provide prohibit the usage of intuition as 
a design tool. In most cases analytical solution schemes can not be used for solving the 
performance models of this type of system, mainly because of the strong interdependency 
between the compdnents of the system Wong781. Due to this interdependency, the models 
do not satisfy the local balance property and thus have no product-form solution [Chan77]. 
Interdependency between system elements is a cohesive attribute of DPS because of the 
cooperative nature of its elements [Ensl81]. Therefore performance prediction of a DPS almost 
always entails a simulation study of the system. 

t 

Distributed processing systems consist of loosely coupled autonomous elements which 
endow this type of system with the qualities of modularity and ezienaibility [Ensl81]. Since 
the replacement of a component or the integration of a new one is a simple operation in 
a DPS an analysis of the impact of topological changes on the systems' performance will 
undoubtedly be included in a performance study of such a system. Therefore it is desired 
that the simulation program used in such a study will also be modular and extensible. The 
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efficiency of the study will depend on the degree to which-interd logical d structud 
changes in one module impose modifleation on others. In a simulation programiwhereone 
module has direct access to a variable of another module (tightly coupled modules) or a single 
module may imperativly schedule an event for another one (non-autonomous modules) a 

local change in one element may effect other modules. Changes of' this m e  may require a 
major modification of the entire program unless it is composed of loosely coupled antonomous 
modules. 

The importance of modularity and extensibility of simulation programsfor the study 
of performance issues of DPS and the lack of a simulation language that provides means for 
building such programs motivated the development of the DISS methodology for modeling 
Dihbuted-Processing-Systems and the &sign and imqlementation of the .DBS language. 
DISS provides the modeler and the programmer with a comprehensive approach to modeling 
and simulating this type of system. Alkhough the development of the methodology and the 
language was guided by the characteristics of DPS, the world view of DlSS is also applicable 
to simulation studies of other types of systems. 

1 

6.1.2 The World View of DISS 

DISS is based on a comprehenaive view of the two components of a simnlation, d d y  - the 
model and the simulator. Each of these components is considered as a network of loosely 
coupled and. autonomous modules that interact via a well-defined interface. Two modules of 
a model or simulator are loosely coupled when they can exchange information but there is no 
direct access from one module to the variables of the other. The information. is exchangedvia 
a 'mail box' that can be accessed by the two coupled modules but which does not constitate 
an integral part of either one of them. Receiving information and sending out information is 
an input/output operation for such modules and is executed via port8.  

In a discrete event environment an element is ~utonomous if no other element can 
imperatively schedule an event for it. Autonomy does not mean isolation: an..autonomaus 
module interacts with the other modules by receiving events scheduled by them. Yet such a 
module exercises control over the events it is willing to accept at a given instance by means of 
an interrogative mechanism. The loose coupling and autonomy of the modules guaranty that 
a change in the structure or logic of one module does not impose changes on other modules 
and thus, endow the model or simulation program with modularity. 



Each module of the network is a Discrete Event System (DEVS) described as a 
model or presented as a component of a simulation program. Discrete Event Systems were 
first formally defined by Zeigler [Zeig76]. This definition has been extended so that a DEVS 
can be specified as an autonomous module and can be loosely coupled with other DEVSs (see 
A.2 for a formal dehition of a DEVS specification). According to the world view of DISS 
input and output ports, masks (for external events) and input variables are cohesive attributes 
of a DEVS and thus should be part of its specification. Since a DEVS exchanges information 
with others through ports, each external event or input variable is associated with an input 
port, and an output variable with an output port. 

it 
I/ 
I 

i 
j 

I 
I 

By interconnecting an output port of one DEVS with an input port of another, 
individual systems can be integrated into a network. Such a connection is created via a 
mapping process from the output variables of the source port, onto the input variables and 
external events of the target. The topology and interconnection scheme of a DEVS network 
can be represented by a directed multigtuptc where the nodes are DEVS and the arcs are the 
output port to input port connections. 

When a model, -described by a network of DEVS specification, is mapped to a 
DISS program its structure is preserved. A DEVS is realized by a DISS process and the 
interconnection by a DISS arc. It is not only the graph presentation of the model that is 
preserved by the DISS program but also the autonomy of its modules and the looseness 

of the interconnections. Consequently the program is endowed with the modularity and 
extensibility of the modeled system. 

The DISS methodology imposes a structural similarity between the system, the 
model and the simulation program, which assists the designer, the modeler and the program- 
mer in communicating with each other. Effective communication is an important aspect of 
a simulation study. The ability to relate changes in the specification of the system to the 
model and the extent to which the modeler can become acquaintance with the realization of 
his model, are major factors in determining the efficiency and quality of a simulation study. 
The DISS methodology and simulation language assist programmers and modelers to learn 
about each others work. Ln addition, it efficiently supports sharing models and simulation 
programs. Because a DISS process is self-contained, libraries consisting of various DISS 
realizations of DEVS models can be gradually constructed. Members of such libraries can 
then be selected for incorporation in simulators of different systems. 
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eBef.3 Simulation Languages 

I 

A considerable amount of programming effort is required for constructing a s i m h t o r  €or a 
system. In order to simplify the routine tasks associated with such a process< and in order 
to assist the programmer in writing and debugging the simulator, a number of:simulation 
languages have been designed. The design of these languages was motivated not ody bythe 
need for programming convenience but also by the desire to articulate the modeling concepts 
Pivi671. Therefore the design of a simulation language is based on both a programming 
approach and a modeling philosophy. The modeliig phase of the simulation study is mainly 
effected by the simulation strategy of the language. Various strategies of this kind - event 
schedding, activity scanning and process interaction [Zeig76] - are implemented by the 
different languages. Each of these approaches to discrete event simulation imposes a different 
structure on the model and on the simulator. Most of the simulation languages are eupeneta 
of general purpose language, like FORTRAN, PL/l and ALGOL, and therefore c o d e  
the flexibility and richness of the base language with the special-purpose features needed to 
simulate discrete event systems. 

The first steps in the design of specialized computer simulation langnages were 
made during the latte? part of the 1950-s. The fmt discrete simulation languages - GASP 
fPrit691, SIMSCRIPT [Dims64], GPSS [Gree72] and others (see [TeicSS]) were introduced in 
the early 1960-s. Most of these languages where event oriented and had no facilities for 
nested declarations of variables or program structures. A behaviaral description of a discrete 
event system given in an event oriented language is composed of a set of subroutines, each 
of which describes the activity of an event. Individual events may be related one to another, 
like all the internal events of a DEVS. However none of the above languages provides means 
by which a structural binding between events can be established. Therefore in all these event 
oriented languages modules of related events can not be constructed. 

The progress in programming methodology which was brought about by the intro- 
duction of ALGOLGO, together with the continuous increase in the usage of simulation as a 
means for solving performance models, motivated the design of process oriented languages 
[Fran78]. Several languages based on this simulation strategy - SIMULA [DahI68], ASPOL 
[MacD73], SIMSCRIPT k 5 l  [Russ83]- were introduced during the later 1960-s and the early 
1970-s. Both SIMULA and ASPOL are block structure languages and provide facilities for 

'SIMSCRIPT II.5 processes were added to the language in 1975. 
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nested-scope definitions. 

A process is a dynamic entity that con&& of a s& of &ted actMtiess, Eachad;ioity 
is associated with an event and defines the change of states the system .nndergues became of 
that event. Upon the completion of the execution of such an activity the process is  suspended- 
until a future resumption. This resumption represents the occnrrence of an event, whether 
internal or external. Once resumed the process proceeds its execution from the point at which 
it has been suspended. 

The entire process represents a seqaence of events and thus can be considered as a 
realization of a DEVS. However, due to  the limitation of the above process-oriented laugagw, 
there are many DEVS specifications that can not be re&sed by a aingle process. In all 
these languages different statements have to be used when the process is suspended until 
an internal event occurs or when it is suspended untill the occurrence of an extend event. 
Therefote a process can not be suspended until either an external or i n t d  event will occur. 
Nevertheless the bold I w d 2  or work and suapena mechanislns of these langnages d0.no.t 
support a process suspension until the first out of a number of internal events' wi€l occur. 

Therefore only DEVS that do not posess simultaneous internal delays a n  be realized by one 
process in the abope process-oriented langaugea. 

ASPOL is the only simulation language that provides means by WE& a process 
can autonomously control the set of externd events that it is willing to accept - ithe rad(iz] 

statement. But the language does not provide a mechanism to be used following a zuaitte] 

statment for locating the event which caused the resumption. In all other languages a process 
has no control whatsoever on the external event that may reaume it. 

SIMSCRIPT II.5 is a general purpose language with a rich varity of data~struckrres 
and features that support discrete event simulation. The language has served the author in 
many simulation studies and is widely available and commonly used. These properties of the- 
language together with the acquaintes with its internal structures4 turned SIMSCRIPT II.5 
into a natural candidate for constituting a base language for the simulation language that: 
will support and complement the DISS modeling methodology. 

21n SIMULA and ASPOL 

4AU the internal structures of the timing mechanism of the language are accessable 
3 1 ~  SIMSCRIPT n.5 
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56.2 Modeling with DISS 

Modeling is the second step which a simulation study involves, and is the least well understood 
step of such a study. A system can be modeled only after its salient components and 
interactions have been isolated by means of an analysis of the system and of the ezperimenfal 
frome of the the study. Modeling can be defined as 

the process of developing an internal representation and set of transformation 
rules which con be ured t o  predid the behaviour and reiaiionahips betureen the 
set of entitiea cornporing the system Fan771. 

The internal presentation, formulated by means of state wa~ables and the transformational 
rules, is an abstract description of the behaviour of the system. The DISS modeling 
methodology views the abstraction of the behaviour of a DPS as a two stage procedure. 
First, the system is mapped to a directed multigraph where each node is a DEVS. Then 
each node is modeled individudy. The former stage of the modeling process is mainly 
a structurot abstraction of the system, whereas at the latter the behaviour of the system 
elements is modeled. Every node of the graph presentation of the system stands for one5 
or more of the system elements, and is a well defined autonomous area of activity. Every 
system element, including communication channels is related to a DEVS whose input/output 
variables and ports are defbed at this stage. The selection of the mapping scheme depends 
on both the structure of the system and the requirements of the experimental frame vel83b]. 

8.2.1 Nodal Interconnection 

The interconnection scheme of the multigraph represents the coupling between the modules 
of the model. A directed arc that goes from the source node to another node, the tkrget, 
represents the ability of the source to transfer information to the target. The data transferred 
describes a change in the internal state of the source that the target might be interested in. 
These changes are reflected by corresponding changes in the output variables of the source so 
that they can been ‘seen’ from the outside. A DEVS receives external information via input 
ports. Thus in order for the target node to become aware of a change that has taken place 
at the source, either an input variable of the target has to be modified or an external event 
has to be scheduled for the target. 

v 

‘J?ractions of elements can be also mapped to merent nodes but in such a case it is suggested to consider 
each part as an element of the system. 
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An arc of a DEVS network is a mapping from the output variables of an output 
port of the source, onto the input variables and external events of an input port of the target 
node. The mapping depends on the way the target node reacts to changes in the output 
variables of the source. When the target might consider such a change as an event, i.e. the 
node might be waiting for it, the output variable should be related to an external event at 
the input port. However, if the value of the output variable has an effect only on the internal 
state transition function of the target DEVS, the mapping is to an input variable. 

A mapping from an output variable to an external event establishes an infer-node 
event. Such an event is triggered by the output function of the source when the variable 
is assigned a value and appears as an external event at the input port of the target. An 
inter-node event represents an active transfer of information that is based on an attempt 
made by the source to alert the target. By relating an output variable to an input variable 
an infer-node &ate variable is established. The variable is written by the source and read by 
the state transition function of the target. Such a variable represents a passive exchange of 
data. The first opportunity at which the target will be able to use the information that was 
stored in the variable will be at the time of occurrence of the following event. 

- 

* 
6.2.2 The Node 

Once the mapping of the system onto a directed multigraph has been completed, the modeling 
process may proceed to its second stage - the nodd ebstraction. At this stage a Discrete 
Event System specification is established for each of the nodes that constitute the multigraph. 
Since the input/output structures of the nodes have been defined at the previous stage each 
node can be modeled individually. However similar nodes will most Iikely, be treated in the 
same manner and thus their DEVS specification is defined simultaneously. Throughout the 
modeling process the node is considered as the atomic building block of the model. Although 
it is the smallest component of the mode, a node is self-contained in both its logic and 
structure and therefore has an autonomous existence. 

The internal presentation of a DEVS is given by its state variables. There are two 
types of state variables - the piecewise constant and countdown clock variables [Zeig76]. The 
variables of the first type describe the current state of the system, whereas the clock times 
at which internal events are scheduled to occur, are given by the second type. These times 
are internally determined and controlled by the node. Each countdown variable is associated 
with a different event and thus the set of these variables represents the internal events of the 
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DEVS. Scheduling such an event means an assignment of a positive d u e  to a countdown 
clock. Once the variable is assigned it will decay linearlyy, as a function of time, until it 
reaches zero. Precisely when it reaches zero, the internal event associated with the miable 
occurs. 

The piecewise constant variables change only when an internal or external event 
takes place. Such an event means that the system undergoes a change in state. As a result 
of a state transition, the state, the output and the mask variables of the system may change. 
The changes in these variables due to a particular event are defined by the state transition, 
the output and the masking functions (see A.2 for a detailed description of the elements of 
a DEVS specification structure). Although each of these functions is defined formally as a 
single relation, it is actually composed of several functions, each of which defines the readion 
of the DEVS to a given event. All the functions associated with the same event form the 
activity of the event. The activity is a mapping into the range SM X K and is a 
natural way to describe the transformational rules of the node. 

-,M M 
X 0% 

Some of the DEVS specification of the various nodes obtained at this stage may 
be similar or even identical. In order to limit the number of realizations required, the 
specifications may be grouped into disjoint sets such that every set represents one type of 
DEVS. All members of the same set will be considered as different inst ancea of the same type 
of DEVS and each node will get its individual characteristics by means of input parameters. 

$6.3 Simulating With DISS 

DBS is a high level simulation language which is a macro eztention of the SIMSCRIPT 
‘II.5 simulation language. The extention is baied on the define to mean and substitute 
mechanisms of the base language. All the routines that support the DISS language have 
been written in SIMSCRIPT II.5. As a result DISS is compatible to the same systems 
as SIMSCRPT II.5.6 The desire to save the programming effort which the implementation 
of a preprocessor entails, motivated the macro extention approach. However, due to this 
approach the statements of DISS had to be structured according to the syntactical constrains 
of the base language. 

The DISS language was designed to provide a tool for building modular discrete 
event simulation programs with well-defined interfaces between their modules. The design 

‘SIMSCRPT 11.5 is available for CDC, Honeywell, IBM, NCR, PRUIIE, W A C  and VAX computers. 
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6.3.1 The Executive Manager 

The execution of a DISS program is considered as a simulation EXPERIMENT that may 
consist of several runs. An experiment is characterized by the topology of the simulated 
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was guided by the idea that the smallest self-contained element of a discrete event model is 
a DEVS, and thus the simulation program shodd be constructed as a network of moddes, 
eachof which is a realization of a DEVS. Every module should be an autonomous and self- 
contained unit that interacts with the other units by means of a well-defined mechanism. 

The DISS simulation language is process-oriented. A simulator written in DISS 
consists of a preamble, the Ezecutivc Manager of the experiment and a set of process 
descriptions. Each process is a realization of a DEVS specification type. The sirnulator is 
viewed as a directed multigraph whose nodes are instances of these processes. The language 
provides tools for the description of the behaviour of a DEVS by a self-contained autonomous 
process. The statements and data structures of the language constitute a mechanism for 
synchronizing the activities of the processes. This mechanism is based on an arc structure 
that interconnects the processes. Each arc is capable of capturing the inter-node events and 
variables defined by the output to input mapping which is represented by the arc. 

All process types are named in the preamble of the DISS program dong with 
the external events and the inter-node state variables of the simulator. The inter-node state 
variables defined for the needs of the simulator are appended to the DISS arc structure. All 
the dejinitions of global variables and data structures should be included in the preamble. In 
most cases only those structures that are passed from one node to the other will be declared 
in the preamble. All other data structures that are needed for describing the model are the 
state-variables of the individual DEVSs and are defied locally by the processes. 

The world view of DISS imposes a network structure for the simulator and defines 
the mechanism by which the nodes interact. Therefore the language can provide various 
services that are common to these types of simulators. These services reduce the amount of 
code needed for a behavioural description of the model and thus enable the the designer of 
the simulator to concentrate on the particular needs of his model. 

In the following sections the salient properties and features of the DISS language 
will be described. This chapter is not intended to serve as a user guide or manual for the 
language. All the information needed for writing and running DISS programs can be found 
in the DISS user guide pe183a] 



model, whereas the node type and the actual values of their input parameters specify a 
run. The experiment is established and controlled by the Executive Manager process of the 
:simulator. All the activities of the Executive Manager are associated with the management 
of the simulation experiment and are not related to the logic of the model. Both the topology 
and the characteristics of the nodes are given as input data to the simulator. The Executive 
Manager reads in a weightedneighbor list which represents the directed multigaph and the 
types of the various nodes. The input parameter values for each individual node are read in 
by the node itself. 

The course of a runis directedhy the Executive Manager by meam of control events. 
By scheduling such an event for a particular node the node is alerted imperatively and the 
.activity of the given event is executed. Control events may be used for simulating faulty 
.elements, for obtaining status reports at selected instances and for terminating the run. 

Fig. 6.1 presents the basic structure of the Executive Manager. The process consists 
of two main elements - the ezpeninent and the run rnunrzgtr. The main task of the first 
element is to establish all the data structures required for nodal interaction as determined 
by the topology of the experiment. Thkelement is executed only once and thus most of the 
data structures which it es$ablishes are permanent. The process instances that represent the 
nodes are activated by the run manager that is executed once for each run. Once activated, 
the processes can be controlled via control events. Such an event is also used for terminating 
the run and consequently eliminates all process instances. Before proceeding to the next run 
the manager must release all structures that were established by the run. Most of the tasks 
to be accomplished by these two elements are executed by the powerful DISS statements 
hit.the.network, init.the.nodes and rferminate.rux~ 

.8.3.2 Wait Until Event 

The realization of a Discrete Event System by a DISS process is based on the unique 
w&.until.event scheduling mechanism of the language. The mechanism enables a process 
to wait until one out of a dynamically selected set of events takes place. Once resumed, the 
process undergoes a two-phase decoding procedure at the end of which the activity area of 
the event that caused the resumption is reached and executed. The process manages the set 
of acceptable events by means of a masking system. With the exception of Control events, 
there is no way by wbich an event can cause a resumption of a process when the process 
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wocess exec.manager 

a experiment manager 

init .the.network 

while rm.v < =cuns.v, do 
' 'run manager 

*mit.theaodes 

terminate.t he.run 
~ 

loop ' ' of run.v < =runs.v 

end ' ' of process exec.manageE 
' 'experiment termination 

1 
i 

the scheduling system of DISS that an inter-node event has occured and thus an attempt 
is made to alert the target process. The number of the output port, the new value of the 
output variable and the name of the external event are the attributes by which the source 
process identifies an inter-node event and are thus part of the syntax of the set.aJert 
statement . 

3. Masking - Whenever an event occwes the scheduler of DISS consults the process masks 
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Figure 33. Structnre of Executive Manager Process 

*considers this event- unacceptable. The mPait.until.event approach defines an interrogatirte 
:scheduling mechanism that supports the autonomy of the process. 

This scheduling mechanism is composed of the following three elements: 
1. Msnagement: of i n t d  e v d s  - Each countdown clock of the DEVS specification 

is related to an internal event in the process realization of the system. These events 
are dehed, scheduled and manipulated internally by the process. DISS provides a wide 
variety of statements for managinginternal events. Statements for scheduling, cancelling, 
updating, suspending and resuming. such events are part of the language and assist the 
implementation of complex scheduling algorithms. 

2. Inter node alerfs - The mapping from an output variable to an input variable or 
external event is executed implicitly at the source process of the arc. When an output 
variable is mapped to an external event at the target process, the setalert statement is 
used for assigning a new value to the variable. The statement , when executed, informs 



in order to determine whether t.he process is waiting for this particular event. If the mask 
is set, the event will be placed in a pending state until its mask is reset. The mask, 
unmask and maskpriority statements provide a flexible tool for managing the masks 
of a node. A mask is dehed  per event and per input port, and can be controlled according 
to the priority levels of the ports. 

The internal structure of the process is stronglly affected by the properties of the 
wait.until,event scheduling mechanism. The cyclic execution of the wait statement and the 
two phase decoding procedure of events imposes a well-defined structure OR the process. A 
typical DISS process structure is shown in Fig. 6.2. Note that because of the structural 
isolation of the event activities, the simulator is endowed with a second level of modularity. 
An activity can be easily removed and replaced by another. This quality of the nodal structure 
assists the programmer in merging two processes into one. 

Each event, internal, external or control, has two attributes associated with it - a 
d u e  and port number. For an external event the first attribute holds the value of the output 
variable of the source node that is mapped to this event. The second attribute is the number 
of the event input port. The attributes of an internal event are assigned when the event is 
scheduled and can be used €or binding an event to a given port or entity. 

< 

8.3.3 Allocation of Nodal Data-Structures 

The degree to which a process can be self-contained depends mainly on its ability to declare 
variable and data structures locally. When a process uses global variables their definition 
becomes a part of the process although it is not included in the process. A DISS process 
can locally define a wide variety of data structures. In addition to variables and arrays,' 
a DISS process can locally defme sets, random variables, and stutistics recording probes. The 
three latter structures are defined by the establish statement. This statement, in addition 
to its declarative role, leads to the establishment of an instance, represented by a temporary 
entity, of the structure. The name of the structure, as given in the statement, serves as a 
pointer to this entity. 

Two types of sets - fifo and runked by high value - can be dehed by the esfablih 
statement. All the set operations associated with these sets are executed by using SIMSCRIPT 
II.5 statements. 

'In SlMSCRlPT II.5 only variables and arrays can be defined locally. 
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ocess server 
st.ports ' 'node initialization 

ile ever=ever,do 

,vait.until.event 
elect.event.type 

select-hLevent 

- 
I 

- 

I *name1' ' ' activitq of INTERNAL event name1 

w- 1 I a name; a ' 'activity of INTERNAL event namei 
I I 

selecLext.event 

I *name1 * * a activity of EXTERNAL event name1 

I 'namej' ' ' activity of EXTERNAL event name j 

select-comevent 

I 'namel' ' 'activity of CONTROL event name1 I 

1 'namek' ' ' activity of CONTROL event namek 
I-. I 

' ' of ever=ever >p - 
' 'node termination 

d a 'of process server 
-- 

Figure 6.2. Typical Process Structure 

By establishing a probe the process builds a tool for sampling a phenomenoaand 
for obtaining a set of statistical quantities for the sample. The probe structure together with 
the measure statement constitute a mechanism for deriving the average, standard deviation, 

mazimum, and minimum of a selected measure. The statistical computation method used for 
deriving these quantities is determined by the type assigned to the probe when established. 



Two methods are available - the tdly and, accumulatemethods puss83]. h thesecondmethod 
a sample is weighted by the duration that measured phenomena remained unchanged with 

the value that was sampled. 
Due to the statistical properties of simulation experiments, conjidence intervals are 

widely used for evaluating the quality of the results obtained from simulation runs. In order 
to facilitate this evaluation process, a batch probe has been included in DBS. The probe 
operates according to the batch mean method for statistical analysis[Gord78]. The size of 
each batch into which the sample is divided is controlled by a globaI variabie. The confidence 
interval for a selected level of a batch probe is retrieved by using the canfhxtr function. In 
order to evaluate the randomness of the batch means DISS provides a function for computing 
the auto-correlation of these meansbaw 791. - - ___ - _ _  ._ .. 

6.3.4 Tracing and Debugging 

In the design of the DISS language special athention has been devoted to the development 
of tracing and debugging utilities. Traces are a useful tool for relating the behaviour of 
the simulator to the spectification of the model. By following the sequence of state changes 
the simulator undergoes, one can decide whether the implementation follows the transition 
rules of the model. Due to the complexity and size of DPS simulators it is difEcult to folIow 
their activities over a period of time, and to see how their various elements interact. A 
considerable amount of data is required for describing the behaviow of such a simulator and 
thus the handling of trace information might be an involved process. 

The trace reporting utility of DISS is based on the snap statement andis contrulied 
by input parameters. At those program locations where a report is desired a srmpGstatement 
has to be inserted. The statement generates a report - a four letter literal and two integer 
values - that is displayed in columns on the output device (see example in Appendix C). Each 
column is associated with a node so that by following the data presented at a given column 
the activities of a selected node can be traced. The lines of the tracing report are related to 
simulation time, in increasing order. A n  attempt is made to place as many reports as possible 
on the same line. 

The four letter literal identifies a tracing report and relates it to the activity that 
caused the report. By means of input parameters a subset of reports can be selected OF 

excluded according to their literals so that only reports that belong to this subset will be 
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displayed. This facility together with a global tracing level mechanisms constitrrte. a flexible 
tracing utility. 

The debugging utility of DISS assist the programmer in isolating the cause of a run- 
time error. The utility is based on a detailed event report that desczibes the current state of 
the simulator. The report details the attributes of the octive event and aIl immediate, pending 
and schedubd events. This information complements the data provided by the standard 
trace-back report of SIMSCRIPT II.5 when a run-time error occurs. The status report can 
be invoked by the programmer at selected locations by using the reporf,eventa:2statement. 
The amount of data presented is controlled by two global DISS variables. 

, 

8DISS has a global variable named 
by input parameters. 

TRACE.L whose d u e  

6-16 



Chapter 7 

Conclusions and Directions far Further Research 

Since the early days of mankind the primary motidion for the estabIishent of~cammunities 
has been the idea that by being part of an organized group the capabilities of anbdividual 
are improved. The great progress in the area of inter-computer commMicatian led to the 
development of means by which &and-done processing sub-systems can be integrated into 
multi-computer ‘communities’. . ,  The major object of this investigation has been to define 
methods by which a processing sub-system which belongs to such a commnnity can take 
advantage of the other members of this community in order to enhance its response time 
and at the same time to assist the others in achieving the same goal. By doingso, a ‘ s d ’  
sub-system can provide the services of a ‘large’ one. 

$7.1 Conclusions 

The results obtained from the study of the LB algorithms which were-defined in this thesis 
have demonstrated the ability of the task migration process to reduce the response time of 
a DPS. In the opening analysis it was shown that in a multi-resource system which does not 
employ an LB mechanism, there is a high prGbability that a task will be waiting for service 
while at the same time a server which is capable of serving it, is idling. The different load 
balancing algorithms which were defined, establish a set of distributed decision processes 
which DPSs of various kinds may use in order to take advantage of the multiplicity of their 
resources. The performance measures obtained in the study point at the ability of the task 
migration process to reduce the systems’ response time even when the communication and the 
processing overheads associated with this process are none trivial. This ability indicates that 



task migration is a ‘practical’ approach.and thus should be p d  of ang &trib&t&proce&ng 
environment 

Reduction in the expected d t i n g  time of a task due to load balm&.g.iS;.one of the 

benefits which a number of stand-alone systems mzy achive by establishing a mnfbkomputer 
community. Although in some cases a larger commmity does not mean better performance, 
an individual subsystem can improve the quality of services it provides by joining a d t i -  
computer environment. However, in order to achieve the desired improvement, the LB 
algorithm has to be adjusted to the size as well as to the other praperties of the system. The 
taxonomy of load balancing which was presented in chapter 2 was used throughout the h d y  
for describing and characterizing the different LB algorithms that were discnssedin the t&. 
In the various case-studies which were analyzed in the course of this investigationit was shown 
that under a given set of operating conditions and for a system with given ChamCterWcs, 
different balancing algorithms might have opposing effects on. the system’s performance. 
Nevertheless, when a ‘wrong’ migration criterion is selected or a too ‘liberal’ i n f o d a n  
policy is employed, the LB process may become a cause of performance degradation. 

It was shown that for a broadcast DPS, higher resource multiplicity does-not neees- 
sarily result in better response time. Each of the LB algorithms which were deked for this 
type of systems reaches a point at which an increase in the number of servers decreasesthe 
performance of the system. Therefore when a number of processing systems is given it might 
be better, as far as the Wq is concerned, to assemble them into two or more mufti-resonrce 
systems than to integrate them into one system. It was found that when anLB &dh 
which utilizes the broadcast capabilities of the cammunication subnet is used, a f r o n k n d  
communication processor has to be attatched to each system. The processing capakity which 
this type of message requires should not be taken from the main processor. 

Since the addition of a node to a store-and-forward system me= an increase inthe 
number of communication links, an increase in the size of such a system does not cause a- 
degradation in the performance of the system. However, the manner in which the sub.8gstem.s 
which constitute such a system are interconnected, i.e. the topology of the communication 
subnet, does effect the ability of the LB process to enhance the system response.ttme. This 
interdependency between the topology and the behaviour of the LB process should be taken 
into consideration when a store-and-forward system is designed. 

The strong interdependence between the DPS characteristics and the preformance of 
the LB algorithm demonstrate the importance of performance prediction as a design tool for 



such decision processess. It was found that whenshdatiox is used a m  solutiumx&hd Zora 
DPS model the DISS methodology and simulation language assist the design, the:realizzt&m 
and the execution of the simulation study. The modularity of the simulators md the utilities 
provided by DISS have enhanced the construction process of the simulators which were 
needed for this thesis, These advantages of the DBS approach have been demonstrated by 
a number of other studies which have analyzed various aspects of the performance of DPSs 
[Levi82], [Camp83],[Kant83]. 

$7.2 Directions for Further Research 

All the studies of the load balancing problem in DPS systems have m e e d  the task migra- 
tion process as an isolated phenomenon. Now as a better understanding of the properties 
of this process has been acquired, the interaction between the 10ad balancing p~>cess? an& 
other phenomena associated with DPSs should be investigated. Methods for incorporzhg 
load balancing considerations into distributed database management systems and, &stribnixxi 
computing mechanisms, should be developed and their performme studied. The information 
which has been accumulated on the basic characteristics of load balancing algorithms s h d d  
be used as a basis for stpdies which focus on more speciiic aspects of the problem. 

Another area for research should be to try to develop aframework for a cmpar&ive 
evaluation of control processes for DPS. The dependency between the behaviour of these 
algorithms and the system parameters deters from any attempt to select the ultimately: 
‘best’ algorithm. For distributed routing, concurrency control and LB algorithms there is. no 
absolute answer to the question ‘ i s  ufgorithrn A better then B 9‘ (see ~cqqSO]~and [GalBZ]). 
Therefore a systematic scheme together with a set of well defined criteria for evaimting such 
algorithms has to be established. 

Performance prediction will be the main tool such a scheme would employ. Mare 
effort has to be devoted to the development of numerical, iterative and shulatianmeth&.for 
solving performance models of DPSs. An attempt should be made to use admced iterative 
solution schemes for solving multi-dimensional birth and death processes. The hamwork 
for modeling and simulating DPSs that has been dehed  by DISS is not yet a complete 
structure. Additional utilities should be added to the language and a better understanding of 
the process in which a system specification is transformed into a model should be acquired 



Appendix A 

TR for Look. head policy 

Assume an M/M/ft-like system with a ‘look ahead’ migration policy and let A = {PI,  Pz) 
be the set of the system processors. Due to the migration policy and the properties of an 
M/M/m-like system, AL(A, than be one or zero and the probability that the system wiII be 
in a WI state is zero. A transfer will be initiated whenever the &(A, t )  is one, and a task 
has arrived at the longer queue or departed from the shorter one. Thus the transfer rate of 

this policy is given by 

TR1 = (A + ji) P[AL(A,t) = 11 - $PI1 taak in the ~ydtem] 

Since P-; is zero, the above equation can be rewritten as 
40 

2% = (A + F) c P2is.1 - ?if3 (2) 
i-0 

where Pi is the probability of having i tasks in an M/M/2 system. Replacing Pi by PO 2pi 

Plei751 and factorizing the following can be derived 

By using the equation for the s u m  of a geometric series the h a l  equation for TI21 is obtained: 

P2 
(1 - PI 

TBi= 2jiPo--- 

§A.2 TR for ‘Trouble Shooting’ Policy 

Assume an M/M/&like system which is controlled by the ‘trouble shooting’ migration policy. 
In such a system a task is transferred from one queue to another whenever one of the following 
events occurs: 
El 
E2 

A task has arrived at a non-empty queue when there is only one task in the system. 
A server has completed the service of a task, no other tasks are waiting in its queue 
and there are two or more tasks in the system. 
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Therefore the transfer rate of the system is given by 

(1) 
TRz = XP[one tuak in the syatem] + 

ji P[one taak in one aerver and two or more in the other] 

By dehing 

and 

j> i 

Eq. (1) can be rewritten as 

TR2 = X P o  + pP1 
and the following set of equations can be derived 

Summing Eq. (5) for d l  applicable i yields 

(3) 

(4) 

i z 1  (5) 

Since CEO b; + P0,o = 1 and by factorizing the following equation for can be derived 

00 

Pl = (1 - p ) ( l -  Po - P0,o) + 2 c Pi,. (7) 
i-2 

In an MIMJtlike system in which no tasks are transferred, all task distributions with the 
same total number of tasks are equally probable. Therefore because of the properties of the 
migration policy of the system the following inequalities can be concluded 

P[2i task8 in the ayatem] i 
(2i - 1) pi,. 2 (3) 



From (8),(9),(10) and since Pw; is zero the following lower bound for p; is obtained 

00 -. 

where P; is the probability of having i tasks in an equivalent M/M/2 system. From (1) and 
(11) and by replacing Pj by 2P0 p i  the following lower bound for TR2 is derived 

On the other hand from the definition of P; and Eq. (9) it follows that 

bcI 0 0 .  

= 2 c P;,1 < 2 c $Pi + 1 
t i-2 i-2 

By the same reasoning used for deriving Eq. (12) the following upper bound for TI22 is 
derived from (5) and Eq. (13) 

§ A 3  TDFi,j for S-BTSQSS systems 

Assume two independent M/M/l systems. the service rate of each system is (1 - S f ) c  and 
task arrive at each queue at a rate of X tasks per time unit. Let ~ ( t )  and q2(t)  be their queue 
sizes at time t respectively and let j i , j(k; E ,  t )  be dehed  as 
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A 
,where jilj(sa, m,t)= 0 for ,nY m$ U. 
From the definition of the AT algorithm for a. S-BTSQSS system it can.be shorn thakfor 
such a system 

with 



with pi(& t) being the probability that an M/M/l *em with service rate ji a;nd amival.rab 

X will have k customers at time t given that there were i cnstomers at t = 0 .  Aceordiw;to 
the definition given in 3.5.1 by computing (4), (5 )  and (6) the throughput degmdxtion factor 
of a transmission h an S-BTSQSS system can be derived. 

$A,4 T D F ~ , ~  for NS-BTSQSS Systems 

The computation of the throughput degradation factor for a NS-BTSQSS is much s b p k  
than in the case of a stop system. Assume an M/M/1 system with service rate (1- 6,) and 
arrival rate X and let $i(k,  t )  be the probability that the system will have k customers at time: 
t given that there were i customers at t = 0 then it follows that NS-BTSQSS Ljd(t) is given 

by 

' 

Ij L j , j ( t )  is the same as for the S-BTSQSS system and thus from (1) (2) and Eq. (5)  ipthe 
previous section TDF;,j for a nostop system can be derived. 

fA.5 SFij for S-BTSQSS system 

A transfer of duration t will not be stopped in the middle if during-the transfer priacktke 
task distribution meet the criterion of the migration policy. The prohabiliQ that thbwill 
happen for a transfer that was initiated at t = 0 with DT(0) = ( d , j )  is: 

t 

P[tranefer of length t was not etopped in the middie I TD(0) = (i,j)] = 1 - 1 pua(;,j)(t)dt 

Since the duration of a transfer has a negative exponential distribution the following expres- 
sion for SFi,j can be obtained: 

(1) 
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Appendix B-DEWS Specification 

SB.1. DEVS specscation 

A dehition of a Diacrete event syatem specification is presented in this section. The deEnition 
extends the specification structure as has been defined by Ziegler in [Zeig76], so that maaka 
and input/output ports are included in it. The world view of DISS that considers DEVS as 
autonomous elements that can be loosely coupled one to the other, motivated this extention. 
This extended structure provides the means for describing the behaviour of autonomous 
DEVS. Due to the port structures included in the specification definitiom of DEVS network 
should not include elements from the state sets of the individual systems. The definition of 
the network then reflects the looseness of the coupling between its components. 
Definitioni A DEVS specification is a structure1 

where 
SM = {IPT/',.. ., IP?} is a structure - the input ports structure. Each of the indivdual 

input ports is a" structure: 

IPy = {XM, I?} 

with the first element of the structure being the set of external events of the input port 
a:  

XY  = c x r ,  * - - 9  xy> 

I? = car,. . . ,Pi,  1 

and the second element being the set of input variables of port i: 

M 

S M  is a set - the set of sequential states. S M  is the cross product of the range of the state 

d P M =  {OP?, . . ,, OPE) is a structure - the output port structure. Each output port is a 
variables, al,. . ., ak. 

set of output variables: 

OPy = (7f, . .  .) 7 3  

'An attempt was made in the definition to use the same notation used in [Zeig'lB]as much as possible. 
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= (ICY, * .  *,ICg] is a structure - the mask structure, The dements of the structure 
are sets of masks 

is the mask of the external event x r .  The masks serve as a means by which 
the system communicates with its surrounding. By setting a mask the system declares 
whether it consideres a given change in the state of the universe around it as an event. 
Therefore an external event may occur at time t only if its mask is set at that time. 
is a function - the quasitransition function. Let QM = ( ( 8 ,  e) I 8 E s‘, o 5 e 5 ~ ( 8 ) )  

be the state space of the system and 3 U X Y  a symbol that denotes the ‘nonevent’ 
then S M  is a mapping: __ - - - - -  __  . - 

bM : QM X (uXYU(3)) X INPUTS + SM 

where INPUTS is the cross product of the range of all input variables and f ( 8 )  is the 
duration of state 8 when no external events occur. 
is a function - the masking function. The masking function maps from Q M  X INPUTS 
onto K . 
is a function - th6 output function which maps from Q M  X ENPUTS onto OP 
is a function - the time advance function. 
nonnegative reds: 

- M  

+ M  

t is a mapping from SM into to the 

t : SM + Rzco 

The value of 3 ( 8 )  is defined to be min {a;} where (ai} is the set of countdown-clock 
state variables of the system M .  Therefore € ( a )  can be interpreted as the duration of 
state 8 when the system is isolated (no external events). 
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Figure (7.1. The Distributed Sysbxfn 

Appendix C-Example 

Assume that a simulation study of the distributed processing system presented i.n Fig C.1. 
has to be performed$ In this example the main elements of the modeling phZse of the 
study are described and the listing of a simulator (written in DISS) that realizes the madel, 
is presented. The system consists of a number of hosts that are interconnected by a 
message switching store-and-forward communication system. The sdne t  is made up‘ of 
communication processors, cp, that are connected by fulI-duplex communication lines. k h  
cp has a finite buffer space in which the messages are stored. Therefore the commnnicatim 
protocol must perform a ‘space reservation’ step before a message is transmitted. _Each has& 
receives an independent stream of tasks. Every task is assigned an execution site at sahich 
it will be served. This assignment is performed by the resource allocation algorithm of the 
distributed system. The task departs from the system via the host of entry into the system, 

@.I Model Definition 

C.l.l  Structural Abstraction 
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C.1,l.f Mapping to a Directed Graph 

The elements of the above system may be grouped into nodes in a number of ways three of 
which are listed below: 
1. Each element of the system defines a node. The model will include two types of nodes. 
2. The host and the cp are grouped into one node so that the model has ody one type of 

node. An input parameter will determine whether the node is a host, a cp or both. 
3. A host defines one type of node whereas all the communication processors of the network 

are grouped into a second node type. This second node will represent the entire network. 
Ln this case the topology of the network will be represented internally by this node. 

The selection of a mapping scheme depends strongly on the experimental frame of the study 
(see Nel83bl €or a detailed discussion). Each of the above schemes can be considered as being 
the best in keeping with the requirements of different studies. One scheme may be more 
modular whereas another may have a more efficient implementation. A detailed analysis of 
the above schemes is beyond the scope of this example. For the purpose of this example it 
will be assumed that the first scheme has been selected. 

C.1.1.2 Arc definition t 

The inter-node state variables of the model are the following: 
INVl - bufferofill indicates the state of the message buffer of a cp. 
I W 2  - wait will be set whenever the node wants to transfer a message along the arc and the 

buffer of the target node is full. 
The inter-node events of the model are the following: 
INEl - start.trans form a host or a cp to a: cp. Indicates that the source node has started 

INE2 - endotrans between every pair of interconnected nodes. The Occurrence of this event 

INE3 - bufFer.avai1 this event takes place when a cp whose buffer state has changed from 
full to available, assigns a buffer to a node which is in a wait state. Such an event 
may be caused only by a cp but should be accepted by both types. 

Note that due to this approach to the inter-nodal information exchange the cp is given full 
autonomy in allocating available buffer space. The algorithm used by the cp is transparent 
to the node that sends the message. In this example it  is assumed that each cp supports 
a dedicated buffer space for each input port. By means of the buffer.full variable and 

to send data into a buffer at the target. 

indicates that the last data unit of the message has arrived at the buffer. 
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the bufferavail event it can select which waiting node will be ghen a buf€er .space that 
has become available. In addition to the dedicated buffers, a number of spare buffers are 
provided, and determined as an input parameter. Before each node can be implemented as 
a process the Ipternal Events of each node have to be dehed. 

C.1.2 Behavioural Abstraction 

Only the internal events of the host will be listed here. All the other details of the behavbmal 
.description of the two DEVS can be derived from the listing of the simulator which is 
,appended to the example. All the reserved names of DISS appear in the listings in capital 
laters. 

C.1.2.1 The host 

The host node includes the following Idie-rd Events: 
HIV1- endomessage This event represents the delay associated with the transfer of a mes- 

HIV2 - endotask The end of the execution period of a task is represented by this event. 
HIV3 - faskarrivsl The arrival procedure of the tasks is modeled by this event. The arrival 

sage. 

of one taskcauses the scheduling of the next arrival. 

$3.2 The Simrllator 

C.2.I The Preamble 
309 a 'preambleb f o r  paiEt-to-polnk-afmalator 
310 
311 

316 
317 DECLBBE terminaation C c E v E a T ( i )  

319 proceeeee include boat, commnnicaWn. procseeor 
320 as====== 

321 
322 temporary entitle6 

318 

323 ~a-----.-------- 
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324 
325 every ARC hoe 8 bu f fe r .h l l ,  a w d t  
328 
327 defixte bellim-frzll , tift 99 -6gW W - U U  
3218 
829 
330 
331 and.= exec,tfme 
333 
333 
334 ae integer variablee 
336 
338 
337 def ine  n. hosts 98 integer vazialalee 
338 end I '  of point---point aimnlxbor prellnble 

e v e r p t a s k  may bslang to  LDISS-SE'P and b e  z i d ,  
a destination, a lengtk. a arSriYtLtdme, an entransm~ite,  o bw-n 

define destirmtion , id, t a sk  ,counter, eatrznce. site bpi  .no 

define arrivaLtima, 1-h. erec.tims aa doahle variablee 

- __ __ .__ - .. 

C.24 The Host 
f procsee host a *22:50:41 83/07/29 
2 
3 
4 
6 
8 
7 
0 
9 
10 
11 
12 
13 
14 
16 
18 
17 

19 
20 
21 
22 
23 
24 
25 
28 
27 
28 
29 
30 
3f 
32 
33 
34 
36 
36 

ia 

D E C U E  end.maemge I. E?ZEXT (1) 
DECLARE end.execll.f;ian I.gOEHT(2) 
DECLbBE. arrival I. EVEET (3) 

ESTABLISH taskq TO.BE FIIFO.SET 
ESTABLISH oatq TO.BE WFO.SET 
ESTABLISH sye.tfms TO.BE T.PBOBE 

define i, krr-seed, exec..aired. tzmU.eeed, tr8k.countmr as W g e r  va 
let  arr.seed H0DE.V 
le t  exec.eeed = B.HODE+HODE.V 
l e t  trule.eeed = 2*19.WDEH?QDE.V 
define i n t  . &I&, low. exec. high-exec, lor. tr;ine, high- tram 

aa dauble xadablee 

read i n t  . arr ival  
read lon.exec, high.exec, 10X.traD8, high.traae 
write BODE. V, m. arrival Jm. exec,hQh .exec, lor. trans. Ugh. trap3 a8 

s t a r t  new c u d  
s t u t  new card 

i 3'6 d(8,1), /. / 

EST. PORTS 

define port.atila8 1-dim fnteger -7 
reserve: port. utu(*) aa OUT-DEGREE(HODE.V) 
fo r  i = 1 to RUT.DEGIiEE(H0DE.V) by 2, do 

ESTABLISH port.util(i) TLBE. LPROBE 
loop 
SET.TUtW exponentiaLf ( in t .ur lval .mr .eeed)  F0R.E arrkval  

while ever = ever , do 
WAIT. UETTIL . EYEHT 
SELECT.EVEETT.TYPE 

SELECT. EXT.EpEH1 
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36 
37 I .**> '  

38 
39 )I==>** 

40 
41 
42 
43 
44 
46 
46 
47 
48 
49 
60 
61 
62 

64 
66 
66 
67 
68 
69 
60 
61 

63 
64 
66 
66 
67 
68 
69 
70 3 1 * * > * 9  

71 
72 
73 
74 
75 8 '=I=> 

76 
77 
78 
79 
80 
81 
82 
83 
84 
86 
86 
87 
88 

63 '**>I 

62 

' end. trans * "a m?sszge has arrived 
if TRACE.L>2 SXAP 'eota',O,ld(VALUELg) aln;a 
if entrance.site(VALUE.E)= X0DE.V *'a local t a k  hafmtzr&vat€ 

HEASVRE time.v-arrival.time(V&UE.E) YITH.PRUBE e~8,%AaBe 
destroy the task called VUUFLE 

file the VUBE.E in SET(tas%q) 
if e,SET(taskq) = I 

always 'of n. SET(taskq) 

else "an external task has arrived 

"s t i r t  ts execute tha ner 
SET.TIHER exec.time(VALUE.E) IP0R.E ead.erscatiOn 

always ' 'of entrance. site OlbLUE. El 
cycle "of ever = ever 

'buffer.avai1' ''a rantad cp hu, an svxfilabla buffer. 

subtract 1 from P0RT.E 
let wait(OUT.ARC(P0RT.E)) = 0 "rei3et inter n o d a w  - 
f f TRACE. L>2 SNAP 'bf a V  , derxtination (f . SET (out4 , PIlBJl . E 0 

80 to beg.tran8 

" d t c h  to tmnsdS&It port 

' 'intiate 0 message tranaa&miOn 

SELECT.18T.EPEBT 

'end.message' "end of trmsmiseion deby 
remove first task from SET(outq) 
UEASURE 0 IITE.PROBE port.util.(PURT.E) 
SETALERT P0RT.E FOR-E end.trane, task *'an t&er zmdsi:evan 

if n.SET(oatq) > 0 go ta beg.tZans rlrpye 
cycle "of ever = ever 

I) if TRBCE.L>2 SXAP 'eott',demtination(taEk) ,idCWk) dXap 

'8nd.execution' "end of taak execution 

remove the firet taak from.SET(toelal) 
if TRACE.L>2 SXAP 'eote'.Q,id(taak) alnope 
if n.SET(taskq) J=Q 

always "of n.SET(taskq) 
if entrance.site(task) = H0DE.V "RTB it a local t28k 

"more tasks to pracase 
SET.TIYER exec.tlme(f .SET(taskq)) F O B 3  enQaascotion 

=SURE time.v-;rrrival.time(taak) VITH.PROBE sp.tlme 
destroy the task 

let destination (task) = entrance. atte(t;rsk) 
file task in SET(outq) 
if n.SET(outq) = 1 go W beg.trm anaye 

else "retarn task to -.host 

always ' of entrance. site(task) 
cycle 

' arrival 

' 'of ever = ever 

SET. TIHER exponential. f (int . arrival.. arr . need) FOR.E 8zzbral 
create a "new" task 
let arrival. time (task) = time. v 
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89 
90 
91 
92 
93 
94 *s* * > r 9  

96 
96 
97 
98 
99 
100 
10 I 
ioa 

I04  
106 
10s 
107 
108 
108 
I10 
Ill 
112 ' '=>' 
113 
114 
116 
116 
117 
118 
I19 
120 
121 
122 
123 
124 
126 

ioa 

add I to taek.coaater 
let id(taek) = XODE.B*Ig0000 * txsk,cmntas 
let exec.tfme(task) = W0rm.f (l#.exec,kLgh-41x86.~BW 
let entrance. skte (tpaek) = H0DE.V 
let destination (taek)=radi.f (I, n. ho6te.arr. eeed) 
if TRACE.LX2 SXAP .tam* ,deatinaWn(taEk) .idCturk) a l . .  
if destfeat,ioe(taek) = H0DE.V 9'exe~~te the t;reB Inc9;llp 

file taek i n  SET (taekq) 
if n. SET(taskq) = I 

alwaye - ' 'of  n. SET (taakq) 

let length(taek) = nnif0rm.f (lov.trula,Mgh.tram?&tmuwLrp 

if n.SET(outq) = I go to beg.%rane alTay6 

'is iti the only tzsk 
SET. PIHER a a e .  time (%ask) Fm. E end .etxncntion. 

eles ''execute tank at a remote host 

file taek in SET(0otq) 

alnaye ' 'of  deetlnation(ta8k) 
cycle ' 'of ever = ever 

'beg.trane' "try to intiate a -age tram&sa%ntoe 

let PORT. E = SEL . PORT (destination (f . SET (outs> ) 
if bnffeP.full(IH.IIAC(PORT.E)) f 0 "the targ@% b d f m  3 s  rp 

SET.TIYW length(f.SET(oatq)) F0R.E end.msreeagge, 0: p X %  
IIEBSURE I IIT€I.PROBE porb.util(P0RT.E) 
SET.ALERT P0RT.E F0R.E etart.trane 

let rait(OUT.ARC(P0RT.E)) = I "e6t inter node 

"izcker nod= a n t  
elee ' ' buff er ie not available 

alrnye 
cycle 'Beyep = ever 

' 'of buffer. full (IX.ARC(PURT. El) 

SELECT. COH. EVENT 

'termination' ' 'print ata%tltics an& terminate 
write IOODE,V, AVG.P(eye.time) as 
for i = I to OUT.DEGRE(H0DE.V) by 2 

i 4.d (10,3) 

write Imnr.P(port.util(i))/a,AVO.P(port.Irl;ilW) a? i &a@ 
leave 

126 

128 for  each taek in SET(oatq) , do 
129 remove the task from SET(ontq) "and" 
130 for  each taek i n  SET(ta8kq) , do 
131 remove the taek from SET(taakq) "and' a 

127 loop 

132 
133 DISPOSE.BOFE 
134 end "of procese host 

C.2.3 The CP 
I procesca communication.procaeeor 
2 DECLARE end.meeaage I.EVEHT(1) 
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4 
6 
8 
7 
8 
9 
10 
I1 
12 
13 
14 
I S  
i6 
17 
18 
19 
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 
36 
36 
37 

39 
40 
4L 
42 
43 
44 
46 
48 
47 
48 
48 
60 
61 
62 
63 
64 
66 
66 
67 

38 

d e f i n e  ever as a~! in%eger variable 
defina i, oatb. des.port. rond.buf2. epb.ctr, st.=-, O x a i l a b U  

dafSna baf .vec, oat.port, port.util a6 I-& fntegar mp 
ae integer variahlee 

EST .PORTS 

read outb &art new :card 
mite BODE.V, oatb 98 i 3.b 37,3 2./,/ 
reserve out.part (*) , port,util(*) ae OUT.gCBE(BODE.V) 
reserve buf .vet(+) ae in.degrea(BODE.V) outb 
for i = I to OUT.DEGREE(~E.V) by 2, do 

ESTABLISH ant.port(i) Ta.BE P'IFILSET 
ESTABLISH port,util(i) 1II1.BE. A.PIUlBE 

loop 
l e t  rd.buff = 2 
while ever = ever, do 

WAIT. UNTIL. EVEHT 
SELECT. EVEBT . TYPE 

SELECT. EXT .EvEFs 
'stiart.tzane' "a nsfghbor ha8.intla~ed o t m f e r  

let huffer .fall(OUl.ABC(PORT..E)) = 1 ' 'set in- n& v;rrizh 

cycle 

',end. trans ' "o.messap h?e arrived 
if TBBcE.L>2 SHAF %otii8, O.id(VALUE.E) almp 
if epb-ctr < out& "there I s  a free e - buffer 

* ' * *> 'a  if TRBcE.L>2 SAP' 'eota8. PORL.E. 0 always 
' 'of ever = ever 

' a * *> '  

let. b.uf .no(VALUE.E) = 0 
add I to spb,ctr 
let. buff er . f ull(0UT. ARC (PORT. E) 
ii wait(IH.BBC(P0BT.E)) = I 
alwaye ' 'of buffer. Lul l  

else "no e-buffer is arblble 
18% bRf.no(V,ALUE.E) = PORT.E+I 
let bai.vec(PORT.E+i) = XALUE.E 

"move the meesrge to a 8-buffer 
= 0 
"the Bource hae amit- 

'*inter node e 8ET.ALERT PORT.Ep1 F0R.E buffer.aVai1 

always 
let PORT. E = SEL.PORT (deetlnation (VALUE.E) 1 
f i l e  VALUE. E in SET (out. port (PORT. E) ) 
if n.SET(out.po~(POB.E)) = i go to beg.tr;ma 
cycle 

' 'of sbp . ctr  

alwzye 

'haff8r.avaj.l' "Lnpat buffer via output PORT3 is avail. 

subtract I from P0RT.E 

let wait (OUT .ARC (PORT. E) 1 = 0 
go to beg. trans 

a**> ' * if TRACE,L >2 SHAP 'bafoa, PORT.E,O a m p  

SELECT. INT. EYEHT 
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69 
80 ')**>'D 

61 r'==>ar 

62 
63 
64 
66 
66 
67 
88 
69 
70 
71 
72 
73 
74 
76 
78 
77 
78 
79 
80 
81 
82 
83 
84 
86 
86 
87 
88 
89 
90 "**>'* 
91 ''==>'' 
92 
93 
94 
96 
98 
97 
98 
99 

100 
101 
102 
103 
104 
10s 
108 
107 

109 
I10 

aoa 

ir TRBCE.L 
Y E A m E  0 WITH. PROBE gofi. u%.il.@[lLRT a El 
renave the V&€YE.E frm SEE$out.par%(PORT.~) 
SET.ALWT P0IT.E F0B.E end..lmm@, BALJJE-E 
let available = 0 
if buf.no@ALUE.E) = 0 '"i% is loGlt(pd. ie a rappa lmff%ir 

2 SX& *entt*, o,~d@&m.E] z i k -  

eubtract i from spb.ctr 
for  i = 0 t e  ie.degree(HOI)E.V)-2 by 2 *%la 
buf .vec(mod.f (rund.bPff+i,ip.degree(~E.B))+2) .L-- 0 
f i n d  the first casa i f  found 
let rund buff =mod. f (rund . bxtff+.f, fo.xiegree(NOaE-V?) +2 
add 1 t o  6pb.Ctr 
let buf no (buf . vec ( m d .  buff) 
let buf.sec(rand.bafr) = 0 
let buf f er . full (OUT. dRC (rand bUff-3) 
l e t  available = rrrnd.baif 

= Q 

= 0 

aluaye 
else "in the insport buffera 

let buffer . f all (OUT .ARC (bar . no CpdLaE. a-1) )=o 
let buf a vec (buf . a0 (VALUE. E)) = 0 
let available = ba3. no (VALUE E) 

alwaye 
if available &=Q and wait(IH.dRC(avlflable-1)) =: 1, 

alwaye 
if SET(oat.port(PORT.E)> l a  emptr cycle 1sTape 

SETALERT available F0R.E buffer.avail 

'beg.trme' 
if buffer. f 011 (Ill .AX (PORT. E) 1 =O 

let act. memeage = f . SET (out. poxt (PURT . E) 1 
if TRACE. L>2 SNAP 'bgtr., 0, id (act .meesage) 
HPASURE 1 VITH. GOBE port. util(PORT. E) 
SET. TIHER lengtih (act .mesaage) FOR. E 

end.meeaage, act .mteeaage, P0RT.E 
if ronting.matrix((H0DE.V. deetinatkon(;rtt,meseage)) 

&=YE 

.L= deetination(act .message) 
SETALERT P0RT.E P0R.E etazt.trane 

alvaye 

let wait (OUT. ARC (PORT. E l )  = I 
else 

aluaye 
cycle 

SELECT.CO(H.EIWIT 

'termination' 
mite B0DE.V ae i 3,s 11 
for I = I to OUT.DEGREE(B0DE.V) by 2 

write arp /,/ 
leave 

write Bm[.P (port. a t i l  (i) 3 /2,AVG.P(port.,atil(i)> as L 6, 
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C.2.4 The Executive Manager 
I procees to pxEC.yBHBGW 

defina-i , j , node as integw v&sblee 2 
3 
4 
6 
8 
7 
8 
9 

10 
11 
12 
13 
14 
I S  
18 
17 
18 
I 9  
20 
21 
22 
23 
24 
26 
26 
27 
28 
29 
30 
31 
32 
33 
34 

IHIT. TEELHEnm 

start maw card 

write a8 'node puameterrr*, / 
write .as 'n0ds.l.a. t L x c t  h 3 . t  1. t .t h . t  ..t epr i n m  output*,/. 

for i = I to 15 &te a8 ** 

no. sec. sec. sec. bee. rcec. buf portEl ports',/ 

IEIT -ODES 

work SILTUlE unite 

for  nnde = I to IP.HODE 

write ae *resd.%s', / 
write ae *node avg t 

SET. COBTROL node FUR .E temcbtstion 

3r i = I to 8 write ae .=a mite as /,/ 
port no. I port no. 3 portno.  6.. 

* p o ~  no. 7 port no. g a r / .  
na. exec t-.. msge util. m e p  atfl;. megs at i l . ' ,  

' mgs u t i l .  msge lltil.',/ 
for i = i t o  80 write as '=a 

TWYIUTE.RUH 

write ;ae /,/ 

end ' ' of proceaa EXEC.WGER 
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po8nt-eo-point natmrk lor exunpla 
neighbor l ist  (to (fronr , night ,  toluaf)) 
----------~-------u-------- 
--_----_-----------I_ 

f i 9 ,  2, 1.0) 
2 ( 9, 2, 1.0) 
a ( 10, 2, 1.6) 
4 ( 90. 2. 1.0) 
6 ( 11, 2. 1.0) 
6 ( 11, 2, 1.01 
1 ( 12, 2, 1.0) 
8 ( 12, 2, 1.0) 
9 ( 1, 2, 1.0) ( 2, 2, 1.0) ( 10, 2, 1.0) c 11, 2, 2.0) c l2, 2. 
10 ( 3, 2, 1.0) ( 4, 2. 1.0) ( 9, 2. 1.0) ( 11, 2, 1.0) c 12, 2, 

12 ( 7, 2, 1.0) ( 8, 2, 1.0) ( 9, 2. 1.0) ( 10, a. 1.0) ( 11, 2, 
11 ( 6, 2, 1.0) ( 6, 2, 1,O) ( 9, 2. 1.0) ( 10, 2. 1.0) ( a, 2, 

1 26.0 1.0 20.0 .l 2.0 
2 26.0 1.0 20.0 .I 2.0 
3 26.0 1.0 20.0 .l 2.0 
4 26.0 1.0 20.0 .l 2.0 
6 26.0 1.0 20.0 .l 2.0 
6 26.0 1.0 20.0 .l 2.0 
7 26.0 1.0 20.0 .1 2.0 
8 26.0 1.0 20.0 .1 2.0 
Q 

C.2,6 Example of Tracing Report 
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600.4048 
600.6496 aote( 0, 800016) 
500.8781 
SOO. 8781 
600.8781 
501.0846 
601.0846 
501.2622 
501.2622 
501.4i44 
601.4144 
601.4144 
601.4769 
601.6106 
601.6106 
601.684E 
601.7244 
602.3816 
602.4716 
602.4716 
602.8082 
602.8082 
603.0218 
603.0218 
603.1229 
608.1229 
603.1229 
603.4324 
603.8817 
503.9841 
604.4324 
604.6011 
604.8811 
604.8811 
604.9890 
606.9181 
606.9181 
606.9181 

aott( 3, SOOO18) 

.oat( ti, 300019) 

608.1992 

608.4010 tur( 2, 100022) 
508.8840 

608.2182 cot.( 0. 200021) 

508.8840 
608.9870 aot t (  2, 100022) 
608.9870 I 

507.3 
607.3 
507.3 
607.6 
608.3 
608.3 
608.7 
608.8 
610.0 
610.3 
610.3 
610.3 

9 
9 
9 
3 
7 
7 
!6 7 

17 
iE 
iE 
IE 

198 
‘98 
198 
I30 
‘89 
‘89 
‘33 eota( 0. ~ o o O I S )  
I38 
‘39 
I07 e o t t (  4, 400019) 
107 
107 

610.7470 
bfav - buffer available .......................... 6 
eota - e.o.taak.arrivaL a 
tofi - toek arrival 

.... 

rott( 0 .5uwlx )  

0, 3300011) 
0, i800011) 

0, :mooil) 

a - a.o.t.rk axecution eot t  - o .o .h .k  tr.ndar 
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