

/\ The 7th International
Computing
_.September 21—25, 1987

SPONSORED BY

THE COMPUTER SOCIETY
/» OF THE IEEE

THE INSTITUTE OF ELECTRICAL
Z AND ELECTRONICS ENGINEERS, INC

{EEE

_ Conference on
- Distributed
/I Systems

Edited by: R. Popescu-Zeletin
G. Le lann
K.H. (Kane) Kim

& E Computer Society Order Number 801

p Library of Congress Number 87~80437
IEEE Catalog Number 87CH2439-8

£
: ISBN 0-8186-0801-3
’ SAN 264-620X

THE coMPUTERSOCEETY € Eompuren
#OF THE IEEE IEEE THE INSTITUTE OF ELEGTRIGAL AND ELECTRONICS ENGINEERS, INC. PRESS

T L e s s e

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page They reflect the authors’ opinions and are published as presented and
without change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, Computer Society Press of the IEEE, or The
Institute of Electrical and Electronics Engineers, Inc ‘

Published by Computer Society Press of the IEEE
1730 Massachusetts Avenue, N W
Washington, D C. 20036-1903

Cover designed by Jack ! Ballestero

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of US copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Conigress Street, Salem,
MA 01970. Instructors:are permitted to photocopy isolated articles for noncommercial classroom
use without fee For other copying, reprint or republication permission, write to Director, Publishing
Services, IEEE, 345 E 47th St, New York, NY 10017. All rights ”r"_e’served Copyright 1987 by The
Institute of Electrical and Electronics Engineers, inc TGy .

Computer Society Order Number 801
Library of Congress Number 87-80437 -
IEEE Catalog Number 87CH2439-8 .
ISBN 0-8186-0801-3 (paper)
ISBN 0-8186-4801-5 (microfiche)

- ISBN 0-8186-8801-7 (case)
SAN 264-620X

Order from: Computer Society of the IEEE Computer Society of the |IEEE
Terminal Annex 13, Avenue de 'Aquilon
P.O. Box 4699 B-1200 Brussels
Los Angeles, CA 90051 BELGIUM

IEEE Service Center

445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

0 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
IEEE

The 7th International
Conference on |
Distributed Computing Systems

®
¢

Sponsored by:
The Computer Society of the IEEE

The Institute of Electrical and Electronics Engineers, Inc.

it

ki

In Cooperation with:

Hahn-Meitner-Institut Berlin GmbH

Gesellschaft fur Informatik e.V.

Supported by:

‘. ,Senat von Berlin

Sparkasse der Stadt Berlin West
Siemens AG

IBM Deutschland GmbH

Nixdorf Computer AG

Digital Equipment GmbH
Deutsche Bank Berlin AG
Standard Elektrik Lorenz AG

il

-~

Scheduling Remote Processing Capacity In A Workstation-Processor Bank Network

Matt W. Mutka and Miron Livny

Department of Computer Sciences
University of Wisconsin
Madison, WI 53706

ABSTRACT

This paper addresses the problem of long term scheduling of a
group of workstations and a processor bank. Long term scheduling
manages the allocation of remote processing cycles for jobs that exe-
cute for long periods and require little interaction or communication.
It extends the computing capacity a user sees beyond the capacity of
his/her workstation. We assurne that each workstation is under the
full control of its user, whereas, the processors that constitute the
processor bank are public resources. Therefore, a workstation can be
allocated for remote processing only if its user does not perform any
local activity. In the paper we present a new long term scheduling
algorithm, the Up-Down Algorithm, and a set of performance criteria
for evaluating these types of scheduling algorithms. Using these cri-
teria and traces of usage patterns of 13 workstations we evaluate the
algorithm and demonstrate its efficiency and fairness. We analyze
the performance of the Round-Robin and the Random algorithms
using the same criteria and workload, and show that the new algo-
tithm out performs the other two. While all the three algorithm pro-
vide the same throughput, the Up-Down algorithm protects the rights
of light users when a few heavy users try to monopolize all free
resources. The two other algorithm do not maintain a steady quality
of service for light users in the face of an increasing load of heavy
users.

1. Introduction

Currently, many computing professionals have personal works-
tations for research, software development, and engineering applica-
tions, These powerful stations are considered private resources
under the control of their users. However, in order to provide access
to common resources and to enable information exchange, these
private resources are interconnected by one or more local area net-
works to form an integrated processing environment. The total pro-
cessing capacity of such an environment can be very large. As an
example, a portion of the computing environment at our department
consists of 75 private workstations, 8 multiuser hosts, and a 20 node
partitionable multicomputer. All of these resources are intercon-
nected through two token 1ing networks and two Ethernets [1]. Mul-
tiuser hosts provide access to resources for users without worksta-
tions. The partitionable multicomputer, called the Crystal Multicom-
puter [2], consists of 20 VAX®-11/750s connected by a 80
Megabit/sec Proteon ProNet token ring [3]. Crystal provides a vehi-
cle for research in distributed systems, and extra computing cycles.
It can be viewed as a Processor Bank that serves as a source of com-
puting cycles.

The total capacity of our research environment is more than_
180 MIPS. (see Table 1) This large capacity is comparable to that of

* This research was supported in part by the National Science Foundation under grant
MCS-8105904.

® VAX is a trademark of Digital Equipment Corporation.

CH2439-8/87/0000/0002$01.00 © 1987 IEEE

Resource Kind #of MIPS Per Capacity
Machines Machine™ (MIPS)
Multivser Host VAX 11/780 2 2 4
Multiuser Host VAX 11/750 6 1 6
Workstations ~ MicroVAXII 75 2 150
Crystal VAX 11/750 20 1 20
Total 180

** Based on the values given for individual machines in [4].
¥ Roughly the capacity of VAX 11/780 [5].

Table 1: Portion Of Research Computing Capacity At Wisconsin.

several large supercomputers. An analysis of the usage pattemn of
this distiibuted capacity shows that a large portion of the capacity is
not utilized [6]. When workstations are not used by their owners,
they can be sources of cycles for users who want additional cycles.
There are users that would like to expand their computing capacity
beyond their local workstations and use the available computing
cycles. We call networks that allow users at workstations to expand
their capacity LOcal COmputing capacity eXpanded (LOCOX) net-
works. Figure 1 illustrates a LOCOX network. Jobs submitted to
the LOCOX network can be divided into two categories: interactive
and background. Interactive jobs require frequent input and a small
amount of CPU capacity. Background jobs are computationally
intensive and run for long periods of time without any interaction
with the users. Users would benefit if they could receive a portion of
the remote computing capacity for their background jobs. Experi-
ence from observations of the Crystal Multicomputer shows that
there are long running jobs that often consume several hours of pro-
cessing time. One user has been observed to have a single job that
has consumed about 2 months of cpu time on a VAX11/750 [7}! We
have also observed a steady supply of background jobs from another
user. This user has maintained a queue of 20-30 background job
requests over a period of five months where each job ran about 2
hours on a VAX11/750 [8].

The management of the huge distributed computing capacity of
a LOCOX network creates a wide spectrum of scheduling problems
to consider, In this paper we address one resource management
aspect of this environment called long term scheduling. Long term
schedulers manage the allocation of remote processing cycles for
jobs that execute for long periods and require little interaction with
the workstation from which the job was submitted for execution.
They extend the computing capacity a user sees beyond the capacity
of his/her workstation. The emphasis of long term scheduling is not
the balancing of work among computing resources already allocated,
as is done in middle term scheduling, but the high level view of pro-
viding extra computing service when available. This management is
at the user level and not at the job level. Unlike short term schedul-
ing, it is not concemed with the internal management of Fhe
processes of individual jobs. Short term scheduling is the allocation
of the processor on a workstation to processes in its run queue. Tpe
goal of long term scheduling is to give all users a fair share of avail-

o e i ey i

-

Workstations

S

I~

Workstations

-—n

Network
™~ S —
IT

Processor Bank

Figure 1.
LOCOX Network
able remote processing cycles. The remote cycles are from private
resources (that are temporarily made available for general use) and
public resources. Private resources are workstations owned by users
and under their control. If the owner is not using the workstation,
the workstation becomes a source of remote cycles. Since we con-

sider a workstation to be owned by a single user, we use the words
user and workstation in the same context. Public resources are the -

processors in a processor bank with the explicit purpose of Qroyidiqg’
extra cycles. This paper considers all) the processors within' the
LOCOX network to use the. same instruction set.

A long term scheduler must be efficient am:l fair. An efficient
algorithm gives users access to remote cycles wnh'out severe over-
head and therefore uses most of the available capacity. A long term
scheduler is fair if it treats every werkstation as an equal contenf:ler
for available remote cycles. Fair allocation is achieved by trading
off the amount of execution time already allocated to a user and tlge
amount of time the user has waited for an allocation. This tradeoff is
the basis for the Remote Cycle Wait Ratio evaluation criterion. This
criterion gnards against the domination of comput_ing cycles by
heavy users. The remote cycle wait ratio is the amount of remote
execution time a workstation received divided by its wait time. The
remote éxecution time of a workstation is defined as the total remote
processing time allocated to a woxkstatioq. The wait time ‘is the
amount of time the workstation had a need for remote cycles but has
0o such cycles allocated.) o

Besides the remote cycle wait ratio, we view the. faimess of
remote cycle allocation from two other related perspectives. They are
the Remote Cycle Percentage and the Remote Response Ratio. The
remote cycle percentage of a workstation is the percentage of its
background job demand that was met by remote cycles. The remote
response ratio is. the expected turnaround time of jobs that finished
from a remote Jocation divided by their service demand. The tur-
naround time is the difference between the time a job finishes its €xe-
cution and its arrival time. The remote cycle wait ratio differs from
the remote cycle percentage because the remote cycle wait ratio
gives the expected amount of time a workstation has to wait to
receive remote cycles, while the remote cycle percentage gives the
proportion of cycles consumed remotely in comparison to the total
number of cycles consumed by background jobs. The femote
response ratio is a criterion that considers the individual jobs while
the other criteria look at the total allocation of cycles per user. A fair
allocation algorithm should result in steady behavior for all three cri-

teria for lightly loaded users that share resources with heavy loaded -

usets regardless of the demand pattem of the latter.

We have developed an efficient and fair long term scheduling
algorithm, called the Up-Down Algorithm, that meets these perfor-
mance objectives, The Up-Down algorithm maintains steady access
to remote cycles for light users in spite of a large continuous demand

for cycles by heavy users. Naive approaches cause light users” qual-
ity of service to suffer when heavier users increase the number of
cycles they consume, The difference between the Up-Down algo-
tithm and naive algorithms is that the Up-Down algorithm trades off
reward (remote capacity allocated) and penalty (waiting time suf-
fered when a remote resource is wanted but denied), while the other
algorithms favor heavy users with better access to remote capacity.
In section 5, we present a detailed analysis of the algorithm.” We
show that under the Up-Down algorithm, light users maintain a
steady share of remote resources even when heavy users keep asking
for more. '

The workloads used for evaluating long term scheduling algo-
tithms are important. The evaluation is better justified if it is done
using workloads desived from real systems. We have evaluated our
algorithm by wusing a trace of workstation usage. The trace was
obtained by monitoring the activity of a subset of our workstations
over a period of five months.

Several other papers havé discussed distributed computing sys-
tems and bave addressed forms of scheduling distributed resources.
These systems include the Locus System [9], the Cambridge Disfri-
buted Computing System [10], the Eden System [11}; the Charlotte
Distributed Operating System [12], Process Server [13], the NEST
project [14], and the remote execution facility in the V-Kernel [15].
Locus is a distributed Unix® operating system with multiple hosts. It
Supports transparent access to a distiibuted file system with the
ability of the user to explicitly schedule a job at the lowest-loaded
machine. The Cambridge Distributed Computing System provides
transparent access to distributed resources. A central concept to the
system is to provide access to a remotely located machine as.a per-
sonal computer where the user explicitly schedules work for the
machine. The Eden System consists of distributed workstations for a
high degree of sharing and cooperation among the users. Each
machine is part of a larger system, and no single user of a worksta-
tion has complete control of their workstation. The Eden system ker-
pel determines on which workstation of the system a process will
execute. Foreign processes can be placed on a workstation that
resides in a particular user’s office even though that user is actively
working on the workstation in that office. ‘The Charlotte Distributed
Operating System 1uns on the Crystal Multicomputer and supports
closely interacting processes cooperating to solve a computationially
intensive problem [2]. Processes are placed on machines explicitly -
by users and will stay there until they terminate or are explicitly
migrated. Process migration is the movement of processes during
their execution dmong different machines in the system depending
on each individual machine’s load. Papers describing - Process
Server, the NEST project, and the preemptable remote execution
facilities of the V-Kernel discuss facilities for the remote execution
of programs on idle workstations. These papers discuss how to
implement the remote execution facilities, but issues of scheduling
are not addressed.

Except for the Eden System, these papers describe systems that
require the users to initiate the placement of processes at machine
locations. The ‘Eden System kernel determines where to place
processes, but it does not consider the workstations as private
resources. In the Eden System, foreign processes can be placed at
workstations even though the workstation’s owner is actively sub-
mitting jobs., ’ .

“Section 2 describes the workload model for our study. In sec-
tion 3 we present mechanisms that have been established to support
efficient scheduling of our LOCOX network. - The system modei for
our study is presented in section 4. The model allows users to have
control of their workstations, but enables others 1o use workstations
that would otherwise be idle. We describe in section 5 our design of
the Up-Down algorithm for allocating remote capacity and compare

® Unix is a trademark of AT&T Bell Laboratories.

its pgxformance and behavior with the Random and Round-Robin
algonthm's'. Section 6 presents our conclusions and a description of
our on going work on LOCOX network resource management.

2. Workload Of Workstations

We have monitored the usage patterns of 13 DEC MicroVAX
11 workstations running under Berkeley Unix 4.2BSD over a period
of five months. The stations observed are owned by a variety of
users. They are 6 workstations owned by faculty, 5 by systems pro-
grammers, and 2 by graduate students,

We have obtained the profile of available and non-available
periods of workstations so that we can use an actual workload in our
evaluation study. An unavailable period, NA, occurs when a worksta-
tion is being used, or was recently used by its owner. The station is
considered as NA if the average user cpu usage was above a thres-
hold (one-fourth of one percent [16]) within the last 5 minutes. The
average cpu usage follows the method the Unix operating system
uses for the calculation of user load. This load is a decaying average
that includes only the user processes. Activities resulting from pro-
grams such as time of day clocks or graphical representations of sys-
tem load do not generate user loads that arise above the threshold.

An available period, AV, occurs whenever a workstation’s state is not
NA.

The workstation usage patterns were obtained by having a
monitoring program executing on each workstation. The monitor on
each station executes as a system job and does not affect the user
load. The monitor looks at the user’s load every minute when the
workstation is :n the NA state. If the user’s load is below the thres-
hold for at least 5 minutes, the workstation’s state becomes AV, Dur-
ing this time the workstation’s monitor will have its “screen saver”
enabled. The monitor looks at the user;s load every 30 seconds
when the workstation is in the AV state. Any user activity, even a
single stroke at the keyboard or mouse, will cause the "screen saver”
to be disabled and all user windows on the workstation’s screen to. be
redrawn. This activity brings the-user load above the threshold, and
causes the state to become AV. If no further activity occurs, approxi-
mately seven minutes pass before the station’s state changes to AV.
This is because it takes the user load average 2-3 minutes to drop
below the threshold, and an additional 5 minute waiting time is
imposed. The waiting period is imposed so that users who stop work-
ing only temporarily are not disturbed by the "screen saver” reap-
pearing as soon as they are ready to type another command. The
waiting time is adjustable, but it has been observed that the five
minute value is a good value to choose without causing an annoy-
ance to users [17]. This conservatively decides whether a station
should be a target for remote cycles. Stations are idle much more
than what appears in the AV state. The user load with the imposed
waiting time is used as a means of detecting availability because the
station should not be considered a source of remote cycles if an
owner is merely doing some work, thinking for a minute, and then
doing some more work. Otherwise a station would be a source of
remote cycles as soon as the owner stopped momentarily. The
workstation’s owner would suffer from the effect of swapping in and
out of his/her processes, and the starting and stopping activities of
the remote processes.

An analysis of the traces showed that the monitored worksta-
tions were available approximately 70% of the time. This means
there are a lot of extra cycles to use for long term scheduling. The
average AV and NA state lengths were about 100 minutes and 40
minutes respectively. Long AV intervals are desirable since back-
ground jobs placed remotely will have a good chance to stay there
for a long time. One might expect that long AV intervals occur only
in the evening hours. We have observed a high percentage of such
intervals during working hours. The busiest time during the woiking
week was observed to be between 2-3 PM. Even during this time,
the average amount of time the workstations are in the AV state is

approximately 50%. A detail analysis of workstation usage pattems
is given in [6].

3, Mechanism For Long Term Scheduling

In order to implement a long term scheduling policy on a
LOCOX network, a number of mechanisms are needed. A mechan-
ism for remote placement of jobs, checkpointing, restarting jobs
from the checkpoint, and monitoring the activity of the LOCOX net-
work has to be in place in order to carry out any long term schedul-
ing policy. Checkpointing is required since a remotely executing job
must be stopped when a user resumes using the workstation on
which it is running. This job will either be moved to another location
to resume execution, or returned to its origin workstation to wait
until 2 new location becomes available.

Within our LOCOX network, we have implemented check-
pointing for the remote Unix [18] facility of the Crystal Multicom-
puter in order to determine the feasibility and the cost of such a
mechanism. The Crystal Multicomputer is designed to be used as a
tool for research in distributed systems. It consists of 20 VAX-
11/750s connected by a 80 Megabit/sec Proteon ProNet. Crystal has
been used for many projects in distributed systems which include
distibuted databases, algorithms, operating systems, and others
[12,19-21]. The remote Unix facility allows the Crystal Multicom-
puter to be used as a "cycle server”. A cycle server provides comput-
ing capacity beyond what the local workstations provide. It extends
the idea of Unix forking of a background process so that the new
process executes on a Crystal machine. When remote Unix is expli-
citly invoked, a shadow process on the host machine runs locally as
the surrogate of the process running on the remote machine. Any
Unix system call of a program running on the remote machine causes
a trap. A message ihdicating the type of system call is sent to the
shadow process on the host machine. This remote Unix facility
serves CPU-bound type jobs well. Long running simulation pro-
grams are an obvious application for it.

The checkpointing of a program is the saving of an intermedi-
ate state of the program so that its execution can be restarted from
this intermediate state. ‘The state of a remote Unix program is the
text, data, bss, and the stack segments of the program. Along with
the registers being used by the program, any messages sent by the
program that have not yet been received have to be saved. The text
segment contains the executable code, the data segment contains the
initialized variables of the program, and the bss segment holds the
uninitialized variables. The implenientation copies the data, bss, and
the stack segments, and the program registers from the remote pro-
cessor to the origin workstation. The text segment is kept in the load
module file, and is not copied from the remote processor since we
assume the text segment will not be modified. A checkpoint will not
be taken whenever there is an outstanding message from the remote
end. This can be guaranteed since every message that the remote pro-
cessor sends expects a response. If at checkpoint time the remote
node has not received a response to a message it sent, then the check-
point will be delayed for a short while until there are no outstanding
messages.

The implementation allows two different ways to initiate the
saving of a checkpoint. The checkpoint can be triggered extemally
by a signal, or internally by the expiration of a checkpoint timer. The
program can be restarted from a checkpoint file by setting a com- "
mand line parameter to do so. A newer version of remote Unix
checkpointing has been implemented by Litzkow [16] for both the
Crystal Multicomputer and the network of MicroVAX II worksta-
tions which has an added feature of spooling background jobs. The
delay caused by checkpointing on the Crystal Multicomputer has
been determined to be about % minute for a checkpoint file size of 1
megabyte. The capacity consumed by a local workstation in order to
checkpoint a remote jobs in a network of workstations was measured
to be approximately 5 seconds of CPU time per 1 megabyte of
checkpoint file.

