
Managing Network Resources in Condor

Jim Basney and Miron Livny
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706-1685, USA�

jbasney,miron � @cs.wisc.edu

Abstract

Data-intensive applications in the Condor High
Throughput Computing environment can place heavy
demands on network resources for checkpointing and
remote data access. We have developed mechanisms to
monitor, control, and schedule network usage in Condor.
By managing network resources, these mechanisms provide
administrative control over Condor’s network usage and
improve the execution efficiency of Condor applications.

1 Introduction

Until recently, the Condor research project has focused
on the challenges of managing usage of CPU resources
for High Throughput Computing (HTC) [4]. However, as
the amount of physical memory available to HTC applica-
tions has dramatically increased, HTC environments have
become an attractive platform for applications which are
more data-intensive. As these applications place greater de-
mands on the network, it has become important for Condor
to manage usage of network resources in addition to CPU
resources to enforce administrative network policies and to
ensure that applications receive sufficient network capac-
ity to compute efficiently [1]. As middle-ware, positioned
between the operating system and application, Condor can
perform application-aware, inter-application network man-
agement. In this paper, we describe mechanisms we have
implemented in Condor for network monitoring, network
and CPU co-allocation, and checkpoint scheduling.

2 Monitoring Network Usage

We have modified the Condor scheduler to monitor net-
work usage for checkpoint transfers, remote data access,
and file staging. Condor applications send a checkpoint
over the network to a dedicated checkpoint server when pre-
empted and continue their execution by transferring their

checkpoint from the checkpoint server to a new execution
site. Applications also perform checkpoints periodically
to limit the amount of work lost in case of system fail-
ure. Since a checkpoint contains the entire memory state
of the application, checkpoints can grow to be large for
data-intensive applications. The modified Condor scheduler
computes the network capacity required for job placement
from the size and location of the application’s checkpoint
and data files, as specified in the job placement request sent
by the customer agent. As the application executes, an ap-
plication resource manager (ARM) periodically reports the
application’s network usage for remote data access to the
scheduler. The ARM also notifies the scheduler whenever
the application performs a checkpoint. When a job com-
pletes its execution, the customer agent may continue using
the allocated CPU by running another job in its place. In
this case, the customer agent notifies the scheduler of the
network capacity required for the placement of the new job.

By monitoring Condor’s network usage, we provide
statistics to the Condor administrator about how Condor ap-
plications are using the network. This information is also
used by the scheduler to perform network admission control
and scheduling, as we will show in the following sections.
More general-purpose network monitoring tools, such as
the Network Weather Service [6] and Gloperf [3], could be
used to complement this information if we want to make
scheduling decisions based on external network conditions.

3 Network and CPU Co-Allocation

In addition to modifying the scheduler to collect net-
work usage statistics, we have modified the scheduling al-
gorithm to implement network and CPU co-allocation, to
allocate bundles of network and CPU capacity to Condor
applications. There has been much recent work on general
frameworks for co-allocation of heterogeneous resources,
including the Globus Architecture for Reservation and Al-
location [2] and the Condor Gang-Matching framework [5].
We focus here on the specific case of network and CPU co-



allocation in the Condor environment.
The modified Condor scheduler performs network ad-

mission control to ensure that network resources are not
oversubscribed. The scheduler allocates network capacity
up to a configured limit for each subnet. The administrator
typically configures this limit to less than the subnet’s full
capacity to reserve capacity for other network users. The
scheduler places jobs on remote CPUs only when the net-
work capacity limits would not be exceeded by the jobs’
checkpoint and data transfers. If capacity would be ex-
ceeded for a given subnet, jobs which may have run on
CPUs on that subnet will instead run in other subnets (where
network capacity is available) or remain idle.

Co-allocating network and CPU resources in the Condor
scheduler also allows customers to control their requests for
bundles of network and CPU resources. Customers may
specify constraints and preferences regarding the network
capacity available from the allocated CPU. For example, the
customer may request a CPU with at least 8 Mbps peak net-
work capacity with a preference for a smaller number of
network hops to the home filesystem. This additional ex-
pressiveness in the request enables the customer to make
more efficient use of network resources.

4 Checkpoint Scheduling

The co-allocation mechanisms described in the previ-
ous section do not differentiate between network usage for
checkpointing, remote data access, and file staging. How-
ever, each different use of the network provides unique
scheduling opportunities. We focus on checkpoint schedul-
ing, since checkpoint transfers are responsible for the ma-
jority of the demand for network capacity in our local Con-
dor pool. In many cases, preemption checkpoints can be
pre-scheduled to complete before an eviction deadline. Ad-
ditionally, periodic checkpoints may be scheduled to re-
duce contention with other network transfers and to improve
checkpointing performance. To take advantage of these op-
portunities, we have developed two checkpoint schedulers:
a preemption checkpoint scheduler and a periodic check-
point scheduler.

When a large number of applications are preempted si-
multaneously, the checkpoints compete with each other for
network bandwidth, causing all of the checkpoints to take
a long time to complete. Simultaneous application preemp-
tions are in many cases a result of events which may be
anticipated. For example, applications running on comput-
ers in a classroom will be preempted at the start of class.
Condor’s network monitoring facilities can help the admin-
istrator identify recurring preemption events. The Condor
preemption checkpoint scheduler monitors running appli-
cations and reserves bandwidth for checkpoints in advance
of these scheduled preemption events. When the start time

for the bandwidth reservation arrives, the scheduler directs
the application to begin its checkpoint.

The periodic checkpoint scheduler monitors network us-
age in Condor and initiates requested periodic checkpoints
when Condor network usage is low. Periodic checkpoints
are not initiated when there are active placement or pre-
emption transfers on the network, to avoid slowing those
time-critical transfers. Additionally, the periodic check-
point transfers are serialized, so they don’t compete with
each other for network resources and therefore complete
more quickly, allowing the application to quickly resume
its execution.

5 Conclusion

As HTC applications place greater demands on the net-
work, it is important for the HTC environment to manage
usage of network resources. We have modified the Con-
dor scheduler to collect statistics on application network us-
age and perform network and CPU co-allocation. We have
also developed two checkpoint schedulers, which reduce
network contention among checkpoint transfers to improve
checkpointing performance. Together, these mechanisms
manage network resources to enable HTC for network-
intensive applications.

References

[1] J. Basney and M. Livny. Improving goodput by co-scheduling
cpu and network capacity. International Journal of High Per-
formance Computing Applications, 13(3), Fall 1999.

[2] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
A distributed resource management architecture that sup-
ports advance reservations and co-allocation. In International
Workshop on Quality of Service, 1999.

[3] C. Lee, R. Wolski, I. Foster, C. Kesselman, and J. Stepanek.
A network performance tool for grid computations. In Pro-
ceedings of the Conference on Supercomputing, 1999.

[4] M. Livny and R. Raman. High-throughput resource man-
agement. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, chapter 13.
Morgan Kaufmann Publishers, Inc., 1998.

[5] R. Raman, M. Livny, and M. Solomon. Gang-matching: Ad-
vanced resource management through multilateral matchmak-
ing. In Proceedings of the Ninth IEEE International Sympo-
sium on High Performance Distributed Computing, August
2000.

[6] R. Wolski. Dynamically forecasting network performance to
support dynamic scheduling using the network weather ser-
vice. In Proceedings of the Sixth IEEE International Sym-
posium on High Performance Distributed Computing, August
1997.


