Deploying Complex Applications
in Unfriendly Distributed Systems with Parrot
((PREPRINT VERSION))

Douglas Thain (thain@cs.wisc.edu)
Computer Sciences Department, University of Wisconsin, United States

Sander Klous (sander@nikhef.nl)
National Institute for Nuclear and High Energy Physics, Netherlands

Miron Livny (miron@cs.wisc.edu)
Computer Sciences Department, University of Wisconsin, United States

Abstract. Ordinary applications struggle to benefit from distributed computing.
Most applications are designed for the safe confines of a single workstation and
are not prepared to encounter the new interfaces and failures that are endemic
to distributed systems. To solve this problem, we present Parrot, an interposition
agent that connects standard, unmodified applications to distributed systems. Parrot
makes use of the debugging interface to trap and modify an application’s system
calls. This interface is heavyweight but foolproof: Parrot can operate on any pro-
gram, script, or multi-process conglomerate. We explore how Parrot can be used
to attach a variety of remote I/O protocols and we explain why a new protocol,
Chirp, is necessary to support real applications. We present a case study of SP5,
a high-energy physics application that requires distributed computing to achieve
its production goals. Using Parrot, we successfully deploy SP5 into a fault-prone
distributed system.

Keywords: Distributed computing; interposition agents; fault tolerance.

1. Introduction

Ordinary computing applications struggle to benefit from the promises
of distributed computing. Although there exist countless systems for
harnessing remote processors and accessing remote data, many place
stringent requirements on the applications that they accept. A batch
system might require that all programs be a single executable per-
forming no interprocess communication. A distributed file system may
provide unusual consistency semantics that are at odds with a user’s
expectations. Many experimental systems expect users to re-write their
software to take advantage of new features, while many production
systems expect users to have administrator privileges on all machines
on a network.

These restrictions are unacceptable in the real world. Typical devel-
opers write their applications on standalone machines, making liberal

';“ © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

parrot.tex; 27/01/2004; 9:12; p.1

2 Douglas Thain, Sander Klous, and Miron Livny

use of complex and powerful libraries and systems. By re-using existing
tools, developers are able to concentrate on their craft rather than rein-
venting computing from the ground up. Software is created, debugged,
and validated on ordinary workstations long before any thought turns
to distributed computing. Users in a corporate or academic environ-
ment are not likely to have administrator privileges on a large number
of machines.

Regardless, a wide variety of human endeavors hope to benefit from
large scale distributed computing. Physical science has an unlimited
appetite for simulation capacity: researchers in astronomy, chemistry,
and physics can explore a larger parameter space or reduce error bounds
simply by harnessing more cycles. Similar needs may be found to the
fields of video production, data mining, and finance, to name a few. How
are we to make distributed computing accessible to ordinary programs?

Parrot is our answer to this challenge.

Parrot is an interposition agent, a piece of software that inserts itself
between a ordinary program and the operating system. When used in
an unfriendly distributed system, Parrot provides the illusion of a user’s
home environment, including files user identities, and more. Parrot can
customize an application’s environment to create a synthetic namespace
formed from multiple remote services. In addition, Parrot is able to hide
network outages, server crashes, and other failures that are endemic to
distributed systems.

Although the notion of interposition agents is not new (15, 1, 14),
they have seen relatively little use in production systems. This is due to
a variety of technical and semantic difficulties that arise in connecting
real systems together. For example, many different I/O protocols may
be attached to an application, but few provide the full range of POSIX
semantics expected by many applications. For this reason, we have
created our own protocol, Chirp, which provides the precise semantics
that applications expect.

Parrot is an extension to an existing operating system; it augments
file-handling capabilities without affecting a process’ ability to interact
with other processes on the same machine or over a network. Parrot
is considerably simpler than other tools like virtual operating systems
such as UML (6) and virtual machines such as VMWare !, both which
require the user to build and maintain virtual networks, large filesystem
images, and all the elements of an isolated operating system in minia-
ture. Parrot consists of a single executable measuring only 8.4 MB with
all options enabled, and as small as 1 MB in minimal configuration.

! http://www.vmware. com

parrot.tex; 27/01/2004; 9:12; p.2

Deploying Complex Applications in Unfriendly Systems with Parrot 3

As a motivating example, we describe how Parrot can be used to
deploy an application into a real distributed system. This application,
SP5, is representative of the applications described above; it consists of
multiple processes and complex libraries that defy most distributed
computing and file systems. In particular, we explore the problem
of working through an aggressive firewall that discards active TCP
connections.

This paper is a modified version of a workshop paper (21) also
available as a technical report. (22) The description and evaluation
of SP5 is entirely new material. The comparison of I/O protocols has
been re-written, but the data is taken from the earlier paper. Due to
space limitations, a comparison of several interposition techniques has
been removed, and some details of performance have been omitted.

2. Example Application: SP5

SP5 2 is a software component of the BaBar high-energy physics exper-
iment in progress at the Stanford Linear Accelerator Center. A large
amount of computation is needed to understand the response of the
BaBar experimental apparatus. The physics interactions are mimicked
by the simulation of random particle collisions known as events. These
events are fed to a simulation of the detector geometry, which results
in a trace of all of its output signals. These traces are fed into a re-
constructor that infers the nature of the original collision events. SP5
is the first phase of this computing activity, which is known as monte
carlo production.

At an abstract level, SP5 operates by first loading data that de-
scribes the configuration of the detector and the physics of particle
generation. Once loaded, it enters a compute-intensive phase where it
generates an arbitrary number of events that can each be summarized in
10-100 kilobytes. As is common for many batch computing applications,
more computation directly results in a higher quality result. As the
measurements of the BaBar experiment are progressing, the accuracy
of the results improves and the interest shifts toward rare phenomena.
To compare the results with models, the accuracy of the simulation
needs to improve as well, which means a higher number of events needs
to be simulated and more resources are needed.

The computing needs of the international BaBar collaboration ex-
ceed the resources available at any one of its constituent research labs
and universities. However, all of them put together should provide suffi-
cient computing hardware. The problem of distributing this application

2 http://www.slac.stanford.edu/BFROOT/www/Computing/0ffline/Production

parrot.tex; 27/01/2004; 9:12; p.3

4 Douglas Thain, Sander Klous, and Miron Livny

filesystem ops

WAISASIIF

dynamic
libraries
Figure 1. The Structure of SP5 and its Data

is one of organization: the more efficiently the hardware can be used,
the higher quality the end result will be. However, the aggregate system
must also be simple enough that resources do not sit idle while humans
struggle to configure and debug computers. Such a large-scale comput-
ing environment that crosses administrative boundaries is sometimes
known as a computational grid.

In theory, SP5 has the right structure for distributed computing.
The initial data can simply be distributed to a number of processors,
production can be performed in parallel, and the produced events can
be returned to a central site. Once initialized, any processor can pro-
duce an arbitrary number of events, so the number of processors can
be chosen to balance startup time against desired throughput.

In practice, SP5 has a number of complexities that make it diffi-
cult to deploy in a distributed system. Figure 1 shows some of these
complexities. A standard filesystem contains the SP5 executable and
scripts, several dynamic libraries, the input configuration, and the out-
put events. The program is wrapped by a script that establishes envi-
ronmental settings and verifies the integrity of the file system before
invoking the program. It also makes use of several dynamically-loaded
libraries, particularly the Objectivity ® database, which manages the
configuration and event data structures.

Objectivity is a decentralized, cooperative database built on top of
a standard filesystem. Consistency management, access control, and
crash recovery are performed cooperatively by clients rather than en-
forced by a server. A minimal central server assists only with a locking
protocol. To read the configuration data or write events, the client
library requests a lock from the lock server, manipulates the file system
directly, and then releases the lock.

This structure is quite reasonable when viewed alone, but is difficult
to adapt to an existing distributed system. For example, the filesys-
tem activity of the Objectivity client library cannot be carried over
a standard distributed filesystem. The delayed-writeback semantics of
NFS (18) clients are too weak for database structures, while the strict

3 http://www.objectivity.com

parrot.tex; 27/01/2004; 9:12; p.4

Deploying Complex Applications in Unfriendly Systems with Parrot b}

open-close semantics of AFS (13) would result in data loss on the
append-only transaction log. Objectivity does have the capability to
speak NFS directly to a server, bypassing the buffer cache, but deploy-
ing this requires superuser privileges at both the client and the server;
an unlikely capability in a grid computing environment.

It might be argued that SP5 ought to be restructured in order to take
better advantage of distributed computing. For example, if it was col-
lected into a single, statically linked executable, it could take advantage
of Condor’s (19) checkpointing and migration features. If re-written to
a parallel computing interface such as MPI (7), it might be more easily
parallelized. However technically tempting such options might be, they
come at an enormous cost in development and debugging labor. (In
fact, developers have recently performed a large amount of work on
SP5; the next release will incorporate features that ease distributed
computing.) If a way is found to deploy applications on a distributed
system without making modifications, then both hardware and human
resources can be used more efficiently.

Further, a computational grid is inherently an unfriendly environ-
ment with its own challenges. Installing most software on a new cluster
is a labor-intensive process that defies automation: executables, scripts,
and libraries must be unpacked and installed; environment variables
and other settings must be configured; database structures must be
initialized; dependent software must be discovered and installed. Some
software expects a uniform user database across multiple machines; this
is an impossibility on a computational grid. The nature of a distributed
environment ensures that network outages and performance variations
are common events.

This is the challenge of distributed computing in the real world: For
sound social and technical reasons, we may not modify either applica-
tions or the underlying computing systems. To accomplish real work,
we must find a way to transparently connect complex applications to
unreliable systems. For this, we use interposition agents.

3. Interposition Agents

An interposition agent (agent for short) is a piece of software that
inserts itself between two existing layers of software in order to modify
their discourse. By inserting an agent rather than modifying an existing
piece of software, we may measure, debug, and enhance an application
without requiring intimate knowledge of its innards. An interposition
agent has many uses in a distributed system:

parrot.tex; 27/01/2004; 9:12; p.5

6 Douglas Thain, Sander Klous, and Miron Livny

Seamless integration. The most common use of an interposition
agent is to connect an application to a new resource, such as a storage
device, without requiring any special changes or coding in the applica-
tion. For example, Parrot allows an application to seamlessly connect
to a remote storage server. The application merely perceives it to be
an ordinary file system.

Improved reliability. In general, remote data services are far less
reliable than local filesystems. Remote services are prone to failed net-
works power outages, expired credentials, and many other problems. An
interposition agent can attach an application to a service with improved
reliability. For example, Rocks (23) emulates a reliable TCP connection
across network outages and address changes. Parrot can also be used to
add reliability at the file system layer by detecting and repairing failed
I/O connections.

Private namespaces. Batch applications are frequently hardwired
to use certain file names for configuration files, data libraries, and even
ordinary inputs and outputs. An interposition agent can be used to
create a private namespace for each instance of an application, thus
allowing many to run simultaneously while keeping their I/O activities
separate. For example, several instances of an application hardwired to
write to output.txt may be redirected to write to output.n.txt, where n
is the instance number.

Remote dynamic linking. Although dynamic linking offers many
technical advantages for programs that share code or data, it presents
a number of social problems. It is all too easy to migrate an application
only to discover that needed libraries are missing, or worse yet, that
the available libraries are the wrong version. An interposition agent can
solve these problems by allowing an application to link against libraries
stored at a single, well-known server.

Profiling and debugging. The vast majority of applications are
designed and tested on standalone machines. A number of surprises
occur when such applications are moved into a distributed system. Both
the absolute and relative cost of I/O operations change, and techniques
that were once acceptably inefficient (such as linear search) may become
disastrously so. By attaching an interposition agent to an application,
a user may easily generate a trace or summary of I/O behavior and
observe precisely what the application does.(20).

4. Parrot

Parrot is an interposition agent that provides the features discussed
above for standard Unix applications. It observes and potentially mod-

parrot.tex; 27/01/2004; 9:12; p.6

Deploying Complex Applications in Unfriendly Systems with Parrot 7

(read only) mmap ’

Parrot

Application Parrot

Application

3. modify call peek/poke

1. syscall
9. ref 7. modify
result

8. resume return

6. trap return

5. exec C
syscall 4. resume enter

2. trap enter open fd shared library output input
buffer buffer
Host Kernel 1/0 Channel
a) Control Flow b) Data Flow

Figure 2. Interpositioning via the Debugger Interface

ifies the interaction between an unmodified process and the operating
system kernel using the standard debugging interface. Alexandrov et al.
(1) have shown how the Solaris proc interface may be used to instrument
a process. Linux is currently a much more widely deployed platform for
scientific and distributed computing. Its ptrace debugger model is gen-
erally considered inferior to the Solaris proc model; it can still be used
for interposition, but it has limitations that must be accommodated.

Figure 2.a shows the control flow necessary to trap a system call
through the ptrace interface. Parrot registers its interest in an appli-
cation process with the operating system kernel. At each attempt by
the application to invoke a system call, the host kernel notifies Parrot.
Parrot may then modify the application’s address space or registers,
including the system call and its arguments. Once satisfied, Parrot
instructs the host kernel to resume the system call. At completion,
Parrot is given another opportunity to make changes before passing
control back to the kernel and the application.

Although conceptually simple, there are two complexities in the
ptrace interface:

Process ancestry. The pirace interface forces all traced processes
to become the immediate children of the tracing processes. This is
because notification of trace events occurs through the same path as
notification of child completion events: the tracing process receives a
signal, and then must call waitpid to retrieve the details. As a conse-
quence, any tracing tool that wishes to follow a tree of processes must
maintain a table of process ancestry. All system calls that commu-
nicate information about children (such as waitpid) must be trapped
and emulated by Parrot. If a traced process forks, the Linux kernel
(inexplicably) does not propagate the tracing flags to the child. This
may be overcome by trapping instances of fork and converting them

parrot.tex; 27/01/2004; 9:12; p.7

8 Douglas Thain, Sander Klous, and Miron Livny

into the more flexible (and Linux specific) clone system call, which can
be instructed to create a new process with tracing activated.

Data flow. The emulation of system calls requires the ability to
move data in and out of the target application. Figure 2.b shows all of
the necessary data flow techniques. The most convenient is to access
a special file (/proc/n/mem) that represents the entire memory space
of the application. This can be modified with file operations, or can be
mapped into the address space of Parrot. Although this provides high-
bandwidth read access, writing to this file is not permitted. * Instead, a
pair of ptrace calls, peek and poke, are provided to read or write a single
word in the target application. This interface can be used for moving
small amounts of data into the target application, but is obviously not
suited for moving large amounts of data such as is required by the read
and write system calls.

To move data efficiently, the application must be coerced into assist-
ing Parrot. This is accomplished by converting many system calls to
preads and pwrites on a shared buffer called the /0 channel. This is an
ordinary file created by Parrot, passed implicitly, and shared among all
of its children. Parrot maps the I/O channel into memory, to minimize
copying, while all of the application processes simply maintain a file
descriptor pointing to the I/O channel.

For example, suppose that the application issues a read on a remote
file. Upon trapping the system call entry, Parrot examines the param-
eters of read and retrieves the needed data. These are copied directly
into a buffer in the I/O channel. The read is then modified (via poke)
to be a pread that accesses the I/O channel instead. The system call is
resumed, and the application pulls in the data from the I/O channel,
unaware of the activity necessary to place it there.

This method differs significantly from that demonstrated by UFO.(1)
The UFO method only traps calls to open and immediately fetches the
whole file in question so that later operations may access it at full
speed locally. In contrast, Parrot traps all file operations. This permits
more fine-grained control and semantic power, but comes at a cost in
performance.

Figure 3 measures this overhead. We constructed a benchmark C
program which timed 100,000 iterations of various system calls on a
1545 MHz Athlon XP1800 running Linux 2.4.18. Available bandwidth
was measured by reading a 100 MB file sequentially in 1 MB blocks.

4 Writing to this file has been implemented, but is commented out in the kernel
source. The reasons appear to be lost to folklore, although comments in the source
suggest security concerns. Clearly, both read and write access to another process’s
address space must be revoked if the target process can raise its privilege level via
setuid. It is not clear to what extent such revocation is implemented.

parrot.tex; 27/01/2004; 9:12; p.8

Deploying Complex Applications in Unfriendly Systems with Parrot 9

getpid open/close read 1B read 8KB bandwidth
unmod .184+.03 3.18+ .08 .93+ .23 3.27£.19 us 282+13 MB/s
parrot 10.06+.21 42.09+ .06 19.38+£1.03 30.99+.26 us 122+ 4 MB/s
change (56x) (13x) (21x) (9x) (0.43x)

Figure 3. Overhead of Interposition with Parrot

The mean and standard deviation of 1000 cycles of each benchmark
are shown. File operations were performed on an existing file in a
temporary file system. The unmod case gives the performance of this
benchmark without any agent attached, while the parrot case shows
the same program with Parrot attached.

Parrot has a significant performance overhead: most system calls are
an order of magnitude slower. More importantly, bandwidth in and out
of the process is reduced by half, due to the extra data copy incurred
by the techniques described above. There do exist other interposition
techniques with lower overhead, but good performance comes by sac-
rificing reliability. A complete discussion of this problem is given in
our earlier paper. (21) That said, this level of overhead is acceptable
for applications such as SP5 that have both CPU and I/O intensive
phases.

5. Protocols and Semantics

The primary use of Parrot is to attach applications to remote storage
devices. For example, Figure 4 shows Parrot used to attach a variety
of standard system utilities to a secure FTP server.

To this end, Parrot has a variety of drivers for various I/O protocols.
As mentioned, the File Transfer Protocol (FTP) and its secure GSI
(2) variant are supported. The Chirp protocol was designed by the
authors to provide remote I/O with semantics very similar to POSIX. A
standalone Chirp server is distributed with Parrot. The NeST protocol
is the native language of the NeST storage appliance (4), which provides
an array of authentication, allocation, and accounting mechanisms for
storage that may be shared among multiple transient users. The RFIO
and DCAP protocols were designed by the high-energy physics com-
munity to provide access to hierarchical mass storage devices such as
Castor (3) and DCache (8).

Each type of remote storage device is presented to the user as a
filesystem entry naming the protocol and server name. For example, a
Chirp server named bird.cs.wisc.edu is made available under the path
/chirp/bird.cs.wisc.edu. Access to local files, such as /etc/passwd is

parrot.tex; 27/01/2004; 9:12; p.9

10 Douglas Thain, Sander Klous, and Miron Livny

%i

% parrot tcsh
% cd /gsiftp/mss.nesa.uiuc.edu/u/ac/thain

% 1s -la

total 3

drwxruxrux 1 thain thain 0 Aug 26 15:00 .trash
“TWXTWXFWX 1 thain thain 15057 Aug 26 15:00 condor.gif
“TWXTWXIWX 1 thain thain 68 Aug 26 15:00 hello.c
“TWXTWXIWX 1 thain thain 132921 Aug 26 15:00 lessons.pdf

% cp lessons.pdf /tmp
% mkdir datadir
% vi hello.c
Il | % xv condor.pgif
11l

o

Figure 4. Interactive Browsing with the Parrot Interposition Agent

unchanged. A user may also specify a mountlist that maps logical path
names to other physical devices. This allows Parrot to create a custom
namespace for a program, perhaps even emulating the environment of
another machine. For example, this mountlist maps /mydata to an FTP
server and the standard library directory to a Chirp server:

/mydata /ftp/ftp.cs.wisc.edu/datadir
/usr/1ib /chirp/bird.cs.wisc.edu/usr/1lib

Not all of the protocols supported by Parrot are equal. Because
Parrot must preserve POSIX semantics for the sake of the application,
our foremost concern is the ability of each of these protocols to provide
the necessary semantics. A summary of the semantics of each of these
protocols is given in Figure 5.

In POSIX, name binding is based on a separation between the
namespace of a filesystem and the file objects (i.e. inodes) that it con-
tains. The open system call performs an atomic binding of a file name to
a file object, which allows a program to lock a file object independently
of the renaming, linking, or unlinking of names that point to it. This
model is reflected in the Chirp, RFIO, and DCAP protocols, which all
provide distinct open/close actions separately from data access. FTP
and NeST have a get/put model, performing a name lookup at every
data access. In this model, an application may lose files it has open if
they are manipulated by another process.

With the exception of FTP, all of the protocols provide inexpensive
random (i.e. out-of-order) access to a file without closing and re-opening
it. This permits the efficient manipulation of a small portion of a large
remote file without retrieving the whole thing. Such behavior is needed
for SP5, which manipulates small portions of large database files. The
sequential nature of FTP requires that Parrot read and write entire
files as they are opened and closed.

Directories are supported completely by Chirp, NeST, and RFIO;
one may create, delete and list their contents. DCAP does not cur-

parrot.tex; 27/01/2004; 9:12; p.10

Deploying Complex Applications in Unfriendly Systems with Parrot 11

protocol model discipline dirs stat links connections
posix open/close random yes direct yes -
chirp open/close random yes direct yes per client
ftp get/put sequential varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op
dcap open/close random no direct no per client

Figure 5. Protocol Compatibility with POSIX

rently support directory access, although this may be added in a later
version. ® Support for directories in FTP varies greatly. Although the
FTP standard mandates two distinct commands for directory lists,
LIST and NLST, there is little agreement on their proper behavior.
LIST provides a completely free-form text dump that is readable to
humans, but has no standard machine-readable structure. NLST is
meant to provide a simple machine-readable list of directory entries,
but we have encountered servers that omit subdirectory names, some
that omit names beginning with dot (.), some that insert messages into
the directory list, and even some that do not distinguish between empty
and non-existent directories.

Most metadata is communicated in the POSIX interface through
the stat structure returned by the stat, fstat, and Istat system calls.
Chirp, RFIO, and DCAP all provide direct single RPCs that fill this
structure with the necessary details. FTP and NeST do not have single
calls that provide all this information; however, the necessary details
may be obtained through multiple RPCs that determine the type, size,
and other details one by one. In addition, the stat interface allows the
operating system to hint at an ideal block size for file I/O. This interface
allows Parrot to tune many applications to use a large block size and
hide the increased latency of interposition.

The connection structure of a remote I/O protocol has implications
for semantics as well as performance. Chirp, NeST, and DCAP require
one TCP connection between each client and server. FTP and RFIO
require a new connection made for each file opened. In addition, RFIO
requires a new connection for each operation performed on a non-open
file. Because most file system operations are metadata queries, this can
result in an extraordinary number of connections in a short amount
of time. Even ignoring the latency penalties of this activity, a large
number of TCP connections can consume resources at clients, servers,
and network devices such as address translators.

® DCAP is typically used in conjunction with a kernel NFS client that provides
access to metadata and directories.

parrot.tex; 27/01/2004; 9:12; p.11

12 Douglas Thain, Sander Klous, and Miron Livny

Bandwidth (MB/s)

0
4K 16K 64K 256K 1M
Block Size
Figure 6. Throughput of 128 MB File Copy

The I/0 services discussed here, with the exception of Chirp, are
designed primarily for efficient high-volume data movement. This is
demonstrated by Figure 6, which compares the throughput of the pro-
tocols at various block sizes. The throughput was measured by copying
a 128 MB file into the remote storage device with the standard cp
command equipped with Parrot and a varying stat block size hint.

Of course, the absolute values are an artifact of our system, how-
ever, it can be seen that any of the protocols can be tuned to near
optimal performance for mass data movement. The exception is Chirp,
which only reaches about one half of the available bandwidth. This
is because of the strict RPC nature required for POSIX semantics;
the Chirp server does not extract from the underlying filesystem any
more data than necessary to supply the immediate read. Although it is
technically feasible for the server to read ahead in anticipation of the
next operation, such data pulled into the server’s address space might
be invalidated by other actors on the file in the meantime and is thus
semantically incorrect.

Figure 7 measures the latency of POSIX-equivalent operations in
each I/O protocol when carried over a 100 Mb ethernet. These mea-
surements were taken in an identical manner to those in Figure 3. Notice
that the units have increased from microseconds to milliseconds.

We hasten to note that this comparison, in a certain sense, is not
“fair.” These data servers provide vastly different services, so the perfor-
mance differences demonstrate the cost of the service, not the cleverness
of the implementation. For example, Chirp and FTP achieve low laten-
cies because they are lightweight translation layers over an ordinary
file system. NeST has somewhat higher latency because it provides the

parrot.tex; 27/01/2004; 9:12; p.12

Deploying Complex Applications in Unfriendly Systems with Parrot 13

proto stat open/close read 1B read SKB
chirp 50+ 14 .84+ .09 .61+ .04 2.80+ .06 ms
ftp .87+ .09 2.82+ .26 (no random access)

nest 251+ .05 253+ 17 296+ .17 4.48%+ .14 ms
rfio 1341+ .28 23.11+ 1.29 .50+ .06 3.32+ .14 ms
dcap 152.53£16.68 159.094+16.68 40.05+0.17 3.01+0.62 ms

Figure 7. Performance of I/O Protocols On a Local-Area Network

abstraction of a virtual file system, user namespace, access control lists,
and a storage allocation system, all built on an existing filesystem.
The cost is due to the necessary metadata log that records all such
activity that cannot be stored directly in the underlying file system.
Both RFIO and DCAP are designed to interact with mass storage
systems; single operations may result in gigabytes of activity within a
disk cache, possibly moving files to or from tape. In that context, low
latency is not a concern.

That said, several things may be observed from this table. Although
FTP has benefited from years of optimization, the cost of a stat is
greater than that of Chirp because of the need for multiple round trips
to fill in the necessary details. The additional latency of open/close
is due to the multiple round trips to name and establish a new TCP
connection. Both RFIO and DCAP have higher latencies for single
byte reads and writes than for 8KB reads and writes. This is due to
buffering which delays small operations in anticipation of further data.
Most importantly, all of these remote operations exceed the latency of
ptrace interposition by several orders of magnitude.

We conclude with a macro-benchmark similar to the Andrew (13)
benchmark. This benchmark emulates the file-system intensive activity
of a program developer using the Parrot source tree, which consists of
13 directories and 296 files totaling 955 KB. To prepare, the source tree
is moved to the remote device. In the copy stage, the tree is duplicated
on the remote device. In the list stage, a detailed list (Is -IR) of the
tree is made. In the scan stage, all files in the tree are searched (grep)
for a text string. In the make stage, the software is built. From an
I/O perspective, this involves a sequential read of every source file, a
sequential write of every object file, and a series of random reads and
writes to create the executables. Finally, the tree is deleted.

Figure 8 compares the performance of the Andrew-like benchmark in
a variety of configurations. In the three cases above the horizontal rule,
we measure the cost of each layer of software added: first with Parrot
only, then with a Chirp server on the same host, then with a Chirp
server across the local area network. Naturally, data movement runs at

parrot.tex; 27/01/2004; 9:12; p.13

14 Douglas Thain, Sander Klous, and Miron Livny

dist $$ proto copy list scan make delete

same off local 15+ .02 .09+ .20 .08%£ .02 65.38£3.47 .86% .18 s
same off chirp 1.224+ .03 .34+ .02 .40+ .01 81.02+1.46 .79+ .01 s
lan off chirp 6.16+ .22 .57+ .30 1.32+ .03 144.00£1.35 1.26+ .02 s

lan on chirp 10.67+ .90 .53+ .07 4.724+ .32 95.054+2.33 1.24+ .03 s
lan on ftp 34.88+£1.72 1.474+ .02 17.784+1.14 122.54+£3.14 2.95+ .15 s
lan on nest 52.354+4.18 12.92+4.87 28.144+4.52 307.194+3.26 31.73+4.37 s
lan on rfio (overwhelmed by repeated connections)

lan on dcap (does not support directories without nfs)

Figure 8. Performance of the Andrew-Like Benchmark

network speeds, but the slowdown in the make stage is quite acceptable
if we intend to increase throughput via remote parallelization.

In the two cases adjacent to the rule, the only change is the enabling
of caching. As might be expected, the cost of unnecessary duplication
causes an increase in copying the source tree, although the difference
is easily made up in the make stage, where the cache eliminates the
many random accesses necessary to link executables. The list and delete
stages only involve directory structure and metadata access and are
thus not affected by the cache.

In the five cases below the horizontal rule, we explore the use of
various protocols to run the benchmark with caching enabled. The
DCAP protocol is semantically unable to run the benchmark, as it does
not provide the necessary access to directories. The RFIO protocol is
semantically able to run the benchmark, but the high frequency of
filesystem operations results in a large number of TCP connections,
which quickly exhausts networking resources at both the client and the
server, thus preventing the benchmark from running. Chirp, FTP, and
NeST are all able to complete the benchmark. The NeST results have a
high variance, due to delays incurred while the metadata log is period-
ically compressed. The difference in performance between Chirp, FTP,
and NeST is primarily attributable to the cost of metadata lookups.
All the stages make heavy use of stat; the multiple round trips neces-
sary to implement this completely for FTP and NeST have a striking
cumulative effect.

Although Parrot is capable of using a variety of storage services,
we conclude that Chirp, by virtue of its low latency and similarity to
POSIX, is a good choice for general-purpose I/O workloads.

parrot.tex; 27/01/2004; 9:12; p.14

Deploying Complex Applications in Unfriendly Systems with Parrot 15

(N\ (N\
fs ops
chirp
protocol =
= =4
= 9]
o 2]
2 z
=3)
net ops = lock =]
remote protocol lockd
dynamic libs fs ops
A J A J
worker node central server

Figure 9. Deploying SP5 and Parrot in a Distributed System

6. Deploying SP5 with Parrot

With this knowledge in hand, we are prepared to use Parrot to de-
ploy SP5 into a distributed system. Figure 9 shows how the pieces
fit together. The configuration data and output events are stored in
an Objectivity-managed filesystem on a well-known central server. A
central lock server process assists with mutual exclusion. A number of
worker nodes are used to execute instances of SP5. Access to a number
of worker nodes at various institutions is obtained by way of Condor-
G (10) and the Globus toolkit (9). No special software is installed on
any of the worker nodes, nor do we have superuser access in these
environments, so we rely on Parrot to carry all of the SP5 filesystem
operations back to a Chirp server deployed at the central server. SP5
is run by Parrot with the following simple mountlist:

/ /chirp/central-server.nikhef.nl/

This mountlist is comparable to an NFS client that mounts its root
filesystem from a remote device: all executables, dynamic libraries, and
other program components are loaded from the central server via the
Chirp protocol. Parrot makes local copies of executables; this is a tech-
nical necessity, because Unix can only execute a program identified by
a local file name. All data files are accessed remotely without caching
so as to avoid introducing a consistency problem into the database.

In addition to the filesystem, a number of other small settings were
necessary to fully emulate the home environment. For example, the
Objectivity libraries examine the POSIX user identifier and host name
in order to implement access control on the database. Because worker
machines may not necessarily share a user database with the central
server, we instruct Parrot to trap these system calls and change the
results to match what would be seen at the central server.

Aggressive firewalls posed a serious problem to the deployment of
this system. It is quite common for a computing cluster to be con-
nected to the public Internet by way of a firewall and network address

parrot.tex; 27/01/2004; 9:12; p.15

16 Douglas Thain, Sander Klous, and Miron Livny

translator (NAT). In the clusters targeted by this application, the NAT
permits cluster nodes to initiate outgoing TCP connections to the pub-
lic Internet, but prohibits incoming connections, except as necessary
to dispatch batch jobs. To translate external addresses into internal
addresses, the NAT must keep state about every TCP connections that
it carries.

The problem arises when a NAT must discard TCP connections
that it perceives to be idle. Each connection consumes some state in
the firewall, so it cannot keep them forever. The most aggressive NAT
that we have encountered discards TCP connections that have been
idle for only one minute. When this happens, there is a double penalty:
not only is the connection lost, but the NAT does not even return an
RST packet indicating that the connection was lost. The result is that
both sides think the connection is present but lossy, and retry up to
their maximum timeouts, which can range from minutes to hours.

This problem was deadly to SP5. Once it initialized, the lock server
connection was held open and idle, while the Chirp connection was only
used for the output of each event, at intervals of slightly more than
a minute. While SP5 was processing the first event, the NAT would
discard the TCP connections. A short time later, the entire system
would hang while attempting to write out the first event.

Although we would like to simply discount this firewall as an aber-
rant device, we cannot consider reconfiguring its timeout to be a reason-
able solution. For the same reasons that we cannot install software or
act as the superuser on a worker node, we cannot expect to reconfigure
the network interior at will. (In fact, we later discovered that these are
the factory settings for the NAT in question. We do not relish the idea
of negotiating with a network administrator every time this model of
NAT is encountered.)

One stop-gap solution to this problem is to change the network
endpoints to generate enough traffic to keep the NAT state alive. For
example, we may modify the networking stack at the central server
to send TCP keepalives at the rate of several per minute. We applied
this technique in order to preserve the connection between SP5 and the
lock server. However, it is unsatisfying because it requires administrator
privileges on at least one end.

A more comprehensive solution is to make the network protocol
recoverable, so that the failure of the TCP connection becomes a harm-
less event. For example, we modified Parrot so that a failed Chirp
connection was recovered by reconnecting and reopening the needed
files. With this recovery method, we could afford to make the Chirp
connection fail-fast (12); hence, any delay of greater than thirty seconds
was assumed to be a transient network failure and would result in

parrot.tex; 27/01/2004; 9:12; p.16

Deploying Complex Applications in Unfriendly Systems with Parrot 17

time to time per

distance method proto cpu init event
same 0s files 1 GHz 446 + 46 s 64 s
same parrot files 1 GHz 668 = 26 s 65 s
same parrot chirp 1 GHz 777 £ 48 s 66 s
lan 0s nfs 1 GHz 4464 £ 172 s 113 s
lan parrot chirp 1 GHz 4505 + 155 s 113 s
wan parrot chirp 2.5 GHz 6275+ 330s 88 s

Figure 10. Performance of SP5 and Parrot Deployed in a Distributed System

disconnection and recovery. This solution is more robust than simply
applying keepalives — it also tolerates the crash and recovery of the
Chirp server — but could only be implemented because we are free to
modify the Chirp protocol.

The Chirp recovery method reveals an old problem in the design of
distributed filesystems. Strict POSIX semantics require that an appli-
cation holds references directly to files rather than names. That is, once
an application opens a file by name, it keeps access to that file even if
the name is deleted or renamed. Distributed file systems such as NFS
(18) and AFS (13) solve this problem by exposing inode numbers to
clients. When recovering from a disconnection, NFS and AFS clients
can be assured of access to the correct files by referring to the inode
numbers. Chirp cannot do this directly; the Chirp server is implemented
on top of an ordinary file system and thus can only open files by name.
However, the Chirp protocol can verify that the binding between names
and inodes has not changed after a recovery by simply querying inode
numbers with the stat operation. If they have not changed, recovery
is successful. Otherwise, recovery has failed, Parrot forces the applica-
tion to fail immediately, and the batch system becomes responsible for
re-starting it from the beginning.

After addressing the problem of recovery, we turned to issues of
performance. Figure 10 shows the run-times of SP5, gradually increas-
ing the logical and physical distance between it and its data on the
central server. As discussed earlier, SP5 begins with an I/O-intensive
startup phase, and then settles into a CPU-intensive phase of config-
urable length. As the distance increases, the I/O-intensive phase pays
a increasing price, but the CPU-intensive phase is relatively stable.

The first line of Figure 10 shows the performance of unmodified SP5,
as in Figure 1. The application is run in “validation mode”, producing
additional histograms to cross check the results. Furthermore, it pro-
duces a full debugging output so that we can verify that it ran correctly.

parrot.tex; 27/01/2004; 9:12; p.17

18 Douglas Thain, Sander Klous, and Miron Livny

As a result the production is approximately a factor of 5 slower than
the standard production on this machine. The average and standard
deviation (o) of initialization times are shown along with the average
time to process an event. Each measurement of the initialization time
is the result of 10 trials. The time to process one event is an avarage of
2000 events. A small numbers of outliers beyond 5 o,, were attributed
to unrelated network traffic and discarded. Each succesive line adds one
component in order to measure its contribution. The final line measures
the complete system as depicted in Figure 9.

The first row measures the baseline performance of SP5, unmodified,
run on the same machine as its data. It initializes in 443 seconds and
then processes one event every 64 seconds. The second row adds Parrot,
but without any remote I/O or other features; SP5 just accesses local
files through Parrot. The third row adds Chirp, but without a network;
SP5 accesses a Chirp server on the same machine using Parrot. As can
be seen, both Parrot and Chirp slow down initialization, but have little
effect on event processing.

The fourth and fifth rows show the performance of SP5 accessing
its data over a local area network (latency 130 £ 10us.) In the fourth
row, SP5 is using a kernel-level NFS client to access Objectivity’s files,
ignoring potential consistency problems due to caching. In the fifth,
SP5 is using Parrot and Chirp to accomplish the same task safely
without a cache. Although initialization is an order of magnitude slower
than the unmodified case, we can see that the performance of Chirp is
comparable to NFS. The overhead is more a function of the network
than of Parrot or Chirp.

The final row shows the performance of SP5 accessing its data over a
wide-area network (latency 654=£504us) via the firewall discussed above.
Notice that the performance numbers are not directly comparable, as
the CPU is about 2.5 times as fast as the others. (The CPUs in a real-
world distributed system are rarely identical.) However, we may see
the same qualitative result as the other lines: initialization is slow, but
event processing is reasonable.

Overall, the BaBar experiment must process billions of events to
complete the necessary simulation. In the worst case of accessing data
over a wide area network, the cost of computing events equals the cost
of initialization at only 70 events. Given that a typical instance of SP5
processes 10,000, we conclude that the cost of remote execution, while
significant, can be amortized across a large run.

parrot.tex; 27/01/2004; 9:12; p.18

Deploying Complex Applications in Unfriendly Systems with Parrot 19

7. Conclusions

Interposition agents bridge the gap between applications and systems
when neither are available for modification. By raising the level of
abstraction on which an application executes in a batch system, we
are able to provide a transparent and reliable environment, even in
an uncertain environment. We have shown that deploying a complex
application into a distributed system is quite feasible with the help of
Parrot. This initial study into distributing SP5 is not complete; we still
need to better understand the scalability of SP5 and Chirp.

As our discussion of remote I/O protocols illustrates, virtualizing
an existing interface is a subtle problem that has implications for
reliability, recoverability, and performance. The low-level details of a
protocol — for example, how many network connections it consumes —
can determine whether it usable by ordinary applications. Although
interface virtualization is a common technique (16, 5), the problems
of errors and other boundary conditions seems to be suffered silently
by practitioners. Such problems are rarely publicized, however, we are
aware of two excellent exceptions. C. Metz (17) describes how the
Berkeley sockets interface is surprisingly hard to multiplex. T. Garfinkel
(11) describes the subtle semantic problems of sandboxing untrusted
applications.

For more information: http://www.cs.wisc.edu/condor/parrot

Acknowledgements

We thank Concezio Bozzi and the BaBar monte carlo production team
for their assistance with SP5 and the production site.

References

1. Alexandrov, A., M. Ibel, K. Schauser, and C. Scheiman: 1998, ‘UFO: A personal
global file system based on user-level extensions to the operating system’. ACM
Transactions on Computer Systems pp. 207-233.

2. Allcock, W.; A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke: 2000,
‘Protocols and Services for Distributed Data-Intensive Science’. In: Proceed-
ings of Advanced Computing and Analysis Techniques in Physics Research. pp.
161-163.

3. Barring, O., J. Baud, and J. Durand: 2000, ‘CASTOR Project Status’. In:
Proceedings of Computing in High Energy Physics. Padua, Italy.

4. Bent, J., V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, and M. Livny: 2002, ‘Flexibility, Manageability, and Per-
formance in a Grid Storage Appliance’. In: Proceedings of the Eleventh IEEE
Symposium on High Performance Distributed Computing. Edinburgh, Scotland.

parrot.tex; 27/01/2004; 9:12; p.19

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Douglas Thain, Sander Klous, and Miron Livny

Cheriton, D.: 1987, ‘UIO: A Uniform I/O system interface for distributed
systems’. ACM Transactions on Computer Systems 5(1), 12-46.

Dike, J.: 2000, ‘A user-mode port of the Linux kernel’. In: Proceedings of the
USENIX Annual Linux Showcase and Conference. Atlanta, GA.

Dongarra, J. J. and D. W. Walker: 1996, ‘MPI: A Standard Message Passing
Interface’. Supercomputer pp. 56—68.

Ernst, M., P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and C. Waldman:
2001, ‘dCache, a Distributed Storage Data Caching System’. In: Proceedings
of Computing in High Energy Physics. Beijing, China.

Foster, 1. and C. Kesselman: 1997, ‘Globus: A metacomputing intrastructure
toolkit’. International Journal of Supercomputer Applications 11(2), 115-128.
Frey, J., T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke: 2001, ‘Condor-
G: A Computation Management Agent for Multi-Institutional Grids’. In:
Proceedings of the Tenth IEEE Symposium on High Performance Distributed
Computing. San Francisco, California, pp. 7-9.

Garfinkel, T.: 2003, ‘Traps and Pitfalls: Practical Problems in in System
Call Interposition based Security Tools’. In: Proceedings of the Network and
Distributed Systems Security Symposium.

Gray, J.: 1986, ‘Why do Computers Stop, and What Can Be Done About It7’.
In: Proceedings of the Symposium on Reliable Distributed Systems. pp. 3—-12.
Howard, J., M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West: 1988, ‘Scale and Performance in a Distributed File
System’. ACM Transactions on Computer Systems 6(1), 51-81.

Hunt, G. and D. Brubacher: 1999, ‘Detours: Binary Interception of Win32
Functions’. Technical Report MSR-TR-98-33, Microsoft Research.

Jones, M.: 1993, ‘Interposition Agents: Transparently Interposing user Code
at the System Interface’. In: Proceedings of the 14th ACM Symposium on
Operating Systems Principles. pp. 80-93.

Kleiman, S.: 1986, ‘Vnodes: An architecture for Multiple File System Types in
Sun Unix’. In: Proceedings of the USENIX Technical Conference. pp. 151-163.
Metz, C.: 2002, ‘Protocol Independence Using the Sockets APT’. In: Procedings
of the USENIX Technical Conference.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon: 1985, ‘Design
and implementation of the Sun network filesystem’. In: Proceedings of the
USENIX Summer Technical Conference. pp. 119-130.

Solomon, M. and M. Litzkow: 1992, ‘Supporting Checkpointing and Process
Migration Outside the Unix Kernel’. In: Proceedings of the USENIX Winter
Technical Conference. pp. 283-290.

Thain, D., J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny: 2003,
‘Pipeline and Batch Sharing in Grid Workloads’. In: Proceedings of the Twelfth
IEEE Symposium on High Performance Distributed Computing. Seattle, WA.
Thain, D. and M. Livny: 2003a, ‘Parrot: Transparent User-Level Middleware
for Data-Intensive Computing’. In: Proceedings of the Workshop on Adaptive
Grid Middleware.

Thain, D. and M. Livny: 2003b, ‘Parrot: Transparent User-Level Middle-
ware for Data-Intensive Computing’. Technical Report 1493, University of
Wisconsin, Computer Sciences Department.

Zandy, V. and B. Miller: 2002, ‘Reliable Network Connections’. In: Proceed-
ings of the Eighth ACM International Conference on Mobile Computing and
Networking. Atlanta, GA, pp. 95-106.

parrot.tex; 27/01/2004; 9:12; p.20

