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Abstract
In our group at University College London, we have been developing electrical
impedance tomography (EIT) of brain function. We have attempted to improve
image quality by the use of realistic anatomical meshes and, more recently,
non-linear reconstruction methods. Reconstruction with linear methods, with
pre-processing, may take up to a few minutes per image for even detailed
meshes. However, iterative non-linear reconstruction methods require much
more computational resources, and reconstruction with detailed meshes was
taking far too long for clinical use. We present a solution to this timing
bottleneck, using the resources of the GRID, the development of coordinated
computing resources over the internet that are not subject to centralized control
using standard, open, general-purpose protocols and are transparent to the user.
Optimization was performed by splitting reconstruction of image series into
individual jobs of one image each; no parallelization was attempted. Using the
GRID middleware ‘Condor’ and a cluster of 920 nodes, reconstruction of EIT
images of the human head with a non-linear algorithm was speeded up by 25–40
times compared to serial processing of each image. This distributed method is
of direct practical value in applications such as EIT of epileptic seizures where
hundreds of images are collected over the few minutes of a seizure and will be
of value to clinical data collection with similar requirements. In the future, the
same resources could be employed for the more ambitious task of parallelized
code.
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1. Introduction

Solving the forward and inverse problem in electrical impedance tomography (EIT) requires
handling of large systems of equations (Polydorides et al 2002). Geometry of biological
organs cannot be modelled accurately by simple symmetric shapes (Bagshaw et al 2003);
hence, numerical (rather than analytical) formulation of the forward problem, such as the
finite and boundary element method (FEM and BEM) has to be employed (Vauhkonen et al
1999, Polydorides 2004). Doing so, unfortunately, creates two difficulties: first, geometrically
accurate models are likely to be large, as they include many elements and, secondly, the
accuracy of numerical methods depends upon the mesh density as well, especially in regions
where there are high field gradients (Molinari et al 2001). However, increasing the mesh
density introduces a corresponding increase in the associated system matrices. A number of
research groups have employed linear approximation (Uhlmann 2004), which requires a single
calculation of the current field and measurement field forward solutions, and single formation
of the a Jacobian matrix; however, the complexity of the problem has extended beyond
the linear approximation domain, frequently, so that non-linear iterative reconstruction is
needed (Yerworth et al 2004). Efficient Krylov subspace (Shewchuk 1994) techniques for
solving large sparse matrices of the forward solution can be employed, yet the system matrix
factorization requires a substantial amount of computational resources. In addition, as for
most non-linear reconstruction methods, line search is required within each iteration. This
process demands repetitive calculation of the forward problem, so that calculation of the
forward solution becomes a severe bottleneck.

Our group is investigating the use of EIT to image the effects of stroke in the human
brain (Yerworth et al 2004). There appears to be a clear requirement for a non-linear
reconstruction algorithm due to the large and complex changes in impedance at different
frequencies. Unfortunately, a single frequency reconstruction over a modest shelled head
mesh of 31 111 elements requires about 2.5 h for a 2.8 GHz processor with 2 GB RAM,
whereas the clinical requirement is that an image be collected and reported within 30 min. In
other applications, such as imaging the source of epileptic seizures, we will need to collect
about 1000 images over the several minutes of a seizure. Processing these serially—at 2 h
per image—would be impractical and the use of a Condor cluster is of direct practical benefit
as they could be processed in half a day and made available to the medical team on the usual
timescale needed for reviewing data while the patient is on the ward.

Recently, a new research area (e-science) has seen the development of a resource known
as the GRID. The concept is the development of coordinated resources that are not subject
to centralized control, which use standard, open, general-purpose protocols and interfaces to
deliver nontrivial qualities of service (Foster 2002, Foster et al 2001, 2002). The GRID offers
a wide range of resources; one specific middleware tool is Condor3. This organizes idle system
resources, such as idle workstations, into clusters, called pools, or collections of clusters called
flocks, that can exchange resources. Condor then searches for these idle workstations to run
computational tasks. When the owner of the workstation resumes computing, Condor transfers
the job to another machine.

In this paper we describe, for the first time, the application of Condor in reducing the
processing time for EIT reconstruction. Before approaching the solution of the challenging EIT
reconstruction algorithms, we tested the method in two simpler situations. We first ran a test
algorithm to verify the configuration of our code and secondly we tested an algorithm used to
analyse the electroencephalogram (EEG), which presents medium complexity. Finally, for the

3 Condor Project http://www.cs.wisc.edu/condor.
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Figure 1. Key logical objects in Condor architecture.

EIT algorithm, a modified version of electrical impedance and diffuse optical reconstruction
software (EIDORS) (Polydorides and Lionheart 2002) FEM generation functions have been
used to produce the LHS of the forward solution system matrix. Incomplete Cholesky
factorization has been chosen for preconditioning of the system matrix, and later plugged
into a linear preconditioned conjugated gradients algorithm. The inverse solution framework
was a Polak Ribiere non-linear conjugate gradients with regularized search direction scheme
with Brent line search (Horesh et al 2004, Dorn et al 1999, Arridge 1999). The tests were run
on a pool of 920 PCs running Condor in our local university (University College London).

The algorithm used was not parallelized internally. Multiple images were divided into
individual tasks and sent to different nodes of the pool, which ran independent tasks at the same
time. All the tasks were started at the same time. The ultimate potential of the GRID would
clearly be best utilized with the parallel code which would permit rapid image reconstruction of
individual images. Although this is our longer term goal, it was not practicable for this study.
We have therefore elected to demonstrate the utility of the GRID in speeding up reconstruction
of multiple images. This is of direct practical value in our work, as we are currently undertaking
a trial of EIT in epilepsy, in which hundreds of images are collected over several minutes during
a seizure. The purpose of this work was to demonstrate practical utility with the GRID in this
preliminary fashion, with the hope that this would be of immediate practical value to other
groups with a similar need during non-linear reconstruction of multiple clinical images, and
also encourage activity into the parallelization of reconstruction algorithms in the future.

2. Methods

2.1. Condor architecture

The principles of the Condor method are as follows (Condor) (figure 1).
The three upper logical components (application, application agent and customer agent)

are on the ‘client-side’—in the workstation used by the user to submit the algorithm—and
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the four lower components (owner agent, remote execution agent, local resource agent and
resource) are on the ‘resource-side,’ a workstation, which is part of the Condor system.

In the middle, between the two sides, there is the ‘key piece’ of the system: the
matchmaker. On the resource-side, the information about available resources is being
constantly updated in the four corresponding components, which have different levels of
abstraction. At the end of this ‘chain of information’ is the ‘owner agent,’ which holds the
knowledge regarding the amount of available nodes, their technical characteristics—such as
memory and operating systems—and additional useful data about the resources. It regularly
transmits this information to the matchmaker.

Once the client sends his tasks to the pool, the components on the client-side
have information about the intended operation and the ‘customer agent’ sends the right
information—such as number of tasks, amount of memory and operating system needed—to
the matchmaker (number 1 in figure 1). The matchmaker then makes a decision as to which
tasks will be executed, selects the resources, and allows direct communication between those
(see action 2 in figure 1).

Afterwards, a ‘chain reaction’ is started, which allows the communication between peers
on different sides of the matchmaker. At the end (action 6 in figure 1) the application’s user
contacts the resource.

2.2. UCL-Condor pool specifications

The UCL-Condor pool has 920 nodes (Pentium 3, 1 GHz. CPU, 256 MB RAM and 750 MB
of free disk space, operating system: Windows 2000). These machines are distributed around
the UCL campus.

2.3. Matlab R©-libraries

Our second and third tests are executable files coded in Matlab R©. To be able to run a Matlab R©

executable file in a machine that does not have Matlab R© installed—which is the case for all
the nodes in the pool—it is necessary to fulfil two requirements:

• Some DLL libraries have to be installed in a local directory. Matlab R©’s executable file
(mglinstaller.exe) does the deployment of these libraries into the local machine.

• Add the directory in which the mglinstaller.exe is deployed to the PATH variable of the
machine.

2.4. First test—a test algorithm

This is a computationally undemanding algorithm, which takes less than 10 s in a well-specified
PC, such as an Intel Pentium 4, 2.8 GHz and 512 MB RAM. (The term ‘well-specified PC’
will be taken to indicate a PC of this power in further discussion below.) This test algorithm
was a simple piece of C code, which reads some data from the file eegtestin.dat and write a
new file eegtestout.dat. We put the executable file and the input file in the root directory of
the user. We also created the submit.sub (JDL code) file, which set the parameters to send the
tasks to the pool, and put it in the same directory. A log file was created, which recorded when
the file was submitted, started and finished.

2.5. Second test

In the previous example, just one job was run. In the more demanding second test, a set of
100 tasks, which normally take 74 min each in a well-specified PC (section 2.4), was sent to
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the Condor pool. Each was a Matlab R© algorithm, which performed wavelet analysis on the
EEG data for epileptic spike detection. The algorithm implemented a Daubechies 4 wavelet
analysis with a window of 1024 samples. This was run on a single channel of EEG acquired
in a patient with epilepsy lasting 22 min sampled at 200 Hz.

To run this Matlab R© algorithm, it was necessary to deploy Matlab R© libraries in each
node. The executable was needed to: (1) deploy the necessary Matlab R© libraries in the node
(mglinstaller.exe), (2) set up the PATH variable, (3) run the desired executable file (4) retrieve
the processed data and finally (5) clean up and restore the nodes to their initial condition.

2.6. Third test

The final test was a reconstruction of multi-frequency EIT data with a non-linear reconstruction
algorithm. The whole dataset, measured from a realistic tank, consisted of 300 boundary
voltages sets. The algorithm employed a shelled head shaped finite element forward model of
31 111 linear elements. Thirty one electrodes were positioned according to the extended 10–20
scheme over the scalp. The injection-measurement protocol included 258 entries, of which
21 were independent diametrically opposed injection pairs and 51 were independent adjacent
measurement pairs. The inverse solution scheme was a non-linear Polak Ribiere conjugate
gradients with a modified version of Kaczmarz filtered back-propagation regularization
(Horesh et al 2004) and Brent line search. This inverse problem framework comprises a
search for conductivity values which minimize a cost function of the weighted difference
between the measured and the calculated boundary voltages. To produce a fair comparison,
the algorithm was set to halt after 25 iterations. Each reconstruction in this scheme took
approximately 2.5 h on the above well-specified PC.

3. Results

The first test was successfully accomplished once the submission format was clarified.
In the second test, while the execution of the 100 files (74 min each) requires 7400 min

(5.1 days) in a well-specified PC (section 2.4), Condor finished the execution in 297 min. This
was 25 times faster than serial execution in a well-specified PC, but, nevertheless, four times
slower than the execution of a single task.

In the third test, the 300 tasks required approximately 750 h (31.2 days) in a well-specified
PC whereas Condor executed it in 1128 min (18.8 h), which is 40 times faster than the normal
execution.

4. Discussion

Overall, use of the Condor pool substantially reduced the time taken to process these
programs by 25–40 times. However, this was not totally efficient, as the time taken was still
considerably longer than the time for a single task on one machine. Some inefficiency seems
inevitable, due to the overheads of the middleware in distributing and regulating the distributed
processing. One specific design feature was probably largely responsible: one drawback of
the implementation we used was the lack of checkpoints in Condor under Windows (Condor
systems running under UNIX platforms have this feature). If a task is almost completed and
the node is switched off, the task has to be migrated to another node and re-started anew.

We have described some characteristics of Condor running in a limited single-domain
of 920 nodes. The developers of Condor have used the software provided by GT4 (Globus

4 Globus Project, http://www.globus.org.
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Toolkit) to expand the capabilities of Condor to a multi-domain environment. The software that
addresses this new multi-domain scope is called Condor-G and is potentially more powerful
again.

In the future, we plan to analyse a promising Matlab R© wrapper (Eres et al 2004) to avoid
the compilation and manual submission in a multi-domain platform environment5. Eventually,
we aim to analyse the possible migration of this technology to clinical applications. The tasks
employed in this initial study were relatively simple, in that they comprised individual image
reconstructions. Nevertheless, this is of direct practical benefit, as many hundreds of images
will need to be produced rapidly for use of EIT in imaging epileptic seizures. We also plan
to parallelize each individual reconstruction algorithm, so that an individual image could be
processed more rapidly too.

In our group, we believe that more accurate anatomical EIT images are possible with the
use of non-linear EIT reconstruction and finely detailed meshes in the forward solution. This
work arose because of a simple practical limitation in that processing was taking far too long.
It remains to be seen if this view will be supported by empirical testing of these advanced
algorithms. However, if they are adopted, much more processing power will be needed to
compute the reconstructions on a clinically useful timescale, and the GRID appears to offer
exciting potential for researchers in the EIT community to achieve this.
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