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Abstract

We present a study of six batch-pipelined scientific work-
loads. Whereas other studies focus on the behavior of a sin-
gle application, we characterize an emerging type of work-
load which consists of pipelines of sequential processes that
use file storage for communication and also share signifi-
cant data across a batch. This study includes measurements
of the memory, CPU, and I/O requirements of individual
components as well as analyses of 1/0 sharing within com-
plete batches, as well as a discussion of the architectural
ramifications of these new types of workloads.

1. Introduction

For many years, researchers have understood the impor-
tance of studying workload characteristics in order to eval-
uate their impact on current and future systems architec-
ture [6, 18, 20, 27, 31]. Most of these previous applica-
tion studies have focused on the detailed behavior of sin-
gle applications, whether sequential or parallel. For exam-
ple, the caching behavior of the SPEC workloads has long
been a topic of intense scrutiny [7, 12], and the communi-
cation characteristics of parallel applications has similarly
been well documented [9, 37, 36].

However, applications are no longer used in isolation in
production settings. Whether in disparate settings such as
graphics rendering [17], video production [33], or compu-
tational science [13, 14], the desired end-result is often the
product of a group of applications, each of which may be
run hundreds or thousands of times with varied inputs.

We refer to such workloads as batch-pipelined, as il-
lustrated within Figure 1. A batch-pipelined workload is
composed of several independent pipelines; each pipeline
contains sequential processes that communicate with the
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Figure 1. A Batch-Pipelined Workload

preceding and succeeding processes via private data files.
Shared input files are used by all of the pipelines in various
stages. As the figure suggests, a workload is generally sub-
mitted in large batches with all of the pipelines incidentally
synchronized at the beginning. However, each pipeline is
logically distinct and may correctly execute faster or slower
than its siblings.

The key difference between studying the behavior of a
single application and that of a batch-pipelined workload is
that the sharing behavior of the batch-pipelined workload
must be understood. For example, when many instances of
the same application are run, the same executable and po-
tentially many of the same input files are used. Thus, to real-
istically capture the full diversity of these production work-
loads, one must study the behavior of the entire pipeline and
account for the effects of sharing.

In this paper, we present a study of six production sci-
entific workloads. We collected these application pipelines
from diverse fields of computational science, including as-
tronomy, biology, geology, and physics; we believe the ap-
plications are representative of a broad class of important
workloads. We first present a basic characterization of the
computational, memory, and I/O demands of these work-



loads. We find that although individually, a single pipeline
does not place a tremendous load on system resources, in
combination the loads can be overwhelming. We focus par-
ticularly upon the 1/0 behavior of the workloads, because
it is the primary source of sharing. We then characterize
the sharing that occurs in the workloads, by breaking 1/0
activity into three categories: endpoint, which represents
the input and final output, pipeline-shared, which is shared
in a write-then-read fashion within a single pipeline, and
batch-shared, which is comprised of input 1/O is shared
across pipelines. Through this characterization, we show
that shared 1/0 is the dominant component of all 1/0 traffic.

Most importantly, we study the implications for systems
architecture, both from a hardware and software perspec-
tive. We find that the architecture is strongly influenced by
the different types of 1/O traffic, and analogous to proces-
sors that differentiate instruction and data streams, systems
must segregate 1/O traffic in order to be able to successfully
scale under these workloads. Further, as workloads such as
these are likely to be run in wide-area peer-to-peer comput-
ing systems [11], we also study their behavior in such envi-
ronments; extrapolating from current technology levels, we
find that while cluster interconnect bandwidth will likely
keep up with processor technology advancements, wide-
area bandwidth will likely become the bottleneck, poten-
tially limiting such collaborative computing efforts.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the general characteristics of batch-
pipelined workloads as well as our specific application
pipelines. In Section 3, we describe our experimental
method, and in Section 4, 5, and 6, we analyze the data
and discuss architectural implications. We discuss related
work in Section 7, and conclude in Section 8.

2. Applications

The applications that we characterize were chosen from
a range of scientific disciplines. Our selection criteria were
that the applications are attacking a major scientific ob-
jective, are composed of sequential applications, and re-
quire a scalable computing environment to accomplish high
throughput. We focus mostly on six applications but in
some measurements we include SETI@home [34] as a
point of reference. With guidance from users, we chose
workloads and input parameters to correspond to produc-
tion use. For example, for CMS and AMANDA, we took
the actual inputs used in current production runs. (More de-
tails on the exact inputs will be included in the final version)
A summary of the applications is found in Figure 2.

Across these applications, we have observed the follow-
ing characteristics behaviors:
An inverted hourglass storage profile. Small initial in-
puts are generally created by humans or initialization tools

and expanded by early stages into large intermediate re-
sults. These intermediates are often reduced by later stages
to small results to be interpreted by humans or incorporated
into a database. Intermediate data, which often serves as
checkpoint or cached values, may be ephemeral in nature.
Multi-level working sets. Users can easily identify large
logical collections of data needed by an application, such
as calibration tables and physical constants. However, in a
given execution, applications tend to select a small working
set of which users are not aware; this has significant conse-
quences for data replication and caching techniques.
Significant data sharing. Although each application has
a large configuration space, users submit large numbers of
very similar jobs that access similar working sets. This
property can be exploited for efficient wide-area distribu-
tion over modest communication links.

3. Method

For each application, we capture its CPU, memory and
I/0 behavior. The CPU and memory behavior is tracked
with available hardware counters and statistics. To instru-
ment 1/O behavior, we insert a shared library that replaces
the 1/0 routines in the standard library. For each explicit
I/0 event requested by the application, the library records
an event marking the start and end of the operation, the in-
struction count, and other details about the 1/0 request. This
technique can be applied to any application that is dynam-
ically linked. Care is taken so as to avoid additional over-
heads due to tracing.

Access to memory-mapped files is traced with a user-
level paging technique using the POSIX mprotect feature
in a manner similar to that of Tempest [28]. Access to
memory-mapped regions generates a user-level page fault
(SIGSEGV) that may be handled and traced by the shared
library. Only one application (BLAST) uses memory-
mapped 1/O. In the analysis that follows, page faults are
considered equivalent to explicit read operations of one
page size and non-sequential access to memory-mapped
pages is recorded as an explicit seek operation.

4. Workload Analysis

An overview of the resources consumed by each appli-
cation is given in Figure 3. These applications have a wide
variance in run times on current hardware, ranging from a
little more than a minute (BLAST) to a little more than a day
(IBIS). Considered individually, these applications spend
the majority of time consuming CPU rather than 1/O, not
requiring nearly the 1/0 capability as suggested by the Am-
dahl/Case rule of thumb (1 Mbit per second of I/O band-
width per MIPS of CPU) [4]. Memory requirements and
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Figure 2. Application Schematics These schematics summarize the structure of each application pipeline. Circles in-
dicate individual processes, labeled with the name and user CPU time. Rounded boxes indicate data private to a pipeline.
Double boxes indicate data shared between pipelines in a batch. Arrows indicate data flow. Labeled arrows indicate that
actual 1/0 performed differs from the static file size.

- BLAST [3] searches genomic databases for matching proteins and nucleotides. Both queries and archived data may in-
clude errors or gaps, and acceptable match similarity is parameterized. Exhaustive search is often necessary. A single
executable, bl ast p, reads a query sequence, searches through a shared database, and outputs matched sequences.

- IBIS [15] is a global-scale simulation of Earth systems. IBIS simulates effects of human activity on the global environment,
i.e., global warming. i bi s performs the simulation and emits a series of snapshots of the global state.

- CMS [13] is a high-energy physics experiment to begin operation in 2006. CMS testing software is a two-stage pipeline;
the first stage, cnki n, given a random seed, generates and models the behavior of particles accelerated by the ring. The
output is a set of events that are fed to cnsi m which simulates the response of the detector. The final output represents
events that exceed the triggering threshold of the detector.

- Nautilus [35] is a simulation of molecular dynamics. An input configuration describes molecules within a three-dimensional
space. Newton’s equation is solved for each particle. Incremental snapshots are taken to periodically capture particle coor-
dinates. The final snapshot is often passed back to the program as an initial configuration for another simulation. Eventually,
all snapshots are converted into a standard format using bi n2coor d and consolidated into images using r asnol .

- Messkit Hartree-Fock (HF) [8] is a simulation of the non-relativistic interactions between atomic nuclei and electrons,
allowing the computation of properties such as bond strengths and reaction energies. Three distinct executables comprise
the calculation: set up initializes data files from input parameters, ar gos computes and writes integrals corresponding to
the atomic configuration, and scf iteratively solves the self-consistent field equations.

- AMANDA [14] is an astrophysics experiment designed to observe cosmic events such as gamma-ray bursts by collecting
the resulting neutrinos through their interaction with the Earth’s mass. The first stage of the calibration software, cor si ka,
simulates the production of neutrinos and the primary interaction which creates showers of muons. cor anma translates the
output into a standard high-energy physics format. nmt propggates the muons through the earth and ice while introducing
noise from atmospheric sources. Finally, amasi nR simulates the response of the detector to incident muons.



Real Millions of Instructions Memory (MB) 1/0 Traffic 1/0 Rates

Application Time(s) I nteger Float Burst Text Data Share MB Ops MB/MIPS  MB/s
setisthome  seti 41587.1 | 1953084.8  1523932.2 4.6 0.1 15.7 11 75.8 417260 0.00002 0.00
blast  blastp 264.2 122235 0.2 0.1 29 3238 2.0 330.1 88671 0.02701 1.25
ibis ibis 88024.3 | 7215213.8 4389746.8 104.7 0.7 24.0 14 336.1 110802 0.00003 0.00
cms  cmkin 55.4 5260.4 743.8 6.1 | 194 5.0 2.6 75 988 0.00125 0.14
cmsim 15595.0 492995.8 225679.6 0.4 8.7 70.4 43 | 37987 1915559 0.00529 0.24

total 15650.4 498256.1 226423.4 04 | 194 70.4 4.3 | 3806.2 1916546 0.00525 0.24

hf  setup 0.2 76.6 0.4 0.0 0.5 4.0 13 9.1 2953 0.11870 56.43
argos 597.6 179766.5 26760.7 0.8 0.9 25 14 663.8 254713 0.00321 111

scf 19.8 132670.1 5327.6 0.2 0.5 10.3 1.3 | 39834 765562 0.02887 201.06

total 617.6 312513.2 32088.6 0.3 0.9 10.3 14 | 4656.3 1023228 0.01351 754

nautilus  nautilus 14047.6 767099.3 451195.0 18.6 0.3 146.6 1.2 270.6 65523 0.00022 0.02
bin2coord 395.9 263954.4 280837.2 4.2 0.0 22 14 403.3 129727 0.00074 1.02

rasmol 158.6 69612.8 3380.0 19 0.4 49 17 128.7 38431 0.00176 0.81

total 14602.2 | 1100666.5 735412.2 7.9 04 1466 17 802.7 233681 0.00044 0.05

amanda corsika 2187.5 160066.5 4203.6 26.4 24 6.8 14 24.0 6225 0.00015 0.01
corama 419 3758.4 379 0.3 0.5 3.2 11 494 12693 0.01300 1.18

mmc 954.8 330189.1 7706.5 0.3 0.4 220 4.9 1544 1141633 0.00046 0.16

amasim2 3601.7 84783.8 20382.7 1437 | 220 256.6 1.6 550.3 733 0.00523 0.15

total 6785.9 578797.8 32330.7 05 | 220 256.6 4.9 7780 1161275 0.00127 0.11

Figure 3. Resources Consumed
Total 1/0 Reads Writes

Application Files Traffic Unique Static Files Traffic Unique Static Files Traffic Unique  Static
setisthome  seti 14 75.77 3.02 3.02 12 71.62 0.72 1.04 11 4.15 2.36 2.68
blast  blastp 11 330.11 32359 586.21 10 329.99 32346 586.09 1 0.12 0.12 0.12
ibis ibis 136 336.08 73.64 73.64 132 140.08 73.48 73.48 118  196.00 66.66 66.66
cms  cmkin 4 7.49 3.88 3.88 2 0.00 0.00 0.00 2 7.49 3.88 3.88
cmsim 16 3798.74 116.00 126.18 11 3735.24 52.86 63.05 5 63.50 63.13 63.13

total 17 3806.22  119.88 130.06 11 373524 52.86 63.05 6 70.98 67.01 67.01

hf  setup 5 9.13 0.40 0.40 3 5.44 0.26 0.26 3 3.69 0.39 0.40
argos 5 663.76 663.75 663.97 2 0.04 0.03 0.26 4  663.73 663.74  663.97

scf 11 398340 66461 664.61 9 397933 663.79 664.60 8 4.07 2.50 2.69

total 11  4656.30 666.54 666.54 9 3984.81 663.80 664.60 9 67149 666.53 666.53

nautilus  nautilus 17 270.64 32.90 32.90 7 4.25 4.25 4.25 10 266.40 28.66 28.66
bin2coord 247 403.27  273.87 273.87 123 15278 15266 152.66 241 25049  249.39 249.39

rasmol 242 128.75 128.76  128.76 124 115.87 115.88 115.88 120 12.88 12.88 12.88

total 501 802.66 43548 43548 252 27290 27274 27274 369 529.76  290.94 290.94

amanda corsika 8 23.96 23.96 23.96 5 0.76 0.75 0.75 3 23.21 23.21 23.21
corama 6 49.37 49.37 49.37 3 23.17 23.17 23.17 3 26.20 26.20 26.20

mmc 11 15436 15436 154.36 9 28.92 28.92 28.92 2 12543 12543 12543

amasim2 29 550.35 550.40 635.78 27 545.04 545.09 63047 3 5.31 5.31 5.31

total 46 778.04 778.09 86342 40 597.89 597.96 683.32 7 18014 180.11  180.11

Figure 4. 1/0 Volume




Appl. Open (%) Dup (%) Close (%) Read (%) Write (%) Seek (%) Stat (%) Other (%)
seti | 64595 (15.5) 0(0.0) | 6459 (155) | 64266 (15.4) 32872( 7.9) | 63154 (15.1) | 127742 (30.6) 15( 0.0)
blastp 18( 0.0) 11 (0.0) 18( 0.0) | 84547 (95.3) 1556 ( 1.8) 2478 ( 2.8) 37( 0.0) 5( 0.0)
ibis | 1044 ( 0.9) 0(0.0) | 1044( 0.9) | 26866 (24.2) 28985 (26.2) | 51527 (46.5) 1208 ( 1.1) 122 ( 0.1)
cmkin 2( 0.2 0(0.0) 2( 0.2 2( 0.2 492 (49.8) 479 (485) 8( 0.8) 2( 0.2
cmsim 17 ( 0.0) 0(0.0) 16 ( 0.0) | 952859 (49.7) 18468 ( 1.0) | 944125 (49.3) 47( 0.0 24( 0.0)
total 19( 0.0) 0(0.0) 18( 0.0) | 952861 (49.7) 18960 ( 1.0) | 944604 (49.3) 55 ( 0.0) 26( 0.0)
Ssetup 6( 0.2) 0(0.0) 6( 0.2) 1061 (35.9) 735 (24.9) 1118 (37.9) 19( 0.6) 6( 0.2)
argos 3( 0.0 0(0.0) 3( 00 8( 0.0 127569 (50.1) | 127106 (49.9) 18 ( 0.0) 4( 0.0
cf 34( 0.0) 0(0.0) 34( 0.0) | 509642 (66.6) 922( 0.1) | 254781 (33.3) 121( 0.0) 18 ( 0.0)
total 43( 0.0 0(0.0) 43( 0.0) | 510711 (49.9) 129226 (12.6) | 383005 (37.4) 158 ( 0.0) 28( 0.0)
nauttilus 497 ( 0.8) 0(0.0) 488 ( 0.7) 1095 ( 1.7) 62573 (95.5) 188 ( 0.3) 678 ( 1.0) 1( 0.0
bin2coord | 1190 ( 0.9) | 6977 (5.4) | 12238( 9.4) | 33623 (25.9) 65109 (50.2) 3( 0.0 407 ( 0.3) | 10141 ( 7.8)
rasmol 359 ( 0.9) 22(0.1) 517 ( 1.3) 29956 (77.9) 3457 ( 9.0) 1( 0.0) 252 ( 0.7) 3850 (10.0)
total | 2046( 0.9) | 6999 (3.0) | 13243( 5.7) | 64674(27.7) | 131139 (56.1) 192 ( 0.1) 1337 ( 0.6) | 13992 ( 6.0)
corsika 13( 0.2 0(0.0) 13( 0.2) 199 ( 3.2) 5943 (95.5) 8( 0.1 36( 0.6) 10( 0.2)
corama 4( 0.0 0(0.0) 4( 0.0 5936 (46.8) 6728 (53.0) 2( 00 12( 0.3) 4( 0.0
mmc 8( 0.0 0(0.0) 9( 0.0) | 29906 ( 2.6) | 1111686 (97.4) 0( 0.0 7( 0.0 7( 0.0)
amasim2 30( 4.1) 0(0.0) 28( 3.8) 577 (78.7) 24( 3.3) 4( 05) 57( 7.8) 10( 1.4)
total 55( 0.0) 0(0.0) 54 ( 0.0) 36618 ( 3.2) | 1124381 (96.8) 14 ( 0.0) 112 ( 0.0) 31( 0.0)
Figure 5. 1/0O Instruction Mix
Endpoint I/O (MB) Pipeline I/O (MB) Batch 1/0 (MB)

Application Files Traffic Unique Static Files Traffic Unique Static Files Traffic Unique  Static

setithome et 2 0.34 0.34 0.34 12 75.43 2.68 2.68 0 0.00 0.00 0.00

blast  blastp 2 0.12 0.12 0.12 0 0.00 0.00 0.00 9 329.99 32346 586.09

ibis ibis 20 179.92 53.97 53.97 99 148.27 12.69 12.69 17 7.89 6.98 6.98

cms  cmkin 2 0.07 0.07 0.07 1 7.42 3.81 381 1 0.00 0.00 0.00

cmsim 6 63.50 63.13 63.13 1 5.56 3.81 381 9 3729.67 49.04 59.24

total 6 63.56 63.20 63.20 2 12.99 7.62 7.62 9 3729.67 49.04 59.24

hf  setup 3 0.14 0.14 0.14 2 8.99 0.26 0.26 0 0.00 0.00 0.00

argos 3 181 181 181 2 661.95 66193 66217 0 0.00 0.00 0.00

scf 3 0.01 0.01 0.01 7 3983.39 664.59 664.59 1 0.00 0.00 0.00

total 3 1.96 1.94 194 7 4654.34 664.59 664.59 1 0.00 0.00 0.00

nautilus  nautilus 6 118 1.10 1.10 9 266.32 28.66 28.66 2 3.14 3.14 3.14

bin2coord 1 0.00 0.00 0.00 241 40325 27385 273.85 5 0.02 0.01 0.01

rasmol 119 12.88 12.88 12.88 120 115.79 11579 11579 3 0.08 0.09 0.09

total 124 14.06 1399 13.99 369 785.37 41825 41825 8 3.24 3.24 3.24

amanda corsika 2 0.04 0.04 0.04 3 23.17 23.17 23.17 3 0.75 0.75 0.75

corama 3 0.00 0.00 0.00 3 49.37 49.37 49.37 0 0.00 0.00 0.00

mmc 0 0.00 0.00 0.00 6 151.63 15163 151.63 5 2.73 2.73 2.73

amasim2 5 5.31 5.31 531 2 40.00 40.00 12543 22 505.04 505.04 505.04

total 6 522 521 521 11 26431 26429 349.69 29 508.52 50852 508.52

Figure 6. 1/0 Roles




program sizes are all quite modest in comparison to total
1/0 volume.

Figure 4 details the 1/0 volume produced by each ap-
plication. We make several observations. Although these
applications are conceived as a pipeline of multiple stages,
they are not connected by simple data streams. Rather, each
makes complex read/write use of the file system, as indi-
cated by the number of files each accesses. SETI, CMS,
HF, and to a lesser degree, BLAST, all read input data mul-
tiples times. Over-writing of output data is also found in
all pipelines with the exception of AMANDA. Output over-
writing is usually done to update application-level check-
points in place. We are somewhat alarmed to observe that
such checkpoints are unsafely written directly over exist-
ing data, rather than written to a new file and atomically
replaced with r enane. Several pipelines are distributed
with large collections of data that may be of use to many
runs. However, any typical run only accesses a small por-
tion common to similar runs. For example, the static size of
the BLAST dataset exceeds the unique amount read by the
application by 45%.

The distribution of “1/O instructions” is given in Figure
5. Two features stand out. First, a high degree of ran-
dom access is present throughout, with the exception of
AMANDA. This results from the nature of the data files
accessed by the programs, generally with complex, self-
referencing, internal structure, and contradicts many file
system studies which indicate the dominance of sequential
I/0 [5]. Second, a very large number of opens are is-
sued relative to the number of files actually accessed. Typ-
ically designed on standalone workstations, these applica-
tions are not optimized for the realities of distributed com-
puting, where opening a file for access can be many times
more expensive than issuing a read or write. The O her
column sums a number of generally uncommon operations
such as i oct | and access. The high numbers in this
column reflect the fact that bi n2coor d and r asnol are
driven by shell scripts which perform many r eaddi r op-
erations.

5. Sharing Analysis

To characterize the different types of sharing in batch-
pipelined workloads, we have divided the /O traffic into
three roles. Endpoint traffic consists of the initial inputs and
final outputs that are unique to each pipeline. They must be
read from and written to the central site regardless of the
system design. Pipeline traffic consists of intermediate data
passed between pipeline stages. Batch traffic consists of
input data that are identical across all pipelines.

Through our understanding of each application, we iden-
tified every file accessed as either endpoint, pipeline, or
batch, and computed the traffic performed in each category,
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Figure 7. Batch Working Set. These figures show the
hitrate of the batch 1/O traffic as a function of cache size
with a batch width of 10. Notice that most of these working
sets are very small and even the largest as seen in AMANDA
is only slightly more than half of a gigabyte. Further notice
that maximum hit rates are achieved with cache sizes that
are relatively small compared to the total batch 1/O traffic.
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Figure 8. Pipeline Working Set. These figures show the
hitrate of the private 1/O traffic as a function of cache size.
AMANDA is anomolous here because it has no pipelined
I/0 and thus needs no pipeline cache at all. For most of
the other applications, notice that a small cache size rela-
tive to the total private 1/O of the application can achieve
maximal hit rates. The exception is Nautilus which has an
early plateau but is not maximized until its cache is almost
the size of the total traffic.

as shown in Figure 6. We immediately see that compar-
atively little traffic is needed at the endpoints; the bulk is
either pipeline or batch, depending on the application. To
examine the sharing potential of each workload, we sepa-
rated the pipeline and batch 1/O traces and replayed them
over cache simulators of various sizes. These results are
shown in Figures 7 and 8. What is evident from these re-
sults is that the working sets (both batch and pipeline) of
each of these applications is very low relative to their total
I/0 demands. This is an encouraging result as it shows that
maximum hit rates can be achieved with small caches and
in most cases this maximal hit rate will exceed 90%. Note
that the size of the executable files is included implicitly in
these calculations.
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Figure 9. Scalability of /0 Roles

6. Architectural Implications

Each of these workloads are potentially infinite. In
these problem domains, the ability to harness more com-
puting power enables higher resolution, more parameters,
and lower statistical uncertainties. Current users of these
applications wish to scale up throughput by running hun-
dreds or thousands simultaneously. At this scale, applica-
tions normally considered CPU-bound become 1/O bound
when considered in aggregate.

To give some idea of the growing envelope of current
scientific computing, consider that in the spring of 2002,
the CMS pipeline was used to simulate 5 million events di-
vided into 20,000 pipelined jobs, consuming 6 CPU-years
and producing a terabyte of output. This batch was only a
small fraction attempted as a test run before full production
begins in 2007. Successive yearly workloads are planned to
grow. All the necessary code and data are published in au-
thoritative form by the experiment’s central site. Likewise,
all simulation outputs must eventually be moved back for
archival storage.

In this section, we will explore the general properties of
computing and storage systems that may be built to satisfy
these workloads. We will not explore detailed algorithms
for data management, but instead consider the balance be-
tween the necessary resources.

6.1. Endpoint Scalability

We assume that each of these applications, like CMS,
relies on a central site for the authenticity and archival of
input and output data. Thus, ultimate scalability is limited
by competition for this shared resource. However, we have
demonstrated that actual endpoint 1/O traffic is a relatively
small fraction of the total for all of these applications. If we
are able to eliminate all non-endpoint traffic from the end-
point server through techniques such as caching and repli-
cation then we may see significant gains in scalability.

Of course, traffic elimination must be carried out care-
fully. Pipeline-shared traffic may only be eliminated if it is

truly of no use to the end user. Such intermediate data might
be necessary to return for debugging or even for archival
if the ability to reproduce it is questionable. Batch-shared
may only be eliminated within the constraints of maintain-
ing the consistency and authenticity of potentially changing
input data. Traffic elimination cannot be done blindly with-
out some consideration of how the data are actually used
outside the computing system.

That said, we may consider the limits of a system for
executing such workloads based on its ability to eliminate
shared traffic. Figure 9 shows how each of the selected
applications would scale in four systems each eliminating
some category of traffic. We assume the presence of a
buffering structure sufficient to completely overlap all CPU
and 1/0; figures assume a 2000 MIPS CPU and show MB
per second of CPU time. Two horizontal lines show mile-
stones in I/0 bandwidth. The lower, at 15 MB/s, represents
a capable commodity hard disk. The upper, at 1500 MB/s,
represents a very aggressive storage server and network.

The leftmost graph shows the scalability of a system that
carries all traffic to the endpoint server. In this discipline,
a high end storage device is needed for systems of very
modest size, and is even overwhelmed by two applications
near n=100. Only IBIS and SETI would be able to scale to
n=100,000. If batch-shared traffic is eliminated, we will
make significant improvements in CMS and Nautilus, as
shown in the second graph. On the other hand, if pipeline-
shared traffic is eliminated, we observe significant gains for
SETI, HF, and Nautilus, as shown in the third. If only end-
point I/O is performed, then we reach the limit shown in the
rightmost graph. All of the applications shown could scale
over 1000 workers with modest storage, and over 100,000
with high-end storage. SETI alone could potentially scale
to 1 million CPUs, an indicator of its specialized design for
wide-area deployment.

6.2 Hardware Architecture

To reach these scalability limits, we must provide a hard-
ware architecture that localizes the effects of each of the I/0

1/0 Rate
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Figure 10. A General I/O Architecture

Each storage device in this architecture corresponds to
the three roles of 1/O: pipeline-shared (P), batch-shared
(B), and endpoint (E). Each CPU owns a private pipeline-
shared device, is connected to the batch-shared storage by a
batch interconnect (BI) and then to the endpoint storage by
an endpoint interconnect (EI). We consider a wide range of
technologies — from 1/0O backplanes to wide-area networks
— as candidates for both interconnects.

roles. We propose that there is a natural division of hard-
ware resources into the three roles of endpoint, pipeline-
shared, batch-shared. If sufficiently powerful software can
accurately classify traffic, then scalable systems can be pro-
visioned with the right amount of hardware to create a bal-
anced system for the target workload. This provisioning
is not necessarily that obtained by networking commodity
desktop workstations into uniform clusters.

A general architecture is shown in Figure 10. There are
three types of storage corresponding to the three roles of 1/0
traffic. An endpoint (E) server is primarily responsible for
serving unique input data and archiving output data. When
necessary, it must also provide authentic copies of batch-
shared data, although this role must be minimized. As we
have mentioned, this service is necessarily the bottleneck
of the system; a high-end network storage device may be
necessary. To minimize load on the archive, batch-shared
data are stored on batch-sharing (B) services in the network.
These provide access to the read-only data common to all
pipeline executions. Finally, each CPU is equipped with
a device for temporary storage of pipeline-shared (P) data.
For the application sizes presented here, P may simply be
main memory. Such memory is logically distinct from other
CPUs and needs no facilities for coherence or other commu-
nication without the direction of the CPU. We will consider
a range of technologies as candidates for the batch-sharing
interconnect (BI) and the endpoint interconnect (El).

Figure 11 shows application performance and scalability
of six candidate configurations. All are composed of 1024
CPUs, connected by an aggressive 1500 MB/s endpoint in-

CPUs/ % Utiliz.

Pipeline Config BI Speedup CPU Bl El
setiathome | CPU: 1024 1.00 100 1 0
blast | 2BIPS 1 1.00 23 99 0

ibis | BI: 1024 1.00 9 8 0

cms | 12 MB/s 40 1.00 100 99 11

hf 1024 1.00 100 92 0

nautilus 666 1.00 100 99 1
amanda 7 1.00 100 94 1
setiathome | CPU: 1024 1.00 100 0 0
blast | 2BIPS 2 4.25 100 84 1

ibis | BI: 1024 1.00 929 8 0

cms | 125 MB/s 403 1.00 100 99 11

hf 1024 1.00 100 9 0

nautilus 1024 1.00 100 15 1
amanda 74 1.00 100 99 1
setiathome | CPU: 1024 1.00 100 0 O
blast | 2BIPS 23 4.25 100 97 1

ibis | BI: 1024 1.00 929 0 O

cms | 1250 MB/s 1024 1.00 100 25 11

hf 1024 1.00 100 0 0

nautilus 1024 1.00 100 1 1
amanda 742 1.00 100 99 1
setiathome | CPU: 1024 16.00 100 25 O
blast | 32 BIPS 1 1.00 1 99 0

ibis | BI: 74 16.00 99 99 10

cms | 12 MB/s 1 7.70 48 19 91

hf 69 16.00 100 99 12

nautilus 41 16.00 100 98 16
amanda 1 6.91 43 92 8
setiathome | CPU: 1024 16.00 100 2 0
blast | 32 BIPS 1 9.72 14 9% 3

ibis | BI: 743 16.00 99 99 10

cms | 125 MB/s 1 8.32 52 2 99

hf 692 16.00 100 99 12

nautilus 416 16.00 100 99 16
amanda 3 16.00 100 64 18
setiathome | CPU: 1024 16.00 100 0 O
blast | 32BIPS 1 67.96 100 67 22

ibis | BI: 1024 16.00 99 13 10

cms | 1250 MB/s 1 8.39 52 0 99

hf 1024 16.00 100 14 12

nautilus 1024 16.00 100 24 16
amanda 38 16.00 100 81 18

Figure 11. Configurations

terconnect, and contain some varying number and capac-
ity of batch interconnects. Two types of CPU are shown:
a 2 BIPS CPU, typical for commaodity systems in 2002,
and a 32 BIPS CPU, predicted as typical in 2008 accord-
ing to Moore’s Law; although a simplistic measure of pro-
cessor performance, instructions-per-second serves us well
in these coarse-grained estimations. Each CPU is coupled
with three possible batch-sharing interconnects: 12.5 MB/s,
representing Fast Ethernet, 125 MB/s, representing Gigabit
Ethernet or a commodity 1/0 backplane, and 1250 MBY/s,
representing 10 Gigabit Ethernet or a high-performance 1/0
backplane. For each application and configuration, we se-
lect the number of CPUs per batch interconnect that max-



imizes system throughput measured in jobs completed per
second. This throughput is then normalized against that of
the slowest system, yielding a speedup ratio. The final three
columns of Figure 11 also show the percent utilization of
each resource, indicating which is the bottleneck.

The first configuration is approximately the state of com-
modity computing clusters in 2002. Given an appropriate
cluster size this technology may be made well-balanced
for four of seven applications. It is far over-provisioned
for SETI, and underprovisioned for BLAST. Moving down
the table, upgrading the Bl to 125 MB/s offers BLAST a
speedup of 4.25 times, even with only two CPUs per BI.
Other applications see no benefit. Of these applications,
BLAST may be the only one well-suited to commodity
SMPs with small numbers of processors.

The fourth configuration, using 32 BIPS processors and
a 12.5 MB/s batch interconnect, might be the state of com-
modity computing clusters in 2008. Here, with smaller
but still reasonable cluster sizes, I1BIS, HF, and Nautilus
may still be made well-balanced. AMANDA is under-
provisioned, but may be satisfied by advancing to faster
networks. A single instance of BLAST will still consume
the majority of a 1250 MB/s network, so distributing this
computation will require 1/0 development to match CPU
growth. However, CMS is in deeper trouble. It is not con-
strained by the local area network, but with 1024 proces-
sors, its global throughput is limited by the bandwidth of
even a 1500 MB/s storage device.

Clearly, no single configuration will satisfy all applica-
tions. Any general-purpose system will be drastically over-
or under- provisioned for a given application. However,
careful allocation of resources to different classes of jobs
may still yield a balanced system. For example, 1024 2
BIPS CPUs connected by a 125 MB/s network could easily
be shared by two instances of BLAST and 1022 instances of
Nautilus, utilizing the CPU and Bl and 100 and 99 percent,
respectively. If such systems are to be used as commod-
ity engines for scientific work, then network resources must
rise to become an allocable resource in combination with
CPU time and disk space.

6.3 Software Architecture

These workloads, whether executed on conventional or
custom architectures, have unusual demands of system soft-
ware. They require something like a distributed file system,
that provides access to shared input data and output space
via a consistent naming scheme within constraints of secu-
rity, persistence, and performance. Traditional file systems
do not serve these applications because their naming and
consistency requirements are targeted to interactive cooper-
ating users. These applications require a data management
system that has specialized requirements for workload anal-

ysis, failure recovery, and resource management.

Scalable solutions to both pipeline and batch sharing
problems require that an application’s I/O be classified into
each of the three roles with some degree of accuracy. Cus-
tom applications such as SETI have succeeded in wide
scalability by virtue of manual 1/O division: all endpoint
I/0 happens via explicit network communication. Yet, we
can hardly expect that all valuable applications will be re-
written for a distributed environment. Ideally, such 1/O
roles would be detected automatically by the system, but
we might reasonably ask the user to provide hints of 1/0
roles to the system without modifying applications directly.

A number of file systems take account of the conven-
tional wisdom that quickly-deleted data is a significant
source of traffic in general-purpose workload. However,
this recognition has limited application due to the require-
ments of reliability and consistency in interactive systems.
For example, NFS permits a 30-60 second delay between
application writes and data movement to the server. Were
this delay made to be minutes or hours in order to accommo-
date pipeline sharing, the reduction in unnecessary writes
would be accompanied by a much increased danger of data
loss during a crash and some very unusual consistency se-
mantics. The session semantics of AFS are even worse:
closing a file is a blocking operation that forces the write-
back of dirty data. Not only would all vertically shared data
be written back at each of the (humerous) close operations,
but the CPU would be held idle between pipelines, offering
no possibility of CPU-1/O overlap.

General-purpose file systems operate under the assump-
tion that most data must eventually flow back to the archival
site. These workloads require the opposite assumption;
most created data should remain where it is created un-
til an explicit operation by the writer, the system, or per-
haps the user forces it into archival storage. This improves
overlap and eliminates unnecessary writes, but runs the dan-
ger that 1/O operations waiting to be written back may fail,
due to permissions, disconnection, or any of the many other
sources of error in a distributed file system. This is accept-
able in a scientific batch computing system, as long as such
a failed 1/0 can be detected, matched with the process that
issued it, and force a re-execution of the job. Such seman-
tics would not be appropriate in an interactive workload,
where a user expects that I/0 completion is immediate.

Input sharing has been accomplished in traditional file
systems through the use of client-side caches. Such caches
have improved both scalability and performance by shar-
ing recently-read data between processes However, cache
misses are still resolved at the central server. This will not
scale when many thousands of compute nodes begin exe-
cuting the same program at once and all request the same
input files to fill cold caches. To achieve scalability in batch
sharing, a compute node must attempt to leverage the poten-



tially warm caches of its peers. Such techniques will seek
to maximize scalability, even at the price of reduced single-
client performance.

7. Related Work

The CPU, memory, communication, and 1/O characteris-
tics of applications have been studied for many years by the
research community. These can be roughly categorized by
the type of workloads that they consider: general-purpose
workloads containing many applications, sequential appli-
cations examined in isolation, or parallel applications in iso-
lation. We summarize the work in each of these categories,
focusing on those that have examined file system activity.

File system activity has been examined for a range of
general-purpose workloads. Many of the studies that have
greatly influenced file system design over the last 20 years
focused on academic and research workloads [31, 24, 5, 29].
These studies have found that most files have very short
lifetimes, access patterns exhibit a high degree of locality,
and read-write sharing is rare. However, missing from these
broad studies of traffic is any linkage to the applications that
generate the traffic.

More similar to our work are those studies that have fo-
cused on the behavior of individual applications. The mem-
ory and 1/0O behavior of sequential applications received
great attention during the early development of virtual-
memory and file cache mechanisms and policies in tra-
ditional operating systems [22]. For example, Denning’s
working set model [10], initially applied to memory-access
patterns, has also been examined as a model for sequential
1/0 behavior [19]. As with file systems, studies of commer-
cial workloads [6, 18] have become more common in recent
years. However, in this domain, the interaction or pipeline
behavior of sequential applications has not been examined.
While we believe it may also be interesting to study the de-
tailed memory-system behavior of our applications, we do
not believe the opportunities for sharing are fundamentally
different than other studies.

Parallel applications are in many ways the most similar
to pipelined batch applications. The CPU, memory, com-
munication, and 1/0 behavior of parallel and vector applica-
tions have been quantified in a number of studies [9, 37, 36],
but the most relevant studies consider the impact of explicit
1/0 [30, 32, 23, 8, 1]. Our study embellishes these works by
studying the sharing behavior of an important new class of
workload.

Many of these studies demonstrate the drastic differ-
ences in 1/0 behavior for parallel applications compared to
general-purpose workloads. For example, parallel scientific
workloads often have high, bursty 1/0 rates [21, 25] and
relatively constant behavior across different runs and input
parameters [25]; further, parallel workloads tend to be dom-

10

inated by the storage and retrieval costs of large files, par-
ticularly check-point files[21, 16]; finally, quick deletion is
uncommon [16].

As many have observed, improvements in processor and
memory speed have far outstripped improvements in 1/0
performance. Models of 1/0 system behavior [2, 26] have
relied on general rules such as Amdahl’s law to guide sys-
tem design. A more detailed measurement of the interaction
between 1/0-intensive processes will serve to guide future
models of systems and workloads.

8. Conclusions

Applications are not run in isolation. In production set-
tings, scripting and workflow tools are used to glue together
series of applications into pipelines; a particular pipeline
may be run many thousands of times over varied inputs to
achieve the goals of the users. We term such workloads
batch-pipelined, as batches of pipelines are run at a given
instant.

In this paper, we characterize an important class of
batch-pipelined workloads, within the realm of computa-
tional science. Beyond typical characterizations of process-
ing, memory, and 1/O demands, we bring forth the sharing
characteristics of the workloads, and demonstrate their im-
portance on scalability.

We also study the architectural impacts of this workload
class, from both a hardware and software perspective. The
key to scalability of these workloads is 1/O classification; by
segregating 1/0 traffic by type, and aggressively exploiting
sharing characteristics, scalability can be improved by many
orders of magnitude.

As shared computing infrastructures and application out-
sourcing become commonplace, the ability of scalable sys-
tems to handle the demands of batch-pipelined workloads
will become increasingly important. Studying the interac-
tion of many such batch-pipelined workloads on a single
platform is thus an interesting topic for future research.
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