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Abstract

Distributed computing has become a complex ecosystem of protocols and services for man-

aging computation and data. Distributed applications are becoming complex as well. Users,

particularly in scientific fields, wish to deploy large numbers of applications with complex

dependencies and a large appetite for both computation and data. How may such systems

and applications be brought together?

I propose that applications deployed in distributed systems should be represented by

an agent. The role of the agent is to transform an application’s abstract operations into

concrete operations on the varying resources in a distributed system. The agent must hide

the unpleasant aspects of individual resources while coordinating their activity in a manner

specialized to each application. I examine four open problems in the design of agents for

distributed computing.

First, I explore a variety of techniques for coupling a job to an agent, informed by the

experience of porting to different systems and deploying with several applications. Coupling

an agent to a job via the debugger is by far the most reliable and usable technique and has

acceptable overhead for scientific applications.

Second, I describe the problem of coupling an agent to a variety of distributed data

systems. This is difficult because of the subtle semantic differences between existing data

interfaces. These differences result in the notion of an escaping error, which represents a

runtime incompatibility between interfaces.

Third, I present the problem of coupling an agent to a computation manager such as a

batch system. This requires a careful discussion of errors in a distributed system. I develop
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a theory of error propagation and present the notion of error scope, which is needed to guide

the propagation of escaping errors.

Finally, I explain how an agent may coordinate the consumption of computation and data

resources on behalf of a job. As a case study, I present BAD-FS, a system that executes

data intensive batch workloads on faulty distributed systems. I conclude with quantitative

evidence underscoring the importance of failure handling in distributed systems.
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Chapter 1

Introduction

1.1 Distributed Batch Computing

Computer systems and applications are growing with no apparent bound. As users concoct

ever-larger and more complex applications, computer manufacturers respond with larger,

faster, and more economical machines, which in turn encourage more aggressive applica-

tions. Despite this continuous improvement in capacity, performance, and price, there has

always been an important category of users whose needs perpetually exceed the capabilities

of any single machine. Such power users may be attempting to solve very large problems by

brute force. They may require resources — such as memory — that can only be obtained

by aggregating many machines together. They may be engaged in a competition — arti-

ficial, commercial, or scientific — where the prize is determined simply by the number of

calculations performed.

To achieve such goals, power users require distributed batch computing systems that can

execute large applications over a long period of time. Such systems tie together hundreds or

thousands of machines into one coherent system. Given a structured description of the work

to be performed, such a system can distribute work among the available nodes, recover from

node crashes and network failures, and generally shield the user from unpleasant events that

are the norm in a distributed computing environment. A variety of academic and commercial
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batch systems are available today.

Historically, batch systems have been geared towards applications that are computation-

intensive. An well-known example of a computation-intensive application is the Search for

Extraterrestrial Intelligence (SETI) [138], which harnesses cycles from idle personal work-

stations. The SETI application is a program specially designed to run in the unpredictable

environment of a remote workstation. Each available machine is assigned a small data item

by a central server, about several hundred kilobytes, computes on that data for a long time,

and then returns a result indicating whether that data selection held a signal of interest. The

same central server collects all of the results and reports the overall progress of the search

back to the project managers. The amortized data needs of the application are less than ten

bytes per CPU-second per machine, a rate that easily scales up to a large number of ma-

chines without special techniques. Similar comments apply to other computation-intensive

applications.

However, there is a growing community of users who hope to apply large scale dis-

tributed batch computing to data-intensive applications. Although some such applications

may process large amounts of data, the distinguishing characteristic is the complexity of data

interactions. For example, a scientist might wish to run an application drawn from a trusted

software repository, seed it with calibration data published by a scientific organization, pass

it inputs from a private workstation, run it on a computational cluster managed by an aca-

demic department, and then send the results to an archival service. Each component of such

a computation might run different software, communicate with different protocols, and be

obliged to respect the constraints of different human owners.

As in many computing settings, scientific applications are the first to push the envelope.

Data-intensive scientific applications may be found in astrophysics [70], climatology [51],

genomics [13], high-energy physics [67], and physical chemistry [139], to name a few. Sci-

entific applications also pave the way for data-intensive commercial applications such as
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data mining [9], document processing [44], electronic design automation [1], semiconductor

simulation [32], financial services [110], and graphics rendering [83].

Computer science has produced countless systems that manage shared computation re-

sources and shared storage independently. There are batch systems, both academic [90]

and commercial [65, 157, 5], for managing compute clusters. There are distributed filesys-

tems [126, 68, 78, 8], remote I/O systems [112, 26, 22, 48, 109], and archive managers [130,

93, 23]. A renewed interest in world-wide computational systems known as grids [54] has

produced a variety of protocols for accessing both computation [39, 57] and data [11, 149].

Despite the best intentions of their designers, no single system has achieved universal

acceptance or deployment. Each carries its own strengths and weakness in performance,

manageability, and reliability. A complex ecology of distributed systems is here to stay. The

result is that the field of distributed computing is divided into fiefdoms divided by protocol

and purpose. One may find systems for managing resources “globally” as long as a user stays

within the confines of one organization, one network, or one technology. Such requirements

present a problem for data-intensive batch applications that require access to computation

and data from many different systems. How are ordinary applications to coordinate their

needs for many kinds of resources?

1.2 A Case for Agents

To remedy this situation, I propose that a jobs in a complex system should be represented

by an agent. The role of the agent is to transform a batch job’s abstract operations into

concrete operations on the available systems for computation and data. In particular, it

hides away the unpleasant aspects of these resources and coordinates their activities in a

manner specialized to each application.

This concept is quite similar to how people rely on expert human agents to represent
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them in specialized matters such as law or real estate. An agent must transform complex,

obscure, or specialized language into a form that is understandable to the client. An agent

must insulate the client from the vagaries of the field by coalescing multiple messages and

hiding temporary setbacks. An agent must coordinate multiple external parties so that they

come to agreement on a transaction.

The role of an agent is also strikingly similar to that of a conventional operating system

kernel. A kernel is responsible for the many uninteresting bitwise operations necessary to

make devices operate as applications expect. It is also responsible for coordinating the use

of resources. When an I/O operation causes a delay, a process must be removed from the

CPU. When the I/O operation is complete, a process once again regains the CPU. An agent

must perform similar tasks in a distributed system.

In this dissertation, I present practical lessons learned from several years of experience

building and deploying such agents with working applications and real users in the context

of the Condor distributed batch system at the University of Wisconsin. Consequently, I

have not focused solely on the traditional computer science problems of performance and

efficiency — although those issues deserve some attention — but on the issues of usability,

practicality, and reliability that dominate the experience of end users. A significant problem

at every level is the question of how to identify, propagate, and react to errors of various

kinds. My contribution is an exploration of the semantics of agency.

1.3 Overview of Dissertation

This dissertation will explore how data-intensive applications may be run in distributed sys-

tems by using agents to mediate the interaction between jobs, data systems, and computation

systems. Figure 1.1 depicts the focus of each chapter.
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Figure 1.1: Outline of Dissertation

Chapter 2: Background. Distributed computing has historically considered access

to computation and access to data as two distinct problems with unrelated solutions. This

chapter will review research into previous distributed computing and data systems, paying

particular attention to the difficulty of coordinating the two types of systems as they currently

stand. It also reviews the literature on interposition agents and the (limited) available advice

on error propagation.

Chapter 3: Job Coupling. The vast majority of real programs are not specialized

to operate in a distributed system. Most programmers write to the standard interfaces

available on workstations, such as the Unix I/O interface. In order to make distributed

computing accessible to such conventional applications, we must find ways to seize control

of I/O interfaces on standard operating systems without special privileges. This chapter

evaluates a variety of techniques for coupling agents to jobs, each with varying degrees

of functionality, reliability, and performance. The experience of deployment demonstrates
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that the primary usability concern is hole detection: the ability to determine when the job

coupling is incomplete.

Chapter 4: Data Coupling. Once we have established the coupling between an agent

and a job, we may turn to the relationship between an agent and the various I/O devices

available in a distributed system. Chapter 4 describes Parrot, an agent that can attach a

standard Unix application to a variety of I/O protocols used in the scientific community. The

mapping of Unix operations to each I/O protocol introduces both semantic and performance

problems that must be addressed. This chapter introduces the notion of an escaping error,

which represents an incompatibility between interfaces.

Chapter 5: Computation Coupling. An agent must also interact with the services

provided by a batch system. In order to provide the correct local environment for a job, a

batch system must provide services for an agent to interact with at runtime. The chain of

services so constructed at runtime is highly susceptible to a wide variety of errors, which can

turn into a usability problem. This chapter expands upon the problem of escaping errors,

introducing the concept of error scope, and presenting a discipline for error propagation. It

demonstrates how this discipline can be applied to agents in both Java and Unix computing

environments.

Chapter 6: Coordinating Computation and Data. Chapter 6 ties together the

previous chapters by considering jobs, data, and computation as a whole. It introduces

the notion of a workload as a transaction and discusses the range of ways in which such

a transaction may be committed. I will present a case study of BAD-FS: a system that

considers both computation and data as first-class resources to be managed using the notion

of an entire workload as a transaction. The chapter concludes with a concrete example of

the resilience of this approach by running a large workload on a real wide-area distributed

system.
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This figure shows the structure of five data intensive applications. Each circle indicates a
Unix process. Each box indicates files read or written by the process. Double boxes indicate
read-only data shared between many instances of a pipeline.
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1.4 Data-Intensive Applications

Throughout this dissertation I will rely on a collection of five data-intensive applications that

are candidates for execution in large distributed systems. These applications were drawn

from real users at the University of Wisconsin-Madison and represent a range of scientific

disciplines. These applications are not a random sampling, but were deliberately chosen

because they stress the ability of current systems to deal with the complexity and/or volume

of data when run in large numbers. An earlier paper [143] describes these applications in

great detail.

Figure 1.2 shows the structure of each of these applications. Each is composed of several

standard Unix processes arranged like a pipeline. Each process in the pipeline reads and

writes ordinary files in the filesystem. Some files are read-only, while others are written by

one process and then read by another. Typically, a large number of pipelines is submitted

at once, each with slightly different input parameters, but often sharing the same input

files. Although I use the term pipeline, these applications do not use Unix pipes: they

communicate solely through the filesystem.

Each application can solve problems of varying granularity. With guidance from users,

I chose problem sizes that were large enough to represent real work, but small enough to

remain tractable for analysis and experiment. A single problem can be solved in minutes

on a standard workstation, but a real workload would consist of thousands of independent

problems.

It is important to note that the schematics shown in Figure 1.2 are given at a level of

abstraction comfortable to end users. Invariably, these applications were described in terms

such as: This pipeline expects to find calibration data in /data and will create a variety of

output files in /tmp. In general, users were not familiar with low level details, such as the

exact subset of files actually used, or whether files were accessed in random or sequential
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order. This lack of knowledge is a result of the communal nature of scientific applications,

which are often built by many developers and may rely on many different libraries of utility

code. No single user or developer has a complete low-level picture of how an application

operates and are often surprised to discover the underlying details.

AMANDA [70] is an astrophysics experiment designed to observe distant cosmic events.

The detector, buried in the Antarctic icepack, observes atmospheric muons produced by

neutrinos emitted by the events of interest. The first stage of the calibration software,

corsika, simulates the production of neutrinos and the primary interaction that creates

showers of muons. The second stage, corama, translates the output into a standard high-

energy physics format. The third, mmc, propagates the muons through the earth and ice

while introducing noise from atmospheric sources. Finally, amasim2 simulates the response

of the detector to incident muons. The problem size for this application was chosen to be

10,000 initial muon showers.

BLAST [13] searches genomic databases for matching proteins and nucleotides. Both

queries and archived data may include errors or gaps, and acceptable match similarity is

parameterized. A single executable, blastp, reads a query sequence, searches through a

shared database, and outputs matches. The problem size for this application was chosen to

be a sequence of fifty searches through the standard non-redundant protein database. The

fifty search strings were chosen at random from a selection maintained by the University of

Wisconsin Biological Magnetic Resonance Bank [6].

CMS [67] is a high-energy physics experiment to begin operation at CERN in 2006.

To calibrate the physical detector, it is necessary to simulate its response to the expected

collisions. The simulation software is a two-stage pipeline. The first stage, cmkin, given a

random seed, generates and models particle collisions within the detector. The output is a

set of events that are fed to cmsim, which simulates the response of the particle detector.

The final output represents events that exceed the triggering threshold of the detector. (In
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fact, CMS will have further stages, but the software for these stages is still in flux.) The

problem size for this application was chosen to be 250 collision events.

Messkit Hartree-Fock (HF) [38] is a simulation of the non-relativistic interactions

between atomic nuclei and electrons, allowing the computation of properties such as bond

strengths and reaction energies. This code is a serialized version of code originally run on

parallel architectures. Three distinct executables comprise the calculation: setup initializes

data files from input parameters, argos computes and writes integrals corresponding to

the atomic configuration, and scf iteratively solves the self-consistent field equations. The

problem size was chosen to be the pwadz benchmark included with the program.

IBIS [51] is a global-scale simulation of Earth systems. IBIS simulates effects of human

activity on the environment, such as global warming. A single program, ibis performs the

simulation and emits a series of snapshots of the global state. The problem size for this

application was chosen to be a one-year simulation at 4 degree resolution.

Much computer science research has concentrated on applications in an interactive work-

station environment. For this reason, I will include a sixth application, Make as a com-

parison point. This application is simply a compilation of the standard GNU Bourne Again

Shell [3].
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1.5 A Note on Terms

Distributed computing uses a variety of often-confused terms to describe the structure of

distributed programs. There is no universal agreement upon these terms, but, I will attempt

to use them consistently as follows:

• Program: A passive sequence of instructions encoded in a programming language.

• Process: An active entity running on a machine in a private address space, with one

or more threads of control. A process is an operating instance of a program.

• Job: A unit of execution in a batch system, consisting of a program to be realized as a

process, several specific files to be accessed, and a variety of ancillary details regarding

where and how the program is to be run.

• Workload: A specific, possibly large, collection of jobs to be run in a batch system,

possibly with some partial ordering.

• Application: A generic term referring to a general type problem (e.g. weather simula-

tion) that can be attacked by batch computing. This term does not imply any specific

computational structure.
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Chapter 2

Related Work

2.1 Distributed Batch Systems

The concept of distributed batch computing finds its roots in the earliest commercial com-

puting systems, which operated wholly in batch mode [131]. The cost and complexity of

such systems required that multiple users submit their fully-specified programs to a profes-

sional operator, along with a description of the resources they intended to consume, using a

language such as JCL [31]. The operator would then arrange for queued programs to execute

according to some schedule, and return results to each user as programs completed.

The Cambridge Ring [103] can be thought of as an early example of distributed batch

computing. The Ring coupled together workstations, servers, and terminals into what we

would now call a loosely coupled distributed system. In its time, the Ring was known as a

processor bank because each processor was considered a generic, substitutable resource. A

user would log into a terminal and request any processor of a specific class. The terminal

would then connect to that processor and permit the execution of programs. Of course,

the Ring was a interactive system, but it introduced the notion of generic resources shared

among multiple users.

The Condor [90] distributed batch system built upon the idea of the Cambridge Ring by

creating a true batch system with respect for the social nature of distributed systems. As



13

in the Cambridge Ring, a Condor user submits jobs that require any processor with par-

ticular characteristics. (A specialized language, ClassAds [118], is designed for identifying

resources.) Unlike the Cambridge Ring, these jobs are executed in batch mode by a personal

scheduler process that identifies and harnesses suitable remote resources for each job. Fur-

ther, each participant in the system is independent: Each processor is assumed to belong to

a primary owner, who is free to evict unwanted jobs at any time. Thus, each scheduler in a

Condor system must be prepared for the possibility that a job is evicted and must execute

elsewhere. In order to support programs whose runtime may exceed the availability of any

one machine, Condor provides a library [133, 91] that allows ordinary programs to migrate

from host to host.

A variety of batch systems have followed either the Cambridge or the Condor pattern.

The Cambridge processor bank pattern is found in many of the distributed batch systems

marketed in the 1990s and 2000s, such as LSF [157], PBS [65], and SGE [5]. Each of these

systems, though physically distributed, is essentially a centralized processor bank owned by

a single organization. Each resource in the system is dedicated to the collective good and

must accept any work assigned to it. Such systems are generally constructed out of clustered

identical machines stored in a professionally managed machine room. It is possible to a build

a physically distributed but centrally controlled system: PlanetLab [25] is an example of this.

The advantage of this model is that it provides users with fixed schedules and the ability

to allocate many machines at once. In these systems, a user may submit, for example, an

8-node parallel job and then be informed that the schedule will allow its execution to begin

in 12 hours.

The Condor model has been reflected in several distributed systems, typically specialized

to run scientific applications. The Search for Extraterrestrial Intelligence [138] system is the

most well known example of this model in the popular press. Others applications include

distributed decryption [77] and protein folding [84]. These systems operate in generally the
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same way: workstation owners are asked to install special software that makes itself known

to a centralized project server. When the machine is idle, it requests work from the central

server, which is responsible for keeping track of what has been assigned and what is complete.

There also exist a number of interactive distributed operating systems such as Locus [111],

Sprite [105], Amoeba [101], Plan9 [107], and MOSIX [21]. These operating systems aim to

create an interface very similar to Unix on top of a collection of workstations. Some, such

as Amoeba and MOSIX, aim for a single system image. That is, regardless of what terminal

is used, one sees the same set of processes, files, and so forth. The others allow for varying

degrees of location-awareness. In Plan9, for example, one perceives workstations as individual

resources, but it is easy to attach a remote filesystem to a local process. Although these

systems have made important research contributions in terms of location transparency and

recovery from network partitions, they uniformly lack one power key to batch computing:

the ability to make a process persistent across crashes. In all of these systems, a newly

created process might migrate to other nodes based on sophisticated algorithms regarding

data affinity and load balancing. However, if that node should crash, the process will be

irretrievably lost.

For this key reason, the model of a Unix-like cluster operating system has not been useful

for batch workloads. The complete Unix interface, allowing for interprocess communication,

interactive I/O, and so forth, is not easily introduced into a faulty system unless one is willing

to mask errors via hardware replication, such as in the Tandem [43] system. A typical batch

interface has a simple and idempotent work unit consisting of a single program and its input

and output files. The simpler batch interface is more naturally suited to environments where

resources may fail.
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2.2 Distributed File Systems

Access to data over a network has traditionally been the role of the distributed file system,

whose archetypes NFS [126] and AFS [68] have given rise to an enormous number of (largely

unsuccessful) variants. Distributed filesystems are almost exclusively focused on the needs of

interactive users in centralized administrative environments and local area networks. For ex-

ample, widely-cited studies of workload patterns have focused on university computer science

departments [106, 127, 19, 120] and commercial software development environments [150, 8].

Thus, the performance and semantics of distributed file systems are generally evaluated

in terms suitable for these workloads. More evidence of this is that a commonly applied

test of distributed filesystem performance is the Andrew benchmark [68], which consists of

a series of operations mimicking a program developer. (It is important to note the local

filesystems are often developed for unique workloads. For example, log-structured file sys-

tems [121, 128, 96], are designed and evaluated in the context of write-intensive multimedia

and internet applications.)

Consequently, the vast majority of distributed filesystems assume that it is acceptable to

expose problems to the user at run-time through ad-hoc interfaces, assuming that there is a

human to oversee unusual events. Here are some examples of this orientation.

Typically, NFS is configured in a “soft-mounted” mode so that network disconnections

and other errors are exposed to the user after a short time. Thus, any network outage lasting

beyond a minute (or whatever time value is configured) will cause all programs using NFS

to fail in unusual ways. Such failures are quite acceptable when using an interactive shell to

run a single program, but create a frustrating experience for the user that wishes to leave

a computer system unattended for days or weeks. The alternative is to configure NFS in a

“hard-mounted” mode, which retries errors forever. This mode is also not suitable, because

both interactive and batch users may wish to eventually retract or reassign stalled work.
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The Coda [78] file system is designed for the interactive user on an occasionally-connected

machine such as a personal laptop. When disconnected from a file server, a Coda client

attempts to emulate the server as best it can, writing files to cache space and assuming

that cache input files are up-to-date. When the client reconnects to the server, it must

perform reconciliation by moving newly-written data to the server. If an error occurs during

reconciliation — for example, two disconnected clients have written the same file — then

the users are informed by email. Again, this channel for communicating errors is acceptable

to the interactive user, but would cause chaos in a batch setting.

Buffer servers [15] allow a remotely running program to offload its output to a nearby

server and then exit without waiting for all the data to be committed back to the home file

server. The buffer server is responsible for this job. However, if the buffer server should

fail or be powered off, then the user will silently lose any remotely buffered data. The Unix

local buffer cache has essentially the same semantics: A power failure may cause up to thirty

seconds of data loss.

These are merely examples of a general orientation to interactive work, and the reader

may find many more examples, particularly in the field of peer-to-peer storage [8, 16, 40, 81,

102, 122, 124].

2.3 Data Access in Batch Systems

The Cambridge and the Condor models of distributed batch computing have each been

associated with a corresponding mode of data access.

In the Cambridge Ring, access to file data was provided by a distributed file server

accessible anywhere from the network. The file service and the compute service were logically

distinct entities: one service did not know about the other. Accesses to the file server by

programs succeeded or failed solely on their own terms. A failure to read or write data would
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be exposed to the program and had no direct bearing on access to the CPU. Batch systems

in the Cambridge model have preserved this mode of file access. Such systems expect that

a conventional distributed filesystem such as is installed by an administrator on all nodes

that the batch system is connected to. As in the Cambridge Ring, the success or failure of

data access through this system depends entirely on the file system, with no coupling at all

to the batch system.

An excellent example of failure independence is found in a recent bug report [2] detailing

the interaction between a PBS batch system and an NFS file system. A job submitted to

the batch system would write its output to the distributed file system, and then indicate

completion to the batch system. A supervising process on another node in the file system

would then attempt to read the output file and transmit it to the user. However, the file

system was configured to aggressively buffer written in order to maximize performance, so the

data were not made immediately available to the supervisor, which concluded that no output

had been created by the job. An aberrance in the file system lost the data in transit, yet

the job, the file system, the batch system, and the supervisor all concluded that everything

was fine.

On the other hand, systems following the Condor model of distributed computing typ-

ically have a restricted but highly integrated form of data access. In Condor itself, the

batch system is responsible for transferring the data needed by the application between the

submission point and the execution site. For jobs that are willing to be re-linked, a remote

system call library [133] is provided that allows an application to transparently access data

at the submission site, but nowhere else. Both of these functions are tightly integrated with

the batch system so that any failure in data transit is immediately attached to the execution

of the job, which is then promptly killed and rescheduled elsewhere. However useful and well

integrated this method is, the central data service is often a bottleneck.
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2.4 Grid Computing

In recent years, the notion of grid computing [54, 148] has become popular. At a high level,

this idea proposes that computing power and storage capacity should be easily accessible as

a professionally managed, inexpensive service, much like electrical and water utilities. The

practical application of this idea has been to take resources constructed from local-area dis-

tributed systems and add to them an interface appropriate to wide-area distributed systems.

Typically, a new interface is required because local-area systems assume a common adminis-

trative infrastructure, a relatively trusted user base, and reliable low-latency networks, while

grid computing assumes none of these things.

For example, one grid interface to batch computing is GRAM [39]. Typically, an existing

batch system is equipped with one submission point exposing a GRAM interface. An external

user connects to the GRAM interface and uses GSI [53], a public-key authentication system

to authenticate. Once logged in, the user may define and submit batch jobs to GRAM itself.

The GRAM interface then turns around and submits the job to the local batch system. In

practice, the use of GRAM is not this trivial. Because it is typically used over a wide-area

network, failures in the protocol are common, leading to inconsistent state between the user

and the GRAM server. When jobs complete in the batch system, they leave behind exit

codes and output files that must be communicated back to the user. A tool such as Condor-

G [57] may be used to coordinate these activites. A similar service is the UNICORE [12]

interface to batch computing. UNICORE is similar to GRAM, but requires the execution

site — not the user — to define the set of programs that may be run.

Likewise, grid interfaces have been attached to storage devices, both localized and dis-

tributed. What makes grid storage interfaces particular interesting is that they add new

semantic capabilities to storage, even though all are built on top of ordinary local filesys-

tems. For example, the GridFTP [11] storage server adds public key cryptography to the
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venerable FTP [112] protocol. DCache [48] is a hierarchical storage manager designed to op-

timize the use of disk cache space for workloads that move large data volumes between tapes

and running applications. IBP [109] allows for time-limited allocation of extent-structure

storage with a security system based on capabilities [86]. NeST [26] also allows for time-

limited allocation of space, but provides Unix-structured storage along with AFS-like access

control lists. RFIO [22] is designed for small-granularity access to a mass storage archive.

SRB [23] is designed to provide access to highly-structured data spanning both filesystems

and databases. SRM [130] also provides time-limited allocation, but provides a semantic

framework distinguishing temporary, durable, and persistent storage.

What makes these grid storage devices different from traditional distributed filesystems

is that each device is an independent entity. There are no overarching consistency seman-

tics. There is no uniform naming scheme. There are no transaction semantics for adding,

removing, or deleting data from multiple services. Clients of grid storage devices must build

up these higher level properties on top of individual storage devices.

2.5 Interposition Agents

The term interposition agent was coined by Michael Jones [75] to refer to code transparently

placed between a process and the operating system. Jones relied on the Mach [7] feature

that allows system calls to be reflected back into the address space of the process that issued

them. Jones’ work is unique because the agent resides inside the process, yet traps operations

based on the external interface to the operating system.

Several techniques for building interposition agents have been devised, each with various

strengths and weaknesses.

Many techniques rely on the structure of library interfaces. The Condor remote system

call library [133] is linked to an application in the ordinary way. More transparent tools
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include Detours [71] and Mediating Connectors [20] which attach via the mechanism of

dynamic linking in Windows operating systems. Another example is the Knit [119] toolkit,

which encourages the construction of code modules with compatible interfaces that may be

assembled in a variety of configurations at build-time.

The technique of interposition via the debugger interface, which will be explored in detail

below, is proposed by the UFO [10] system. The debugger is also employed by techniques

related to interposition, such as sandboxing [61] and virtual operating systems [42].

There are a variety of interposition techniques that require privileged access to the oper-

ating system. For example, the SLIC [59] and FIST [154] toolkits encourage the construction

of stackable device drivers and file systems that can be reconfigured according to local needs.

Small surgical changes may also be made to an operating system in order to allow a user

process to serve as a kernel extension. Such a facility may be present from the ground up in

a microkernel such as Mach [7], but can also be added as an afterthought, which is the case

for most implementations of AFS [68]. In the early 1990s, such techniques were generalized

under the heading of “extensible operating systems” [27, 47, 129], however such features

have not entered the mainstream.

The experimental operating system Plan 9 [108] provides extensibility through the nor-

mal filesystem interface. Applications are permitted to construct private namespaces and

may create new filesystems and devices on the fly by designating user-level programs that

implement the needed functionality.

Another popular technique is to interpose by substituting a standard file server with

an enhanced service. The NFS protocol is widely used for this purpose. For example, the

Alex [33] service provides an FTP cache behind a standard NFS service. Similar ideas are

found in the Legion [152] object-space translator and the Slice [14] routing microproxy.

Services offered through NFS interposition typically have severe semantic constraints

due to the nature of the protocol itself. For example, the stateless NFS protocol has no
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representation of the system calls open and close, so one cannot tell when files are actually

in use. Further, such file system interfaces do not express any binding between individual

operations and the processes that initiate them. That is, a remote filesystem agent sees

a read or write but not the process ID that issued it. Without this information, it is

difficult or impossible to perform accounting at the server side for the purposes of security or

performance. (Reumann and Shin [123] have proposed techniques for carrying such context

through the many layers of a system.)

Despite all of this related work describing the feasibility of interpositioning using vari-

ous techniques, there has been little discussion about the practicality and effectiveness of

these techniques on real applications. My contribution in Chapter 3 will be to describe the

effectiveness of these techniques on real applications in real systems.

2.6 Error Handling

Throughout this dissertation, a running theme will be the problem of error handling in

various contexts. Although errors must be a concern in a software project of any scope,

there is very little work that offers advice on how to structure and propagate errors beyond

the most vague generalizations.

For example, my work makes use of multiplexed interfaces: Multiple I/O services are

hidden behind a uniform library interface. One can easily find multiplexing in a variety of

settings, including the Sun Virtual Filesystem Switch (VFS) [79], the user-level Uniform I/O

Interface (UIO) [36], the NeST [26] storage appliance, the GRAM [39] interface, the Proteus

[37] message library, and the Ace [117] language, to name a few. Despite the ubiquity of this

technique, I am not aware of any detailed treatment regarding the problem of failures and

interface mismatches when multiplexing existing interfaces. The closest such discussion is a

report by Craig Metz [97] on the correct use of the multiplexed Berkeley sockets interface.
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Chapter 4 will address the problem of multiplexing in detail.

Likewise, all of the previous work on interposition has described the procedure only in

the most positive terms. The reality is quite the opposite, and I will expand upon upon

it in Chapter 3. I am aware of one exception that describes the problems of interposition:

T. Garfinkel [58] describes how the techniques of sandboxing are subject to an enormous

number of subtle bugs.

The notion of escaping error introduced in Chapter 5 finds its genesis in the discipline

of design by contract, proposed abstractly by Hoare [66] and developed more concretely by

Meyer[98]. Similar hints are also given by Goodenough [62], Ekanadham and Bernsteien [45],

and Howell and Mularz [69]. In all these works, the escaping error is usually implemented

by an instruction that brings the entire computation to a halt with a message to the console.

A global halt is neither possible nor desirable in a distributed system.

A common refrain is that errors are easily handled as long as the programmer is diligent

in using exceptions. Exceptions as a language feature is generally attributed to Goode-

nough [62], and has progressed through a variety of languages from research to commercial

use, including CLU [88], Haskell [95] Ada [69], C++ [46], and Java [17]. However, the excep-

tion has not received universal approbation. Black [30], Chen [35], and Spolsky [136], among

others, have made credible arguments against the use of exceptions. The many variations

on the exception concept have disagreed on whether an interface must declare all possible

exceptions present in the implementation. Chapter 5 will address the problem of exceptions

in detail.
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Chapter 3

Job Coupling

3.1 Introduction

In the previous chapter, I reviewed a wide variety of systems available to users for managing

distributed computation and data. How can we connect ordinary programs to these systems

without placing any burden upon the user, such as re-coding, re-compiling, or re-linking?

The reader may think this perspective to be a little unusual. After all, one may easily

access remote storage from a personal workstation by simply installing a remote filesystem

client and server on the necessary machines. However, consider the typical consumer of

a batch computing system. Using a few simple commands, the user may be able to gain

control of hundreds or thousands of CPUs spread across an entire university or business.

Typically, those CPUs will be under the control of remote workstation owners or system

administrators, so running any sort of privileged program, much less making changes to the

kernel, is not likely to be permitted.

Moreover, a user is likely to submit ordinary programs that were created and tested on

ordinary workstations, using ordinary interfaces to perform ordinary input and output. Such

users often wrap programs in scripts in order to invoke standard system utilities to move

files, compress or filter data, and generally set up the appropriate environment for the core

program. Although some users might be willing to re-code some programs, it is unlikely
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that they would be willing to do the same to the entire library of system tools in common

use.

To make distributed computing accessible to standard applications, we require the ability

to slip a new piece of code between an application and the operating system. Such code can

trap the external operations of a program and direct them to other services, leaving the

program none the wiser. Michael Jones [75] coined the term interposition agent (or simply

agent) to describe such code.

There are many techniques for coupling an agent to a program. Each has particular

strengths and weaknesses. Although some of these techniques have been described by other

researchers, there has previously been little evaluation of their relative merits beyond a simple

comparison of performance. My contributions in this area include the practical lessons

learned by constructing and deploying each of these techniques in production computing

settings with the Condor distributed batch systems.

Figure 3.1 shows a taxonomy of job coupling techniques. (Notations at the bottom of the

figure indicate the toolkit or environment that I used or built to evaluate each technique.)
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At the highest level, they are divided into two groups: those that require privileged access

to the operating system, and those that do not. For the reasons stated above, I will not

present any techniques that require special privileges, although some have been reviewed

in Chapter 2. Unprivileged techniques may be further divided into internal and external.

Internal techniques modify the memory space of the program in some fashion. In general,

these techniques are highly flexible and impose little performance penalty, but are difficult

to port and develop, and cannot be applied to arbitrary programs. The internal techniques

include polymorphic extension, static and dynamic linking, and binary rewriting. External

techniques capture and modify operations that are visible outside an application’s address

space. In general, these techniques are less flexible and incur a performance penalty, but are

highly reliable and can be applied to most programs.

3.2 Internal Techniques

3.2.1 Polymorphic Extension

The simplest internal technique is polymorphic extension. If the internal code of the appli-

cation is amenable to extension, we may simply add a new implementation of an existing

interface or class. The user then must make small code changes to invoke the appropriate

constructor or factory in order to produce the new object. This technique has been deployed

in two contexts in the Condor distributed batch system.

The Java Universe [146] within Condor provides the user with two objects,

ChirpInputStream and ChirpOutputStream, that match standard stream interfaces for I/O.

The application programmer then replaces objects of type InputStream and OutputStream

with their analogues in the source code. The new objects types adapt ordinary stream I/O

into the Chirp service, which is described in Chapter 4.
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The Java language has facilities for reflection, which allows external classes to be loaded

and examined within a program itself. A program structured to use reflection is well-suited

for interposition without any code changes as all. The difference boils down to the distinction

between constructors, which hard-code the class of an object, and factories, which delegate

the class name to be loaded.

The ROOT I/O library [4] is a multipurpose C++ library used in the high-energy physics

community. ROOT multiplexes a variety of I/O protocols into one interface, presenting them

under a unified name space with a URL like syntax. A Chirp object in ROOT allows appli-

cations linked with the changed ROOT library to access Chirp services by merely accessing

a different logical file name.

Strictly speaking, this coupling technique might not qualify as interposition because it

requires changes, albeit small, to the source code of a program. Accordingly, we will consider

it as a desirable boundary case in comparison with the other techniques. Polymorphic

extension has no further complexities in job coupling, but is still subject to the problems of

I/O and CPU coupling described in Chapters 4 and 5.

3.2.2 Linking

An agent may be bound to a program using the standard system linker, either at build time

or by the dynamic linker at run time. This technique is initially very attractive, because

trivial agents have a trivial implementation. For more realistic agents, this technique has

many complexities that make such agents very difficult to use and expensive to maintain.

Let us begin with an attractively simple example. Suppose that we wish to create an

agent that traps all of an application’s open operations. A simple agent might record a

log message for each open and then allow the operation to continue unchanged. Typically,

open appears in the standard system library as an ordinary routine that in turn invokes an
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operating system call to actually open the file. So, to gain control of all opens, we create a

fragment of code that replaces the existing definition:

int open( const char *path, int flags, int mode ) {

write_log_message("aha! you opened %s",path);

return syscall(SYS_open,path,flags,mode);

}

Once compiled, this fragment can be statically inserted into a program at build time by

adjusting the linking instructions, or it may be forced into any dynamically-linked program

at run time by issuing special instructions to the run-time linker. Many variants of Unix

allow an environment variable such as LD PRELOAD or RLD LIST to indicate the name

of the agent library.

Although the two forms of linking are technically very similar, the dynamic linker has

several advantages. The static linking technique must be applied on a program-by-program

basis at build time, thus requiring the user to have some degree of technical sophistication

and access to the object code of the application. The dynamic linking technique can be

applied by non-programmers at run-time to a large number of programs; typically, all of the

standard tools found on a modern Unix system are dynamically linked. Further, the dynamic

technique may be applied to operations that are not necessarily system calls, because the

dynamic linker provides routines for explicitly discovering and invoking function calls in

other libraries.

For example, the fopen operation is typically not a system call, but rather a C library

function. The dynamic linker could be used to trap and invoke fopen as follows:
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FILE * fopen( const char *path, const char *flags ) {

write_log_message("aha! you opened %s",path);

library_pointer = dlopen("libc.so",RTLD_LAZY);

function_pointer = dlsym(library_pointer,"fopen");

return (*function_pointer)(path,flags);

}

(Of course, in a real agent, the fragment above would also check for errors, as well

as cache the results of dlopen and dlsym.) Regardless of the linking method, these sorts

of simple agents can work on trivial programs, but have some complexities that must be

addressed in order to make them work on non-trivial programs. Some of these complexities

are intrinsic problems that arise from the essential nature of such agents. Others are practical

complexities that arise from the realities of the surrounding system.

Intrinsic Complexities

Most agents intend to invoke complex code whenever they gain control of an operation.

Such code is almost certain to invoke the originally trapped operation. Suppose that

write log message must open a file in which to place its log messages. If it invokes open

directly, it will accidentally invoke the definition of open in the agent, recurse, and crash.

One could avoid this problem by simply being very careful never to invoke trapped

functions within an agent. This restriction can be an enormous burden on development,

generally requiring all code in the agent to be hand-built without assistance from outside

libraries, which are almost certain to invoke standard system calls. Although development

under this restriction is possible, my experience with this technique is quite negative. For

example, the Condor checkpointing library [133] maintains this attempt at purity, and is

thus a very difficult piece of code to maintain, typically being the last and most expensive
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component ported to new operating systems.

A better solution is to introduce the notion of layers. The entire assembly of the program,

the agent, and the standard library may be thought of as a stack of software layers. A

running program has one active layer in which it currently executes. A program begins in

the topmost layer. If it invokes a trapped function, the active layer is adjusted to point to

the agent. Further calls to the same function are directed into the bottommost layer, which

is the standard library. This fragment demonstrates the layering technique:

typedef enum {PROGRAM,AGENT,STDLIB} layer_t;

layer_t active_layer = PROGRAM;

int open( const char *path, int flags, int mode ) {

int result;

if(active_layer==PROGRAM) {

active_layer = AGENT;

write_log_message("aha! you opened %s",path);

result = open(path,flags,mode);

active_layer = PROGRAM;

} else {

active_layer = STDLIB;

result = syscall(SYS_open,path,flags,mode);

active_layer = AGENT;

}

return result;

}



30

signal

bkgnd
thread

create
thread

register
handler

signal thread

Program

Agent

Standard Library

mainSIGWINCH

thread

Figure 3.2: Threads and Layers

With this technique, the agent may invoke arbitrary code, including ordinary calls to the

trapped function. Interior invocations of open will detect the change in layer and be routed

to the original system call or library routine. Naturally, one may have an arbitrary number

of layers rather than the fixed three shown here.

The active layer record may be thought of as an annotation to the stack of activation

records in the flow of control. A function invoked recursively within an agent is logically a

different function within the same program. It follows that a program with multiple stacks

must have one active layer record for each stack. A program that uses multiple threads or

makes use of signal handlers has a separate stack for each thread or handler, and thus must

associate an active layer with each.

To implement the active layer record for such programs, the agent must not only trap

calls to functions of interest, but also thread creation and deletion, and the installation,

execution, and removal of signal handlers, so that each may have its own active layer record.

A newly-created thread or signal handler is intended to execute within the semantic context

of the code that created it. Thus, each is given the active layer of the parent that created

or installed it.
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Figure 3.2 shows an example of this concept. Suppose that a program is run with an

agent attached. The program wishes to be notifed when its window size changes, so it

establishes a signal handler for SIGWINCH, The agent traps this attempt to establish a

signal handler and records that the caller’s active layer was PROGRAM when the handler

was established. Now, suppose that the program invokes a function such as open that is

trapped by the agent. The main thread’s active layer is changed to AGENT in the process.

The agent desires to perform some garbage collection in the background, so it creates a

thread to do so. The new thread is given an initial active layer of AGENT, the same as

its parent thread. The main thread completes its business in the agent and returns to the

program, while the background thread continues in the agent. If a SIGWINCH signal

arrives, the signal handler will be executed in the PROGRAM layer, regardless of the

thread that is currently active. Of course, if that signal handler should invoke a function

trapped by the agent, it will be free to descend to lower layers just like any other thread.

Naturally, in any program where either the agent or the program are multi-threaded,

the usual care must be taken when accessing shared resources such as the main memory

allocator. The agent framework cannot relieve the programmer of this responsibility.

Practical Complexities

Beyond the problems already described, there are a number of practical complexities involved

in linking that make development a very labor-intensive activity. From the experience of

porting the dynamic linking technique to a variety of Unix-like systems, I have identified the

following classes of problems:

Multiple entry points. Most Unix variants have a number of variations on each system

call within the standard library. For example, open, open and open can be aliases for a

single underlying function libc open that actually invokes the underlying system call. The

number and names of these entry points varies from system to system.
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Obscured interfaces. The stat system call returns summary information about a file.

The structure returned by stat has changed as architectures have moved from 16 to 32

to 64 bits. As a result, the stat defined in most standard libraries assumes an obsolete

definition of the structure. Recent programs that appear to use stat at the source level

are actually redirected, by way of a macro or inline function, to a system call often named

fxstat. However, for backwards compatibility, the standard library (and a complete agent)

must provide the old stat and stat64 as well.

Varied implementations. socket is a well-known library interface for creating a com-

munication channel. However, several systems do not implement socket by invoking a

matching socket system call. Some systems implement it as open on a special file, followed

by an ioctl. Others implement it as a call to so socket, whose additional arguments and

semantics are undocumented.

The Bypass Toolkit

For all of these reasons, building even simple library-based agents is a complicated matter,

requiring not just knowledge of the interface to the library, but also fair knowledge of the

implementation of the library. Some of this complexity can be encapsulated within a helper

library, but much of it appears as cross-cutting code in many entry points to the agents.

To assist with the construction of such agents, I have created the Bypass toolkit [144, 145].

This toolkit accepts a high-level description of an agent from a programmer, omitting all of

the aforementioned ugly details:

int open( const char *path, int flags, int mode ) {{

write_log_message("aha! you opened %s",path);

return open(path,flags,mode);

}}
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The Bypass code generator reads this pseudo-code, and then generates source code for

an agent, taking into account all of the intrinsic problems of layering, threading, and signal

safety. In addition, it consults a knowledge file that accounts for all of the practical com-

plexities that differ from platform to platform. Finally, the generator emits source code that

can be linked either statically or dynamically with a user’s program.

It should be noted that the construction of an accurate knowledge file for a given platform

is a non-trivial task, requiring some knowledge of the workings of the standard library on that

platform. However, it can be done, and Bypass includes a reasonably complete knowledge

file for several versions of Linux, Solaris, IRIX, HP-UX, and OSF/1.

3.2.3 Binary Rewriting

Another technique for coupling a job to an agent is binary rewriting. This technique involves

making surgical machine code changes to a running program in order to redirect the control

flow from one point to another. This technique requires detailed knowledge of both an

instruction set and the common assembly idioms emitted by a compiler. These problems

have been solved by the DynInst [99] toolkit, which encapsulates the details in a architecture-

dependent library that allows the rewriting of arbitrary code at any point within a program.

Binary rewriting has been been demonstrated as a viable job coupling technique by

Victor Zandy in both the Condor system call libraries [156] and the Rocks [155] toolkit. To

demonstrate the generality of this technique, I have added a binary rewriting capability to

Bypass, thus allowing general agents to be coupled to programs in this manner.

The advantage of using the binary rewriting technique is that it can be used to couple

to any function, whether dynamically or statically linked. In the latter case, the executable

must have debugging data in the executable in order to identify the address of the function

entry. The disadvantage is that the binary rewriting is processor dependent, whereas the
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library technique is processor independent. Unchanged is the requirement that the agent

programmer (or Bypass) must still know all of the gritty library details and construct com-

pensating code.

3.3 External Techniques

The difficulties of the internal techniques stem from the need to understand the detailed

structure of a program and the libraries that it interfaces with. Many of these problems

can be avoided by placing the agent in an external process and coupling it to the program

through public interfaces in the operating system kernel.

3.3.1 Streaming

A simple external technique is to make use of the existing stream interfaces in Unix. A

program’s standard I/O streams may be connected to an agent on the same host via Unix

pipes or an agent on another host via TCP streams. An event driven agent can watch for new

data on output streams and available space on input streams, pulling and pushing data as

necessary. Stream interfaces are heavily used and thus highly optimized in most operating

systems, allowing data to pass between program and agent bound only by memory (or

network) bandwidth.

Of course, as a job coupling technique, streaming is only useful to programs that per-

form only streaming I/O. If the program requires access to files through the conventional

open/read/write/close interface, then another technique must be chosen.

The only wrinkle in this technique is that the agent must consider the exit status of

the program in order to understand the final disposition of the I/O streams. The agent

will always see an end-of-file condition on each stream, regardless of whether the program

exits normally, crashes, is killed by another user, or even fails to begin execution. The mere
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acceptance of available output on a stream cannot be considered evidence of a successful

execution.

3.3.2 Debugging

Operating systems provide a specialized interface for a debugging tool to stop, examine,

and resume arbitrary programs. The debugging interface can also be used as a job coupling

technique. Instead of merely examining the debugged program, the debugging agent traps

each system call, provides a new implementation, and then places the result back in the

target process while nullifying the original system call.

Note that this technique interposes on the system call interrupt issued by the application.

It does not manipulate any of the library routines associated with a system call. By relying

on the interrupt mechanism, this technique ensures that the agent is capturing all of the

application’s system calls. The importance of this completeness will be emphasized below.

The debugger could be used to manipulate library calls, but would suffer many of the same

complexities of the internal techniques described above.

Alexandrov et al. [10] have described the use of the Solaris proc debugging interface

to instrument a process in this manner. However, Linux is currently a much more widely

deployed platform for scientific and distributed computing. Its ptrace debugger model is

generally considered inferior to the Solaris proc model; it can still be used for interposition,

but it has limitations that must be accommodated. (Moreover, Alexandrov did not address

the semantic problems of agency that I will expand upon below.)

Figure 3.3(a) shows the control flow necessary to trap a system call through the ptrace

interface. The agent process registers its interest in an application process with the host

kernel. At each attempt by the application to invoke a system call, the host kernel notifies

the agent of the attempt. The agent may then modify the application’s address space or
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Figure 3.3: Job Coupling via the Debugger

registers, including the system call and its arguments. (If a system call is to be entirely

replaced by the agent, it may simply redirect the physical system call to getpid, which

is fast and inexpensive.) Once satisfied, the agent instructs the host kernel to resume the

system call. At completion, the agent is given another opportunity to modify the application

and the result. Once satisfied, the agent resumes the return from the system call, and the

application regains control.

There are two complexities with this approach:

Process ancestry. The ptrace interface forces all traced processes to become the im-

mediate children of the tracing processes. A change in ancestry is needed because notification

of trace events occurs through the same path as notification of child completion events: the

tracing process receives a signal, and then must call waitpid to retrieve the details. As a

consequence, any tracing tool that wishes to follow a tree of processes must maintain a table

of process ancestry. All system calls that communicate information about children (such

as waitpid) must be trapped and emulated by the agent. If a traced process forks, the

Linux kernel (inexplicably) does not propagate the tracing flags to the child. This omission

may be overcome by trapping instances of fork and converting them into the more flexible
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(and Linux specific) clone system call which can be instructed to create a new process with

tracing activated.

Data flow. The emulation of system calls requires the ability to move data in and out

of the target application. Figure 3.3(b) shows all of the necessary data flow techniques. The

most convenient would be to access a special file (/proc/n/mem) that represents the entire

memory space of the application. This file can be modified with standard I/O operations,

and can also be mapped into the address space of the agent process.

Although the memory-mapped file provides high-bandwidth read access, writing to this

file is not permitted by the kernel. Although the kernel developers have attempted to add

support for writing to this file, it never achieved stability and it introduced a security hole

whereby a debugger could retain write access to a child that had elevated its privilege level.

Two considerations indicate that this functionality is not likely to return. First, Linus

Torvalds, the author of the kernel, has expressed disapproval of the form of the interface.

Second, a correct implementation would be quite complex because it requires two levels of

memory mapping: one to express the memory layout of the debugger, and another to express

the memory layout of the debuggee.

However, a simpler interface can be relied upon. A pair of ptrace calls, peek and poke,

are provided to read or write a single word in the target application. This interface can

be used for moving small amounts of data into the target application, but is obviously not

suited for moving large amounts of data such as is required by the read and write system

calls.

To move data efficiently, the application must be coerced into assisting the agent. Co-

ercion can be accomplished by converting many system calls into preads and pwrites on

a shared buffer called the I/O channel. The I/O channel is an ordinary file, created by the

agent, passed implicitly, and shared among all of its children. (Recall from above that all

descendants of the agent are forced to become its immediate children.) The agent maps the
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internal techniques external techniques
polymorphic static dynamic binary

extension linking linking rewriting stream debug

applicability one lib one pgm dyn libs dyn prog any not setuid
burden change code relink code identify identify run cmd run cmd

flexibility fixed any any any stream syscall
init/fini hard hard hard hard easy easy

debugging joined joined joined joined separate separate
security no no no no yes yes

hole detection easy hard hard hard easy easy
porting none by os by os by os/cpu none by os

Figure 3.4: Comparison of Job Coupling Techniques

I/O channel into memory, in order to minimize copying, while all of the application processes

simply maintain a file descriptor pointing to the I/O channel.

For example, suppose that the application issues a read on a remote file. Upon trapping

the system call entry, the agent examines the parameters of read, retrieves the needed data,

and copies it directly into a buffer in the I/O channel. The read is then modified (via poke)

to be a pread that accesses the I/O channel instead. The system call is resumed, and the

application pulls in the data from the I/O channel, unaware of the activity necessary to place

it there.

3.4 Usability

So far, I have outlined the technical challenges necessary to build each of these job coupling

techniques. These technical issues have a direct impact on the usability of each technique,

summarized in Figure 3.4.

Applicability. The four internal techniques may only be applied to certain kinds of

programs. Polymorphic extension and static linking only apply to those programs that

can be rebuilt. The dynamic library technique requires that the library to be replaced

be dynamically linked, while binary rewriting simply requires the presence of the dynamic
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loader. Both of the external techniques can be applied to any process at all, regardless of

how it is linked, with the exception that debugging prevents the program from elevating its

privilege level via the setuid feature. The debugger technique, in particular, easily works

with entire trees of processes, and is thus naturally suited for use with scripting languages.

Burden. Each technique imposes a different burden on the end user to couple a program

and agent together. For example, polymorphic extension requires small code changes while

static linking requires rebuilding. These techniques are generally acceptable for custom-built

code, but are usually not possible with packaged commercial software. Dynamic linking and

binary rewriting require that the user understand which programs are dynamically linked and

which are not. Most standard system utilities are dynamic, but many commercial packages

are static. My experience is that these techniques appear to have a low burden – the user

simply sets an environment variable – but users are surprised and quite frustrated when an

(unexpectedly) static application blithely ignores an interposition agent. Both streaming and

debugging require the user to explicitly invoke a command in conjunction with a program.

However, the debugger technique can be invoked once to open a shell, rendering further use

transparent because it operates on all descendants of the shell.

Flexibility. Perhaps the most significant difference between the techniques is the varying

degree of flexibility in trapping different layers of software. Naturally, polymorphic extension

is fixed to interfaces specified by the software framework. However, the other internal tech-

niques can be applied to gain control of any layer of code. For example, Bypass has been used

to instrument an application’s calls to the standard memory allocator, the X Window Sys-

tem library, and the OpenGL library. The external techniques of streaming and debugging

are fixed to the particular interfaces of streams and system calls, respectively.

Initialization and finalization. Many important activities take place during the ini-

tialization and finalization of a process: dynamic libraries are loaded; constructors, destruc-

tors, and other automatic routines are run; I/O streams are created or flushed. During
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these transitions, the libraries and other resources in use by a process are in a state of flux

and may not be usable by the agent. This transitory state complicates the implementation

of internal agents that wish to intercept such activity. For example, the application may

perform I/O in a global constructor or destructor. Thus, an internal agent itself cannot rely

on global constructors or destructors: there is no ordering enforced between those of the

application and those of the agent. The programmer of such agents must exercise care not

only in constructing the agent, but also in selecting the libraries invoked by the agent. These

activities are much more easily manipulated through external techniques. For example, the

debugging technique can be used to trap and modify the behavior of the dynamic linker,

perhaps to allow dynamic libraries to be loaded from a remote source. Such actions are not

possible using an internal agent.

Debugging. No code is ever complete nor fully debugged. Production deployment

of interposition agents requires the ability to debug both applications and agents. All of

the techniques admit debugging in some form or another, but all complicate the matter

in some way. Because internal agents are joined to the address space of their targets, a

single debugger may be used to trace the control flow from program to agent. However, this

convenience also joins the fate of the two programs: it is difficult to determine whether a

crash is the fault of the agent or of the program. When using streaming or debugging, both

the agent and the program must be debugged separately, but one’s failure is isolated from

the other. The debugging technique is further restricted by the fact that only one process

may attach to the target program at once. However, a debugging agent may be used to

invoke an entire process tree, so that the target program may be debugged so long as the

(non-agent) debugger is also a child of the (agent) debugger.

Security. Interposition agents may be used for security as well as convenience. An agent

may provide a sandbox [61, 58] which prevents an untrusted application from modifying any

external data that it is not permitted to access. The internal techniques are not suitable for
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enforcing security because they may easily be subverted by a program that invokes system

calls directly without passing through libraries. The external techniques, however, cannot

be fooled in this way and are suitable for enforcing security.

Hole detection. Closely related to security and debugging is the matter of hole de-

tection. Inevitably, an agent will fail to trap an operation attempted by an application.

(To wit, the agent has a hole.) The hole may simply be a bug in the agent, or it may be

that the interface has evolved over time, and the application is using a deprecated or newly

added feature of which the agent is not aware. Internal agents are frightfully sensitive to

holes. As standard libraries develop, interfaces are added and deleted, and modified library

routines may invoke system calls directly without passing through the corresponding pub-

lic interface function. Such silent changes cause general chaos in both the application and

agent, often resulting in crashes or (worse) silent output errors. No such problem occurs in

external agents, particularly when using the debugger. Although the system call interface

can change, an unexpected event at this layer is an explicit event that the agent can trap.

It may then terminate the application and indicate the exact problem.

The problem of hole detection must not be underestimated. My experience with porting

Bypass to five operating systems and many minor system versions is that any significant

operating system upgrade includes changes to the standard libraries, which in turn require

modifications to internal trapping techniques. Thus, internal agents are never forward com-

patible across minor operating system upgrades. Further, identifying and fixing such holes is

time consuming. Because the missed operation itself is unknown, one must spend long hours

with a debugger to see where the expected course of the application differs from the actual

behavior. Once discovered, a new entry point must be added to the agent. The treatment

is simple but the diagnosis is difficult.

Porting. For these reasons, I have described porting in Figure 3.4 as follows. The

polymorphic extension requires no porting effort, as it depends on the application framework
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Figure 3.5: Latency of Coupling Techniques - Graph
This figure graphically compares the overhead of each coupling technique. For each system
call, a bar shows the latency and variance of each technique. Note that the stream interface
does not include the stat or open/close calls. Detailed figures may be found in Figure 3.6.

rather than the running platform. The debugger has significant operating system dependent

components that must be ported, however the nature and stability of this interface makes

for a tractable task. The remaining techniques – static linking, dynamic linking, and binary

rewriting – should be viewed as a significant porting challenge that must be revisited at

every minor operating system upgrade.

3.5 Performance

Figure 3.5 graphically compares the latency overhead of all of the job coupling techniques.

Figure 3.6 shows the same data in tabular form. (I have omitted the polymorphic extension,

as the cost of that technique is determined by the application framework.) Each entry was

measured by a benchmark C program which timed 1000 cycles of 100,000 iterations of various

system calls on a 1545 MHz Athlon XP1800 running Linux 2.4.20. Each system call was

performed on an existing file in an ext3 filesystem with the file wholly in the system buffer

cache.
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getpid stat open/close read-1b read-8kb write-1b write-8kb
µs α µs α µs α µs α µs α µs α µs α

unmod 0.28 1.00 2.40 1.00 3.45 1.00 1.20 1.00 4.22 1.00 6.11 1.00 12.19 1.00
static 0.28 1.01 2.36 0.98 3.52 1.02 1.40 1.16 4.42 1.05 6.58 1.08 12.19 1.00
dynamic 1.61 5.79 4.65 1.94 6.06 1.76 2.62 2.18 5.59 1.32 8.28 1.35 13.92 1.14
binary 0.28 1.00 2.35 0.98 3.51 1.02 1.38 1.15 4.35 1.03 7.58 1.24 12.67 1.04
stream 0.28 1.00 - - - - 2.84 2.36 16.92 4.01 1.17 0.19 11.54 0.95
debug 10.34 37.27 33.40 13.89 45.14 13.09 18.68 15.54 34.21 8.10 34.65 5.67 54.09 4.44

Figure 3.6: Latency of Coupling Techniques - Table
This table shows the same data as Figure 3.5. For each coupling technique and system call,
the call latency is given (µs) along with the slowdown (α) relative to the unmodified case.
For clarity, the variance in measurement shown in the previous figure is omitted. Note that
the stream interface does not include the stat or open/close calls.

The unmodified case gives the performance of this benchmark without any agent at-

tached, while the remaining five show the same benchmark modified by each coupling tech-

nique. In each case, a minimal agent is used to trap each system call and then re-execute

the call without modification. Note that the streaming case is not included in the stat and

open-close calls, because these operations are not found in the stream interface.

As can be seen, the static linking and binary rewriting techniques add no measurable

latency to system calls. The dynamic method has overhead on the order of several microsec-

onds, as it must manage the active layer infrastructure and perform at least one indirect

jump. This overhead causes a slowdown of 1-6x, depending on the call. Streaming has an

interesting property: a small write to a stream is faster than writing to an ordinary file. This

highly optimized code path in the operating system allows for the rapid deposit of several

bytes into a buffer without the expense of navigating file system structures such as inodes

and indirect blocks. However, reads larger than the stream buffer size (typically fixed at

4KB) are slower than reads to the filesystem, because such reads require multiple context

switches between the agent and the program. The debugger has the greatest overhead of

all the techniques by a sizable margin, slowing down each system call between 4.4x and 37x

times. This is due to the large number of context switches depicted in Figure 3.3.a.



44

 0

 20

 40

 60

 80

 100

 120

 140

1M256K64K16K4K

W
rit

e 
B

an
dw

id
th

 (
M

B
/s

)

Block Size

unmodified
static linking

dynamic linking
binary rewriting

streaming
debugging

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1M256K64K16K4K

R
ea

d 
B

an
dw

id
th

 (
M

B
/s

)

Block Size

(a) Write Bandwidth (b) Read Bandwidth

Figure 3.7: Bandwidth of Coupling Techniques
These graphs show the maximum bandwidth achieved by each technique writing to and reading
from the filesystem. Note that both streaming and debugging pay a price in bandwidth because
each makes an extra data copy. The debugger is especially sensitive to block size because of
the latency shown in Figure 3.5.

Figure 3.7 shows the data transfer bandwidth achievable with each technique. This

figure was generated with the same experimental setup as before, but measuring the available

bandwidth when transferring 100MB of data to or from disk with varying transfer block sizes.

To avoid measuring the vagaries of periodic buffer cache flushes and other uncontrollable

events, each point represents the maximum of ten measurements. As before, each agent

simply traps the operations in question and executes them without modification.

The three internal techniques impose no bandwidth overhead at all compared to the

unmodified case. Both of the external techniques do incur a fair bandwidth overhead, de-

pending on the block size used in the transfer. Smaller block sizes exaggerate the effect of

the system call overhead on data transfer, while larger block sizes diminish opportunities for

overlap between agent and program operation. The balance between these concerns occurs

in both the read and write cases at a block size of 64KB. In the write case, streaming achieves

about 80 percent of the unmodified bandwidth, while debugging achieves about 75 percent.

In the read case, the figures are about 60 and 50 percent, respectively.
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Figure 3.8: Overhead of Debugging on Applications
This figure shows the total runtime overhead of the debugging technique on the six applications
introduced in Chapter 1. The other techniques were unable to couple to these applications.
Note that the overhead is significantly less than data latency and bandwidth overheads shown
in the previous figures.

Because the transfer block size has such a dramatic effect on achievable bandwidth for

the debugging technique, it is important to find ways to coerce applications into using the

appropriate block size. Fortunately, such a mechanism is already present. Conventional

applications using the standard library make use of a block size “hint” expressed through

the stat system call. A debugger agent simply modifies this hint to be 64 KB, and thus

most applications make use of the optimal block size.

Despite the significant overhead of debugging on these microbenchmarks, the cumulative

effect on real applications is relatively modest. Figure 3.8 shows the overhead of running

the five candidate applications described in Chapter 2 on the same system as above, both

unmodified and coupled to a debugging agent. Each bar shows the mean and variance of ten

measurements. The percent overhead due to the debugging agent is shown above the bars

for each application.

The overhead in runtime for the candidate applications ranges from less than 1 percent

(ibis) up to 6.5 percent (hf.) However, the comparison application (make) is much harder

hit by this technique and is slowed down by 35 percent.

The reason for the disparity between make and the scientific applications is shown in
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open read write mmap seek stat brk time other total rate
ama. 5034 9873 117771 518 32 1702 122831 10039 4411 272211 103
blast 3524 1108 186267 2023 3 4719 28178 2501 4547 232870 131
cms 268 76016 3892 98 76009 315 91 251 615 157555 110

hf 505 9760 152271 71 149130 665 1092 25 1505 315024 343
ibis 1192 590 926 169 1943 1427 332 3 1462 8044 10

make 88255 17041 4329 18315 12905 47878 92139 440 45891 327193 1012

Figure 3.9: System Calls by Application
This figure details the actual system calls performed by each application. The final column
shows the number of system calls performed per second. Note that make performs an order
ot magnitude more system calls per second than the other programs.

Figure 3.9, which summarizes the total number of system calls made by each application.

make stands out in its use of non-data-carrying system calls such as open and stat. The

make program itself must extensively scan directories, but also the invocation of each sub-

process and script invoked by make makes use of open and stat in order to search for libraries

during the dynamic linking phase of each newly created process. The rate column shows the

number of system calls made per second of runtime, and make exceeds the other applications

by an order of magnitude. This reliance on metadata (also observed by Spasojevic [135]) is

an important distinction between scientific and interactive workloads.

These overheads are likely to be acceptable in the context of high-throughput distributed

batch computing. If the deployment of an agent enables the user to harness twice as many

machines as without, then a per-job slowdown of several percent is irrelevant. Of course, if

the user gains no benefit from using an agent, it is best to leave out any unneeded overhead.

The reader has surely noticed that I have omitted a number of techniques from this

measurement. The reason is that I was unable to employ them on these applications! The

very nature of the applications prevented this. All involved multiple processes and scripting

languages, some were statically linked, and some did not provide source code. For all of the

complications described above, employing these techniques did not work. Of course, it may

be possible to do so, given sufficient manpower and source access, but a user’s performance

requirements must be quite stringent to make this effort worth a small reduction in overhead.
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3.6 Conclusion

I have described a variety of job coupling techniques and evaluated low-level performance,

general usability, and high-level performance on scientific applications. Each technique varies

in usability and cost.

The polymorphic extension is the appropriate technique to use when an application

consists of a small number of programs whose sources are available for modification. No

special actions need be taken in order to understand the interface between the job and

the agent. The compiler may be relied upon to enforce typechecking and other language

constraints. Little or no performance penalty is paid.

Although internal agents are fast and attractive, they create an extraordinary mainte-

nance problem. The essential difficulty is that the binary interface between an application

and the standard library is poorly specified and in constant flux. Although all manner of

standards bodies have legislated the source-level interface between programs and the stan-

dard library, source constructs may have little relationship with the binary reality: the

names and structures of interest to the application programmer are often transformed into

something complex and undocumented at the library interface.

The debugger is the appropriate technique when many distinct programs are to be used,

or when the source for an application is not available. Although the debugger has its com-

plexities, the interface between a process and the operating system is a well-defined and

relatively static across operating system upgrades. Holes in the agent are readily identified

and fixed. Although there is a performance penalty to be paid, it is not enormous in the

realm of scientific applications.

What technique should be chosen? In general, I recommend the use of the debugger

trap because it is instantly effective on all applications without any extra work. For some

applications, particularly those that are metadata intensive, the increased latency of system
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calls may be unacceptable. In this case, an internal agent may be appropriate if the cost of

maintaining such an agent can be offset by the speedup it obtains.
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Chapter 4

Data Coupling

4.1 Introduction

Using the experience gained with the various job coupling techniques in the last chapter,

I have built a general-purpose agent called Parrot [147] for attaching standard Unix ap-

plications to distributed I/O systems. Such systems are presented to programs as ordinary

entries in the filesystem. Parrot has many uses in a distributed computing environment:

Seamless integration. The construction of a new type of storage protocol or device is

frequently accompanied by the construction of tools to visualize, organize, and manipulate

the contents. Building such tools is both time consuming and wasteful, as many tools already

exist for these tasks on standard filesystems. As shown in Figure 4.1, Parrot enables ordinary

tools to browse a remote archive, in this case the hierarchical mass storage server (MSS) at

the National Center for Supercomputing Applications (NCSA).

Figure 4.1: Interactive Browsing
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Improved reliability. Naturally, the networked services that are accessed by an agent

are far less reliable than a local filesystem. Remote services are prone to failed networks,

power outages, expired credentials, and many other problems not found in local system

services. An agent can attach an application to a service with improved reliability. Parrot

can be used to add reliability at the filesystem layer by detecting and repairing failed I/O

connections. A similar idea is found in Rocks [155], which provides a reliable TCP connection

despite network outages and address changes.

Private namespaces. Batch applications are frequently hardwired to use certain file

names for configuration files, data libraries, and even ordinary inputs and outputs. By spec-

ifying a private namespace for each application instance, many may be run simultaneously

while keeping their I/O activities separate. For example, ten instances of an application

hardwired to write to output.txt may be redirected to write to output.n.txt, where n is

the instance number. A private namespace may also be constructed for performance con-

cerns. A centralized data server can only serve so many simultaneous remote applications

before it becomes saturated. If copies of necessary data are available elsewhere in a system, a

private namespace may be constructed to force an application to use a nearby copy. Whether

for logical or performance purposes, a private namespace can be built at many points in the

lifetime of an application. It may be fixed throughout the program’s lifetime or it may be

resolved on demand as the program runs by an external service.

Remote dynamic linking. Dynamic linking presents several problems in naming and

execution. A majority of standard applications are linked against dynamic libraries that

are named and loaded at runtime. Dynamic linking reduces the use of storage and memory

by allowing applications to share routines. However, this advantage can become a liability

of complexity, perfectly captured by the popular phrase “DLL hell.” External coupling

techniques permit a remotely-executing application to fetch all of its libraries from a trusted

source as they are needed. Such libraries may then be shared normally at the execution site
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without burdening the end user.

Profiling and debugging. The vast majority of applications are designed and tested on

standalone machines. Surprises occur when such applications are moved into a distributed

system. Both the absolute and relative cost of I/O operations change, and techniques that

were once acceptably inefficient (such as unbuffered writes) may become disastrously inef-

ficient. By attaching an agent to the application, the user may easily generate a trace or

summary of the I/O behavior and observe precisely what the application does. Just such a

tracing technique was used to produce a detailed study [143] of the five candidate applications

introduced in Chapter 1.

4.2 Architecture

Internally, Parrot is a library for performing Unix-like I/O on remote data services. It

provides an interface with entry points like parrot open and parrot read. An application

may be written or modified to invoke the library directly, or it may be attached via the various

coupling techniques described in the previous chapter. For the reasons already described, I

will concentrate on the use of Parrot by way of the debugging interface.

The internal structures of Parrot, shown in Figure 4.2, bear a strong resemblance to the

file structures in a conventional operating system. Parrot tracks a family tree of processes,

recording a table of open file descriptors, seek pointers, and similar device-independent

structures for each. At the lowest layer are a series of device drivers that implement access

to remote I/O system. Unlike an operating system, Parrot does not know the structure of

remote devices at the level of inodes and blocks. It refers to remote open files by name, and

may multiplex many applications’ I/O requests through one remote channel.

Parrot has a large number of entry points for I/O operations. We may classify them

into two categories: operations on file descriptors and operations on file names. The former
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Figure 4.2: Architecture of Parrot
This figure shows the architecture of Parrot. Many of the data structures correspond closely
to the file structures in a standard operating system. The bold lines show the steps needed
to open a file. 1: Trap open system call. 2: Consult name resolver. 3: Open file via driver.
4: Install data structures.

traverse most of the data structures in Parrot, while the latter take a more direct route to

the device drivers.

Operations such as read, write, and lseek operate on file descriptors. Upon entering

Parrot, these commands check the validity of the arguments, and then descend the various

data structures. Operations read and write examine the current file pointer and use it as an

argument to call a read method in the corresponding file object. The file object, through the

device driver, performs the necessary remote operation. Other operations such as rename,

stat, and delete operate on file names. Upon entering Parrot, these commands first pass

through the name resolver, which may transform the program-supplied name(s) according

to a variety of rules and systems. The transformed names are passed directly to the device
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driver, which performs the operation on the remote system.

The bold outlines in Figure 4.2 show how an open system call consults the name resolver,

opens a file using a protocol driver, and then installs all of the data structures to represent

the open file.

Most Unix applications access files through explicit operations such as read and write.

However, files may also be memory-mapped, particularly dynamically linked libraries. In

a standard operating system, a memory mapped file is a separate virtual memory segment

whose backing store is kept in the file system rather than in the virtual memory pool. Parrot

accomplishes the same thing using its own underlying drivers, thus reducing memory mapped

files to the same mechanisms as other open files.

Memory-mapped files are supported in one of two ways, depending on the coupling

technique in use. If Parrot is attached using an internal technique, then memory mapped

files may be supported by simply allocating memory with malloc and loading the necessary

data into memory by invoking the necessary device driver. As a matter of policy, the entire

file can be loaded when mmap is invoked, or it can be paged in on demand by setting the

necessary memory protections and trapping the software interrupts generated by access to

that memory. If Parrot is attaching using the debugger technique, then the entire file is

loaded into the I/O channel, and the application is redirected to mmap that portion of the

channel. Parrot does not currently have any write mechanism or policy for memory-mapped

files, as I have yet to encounter any application that would require it.

Parrot has two buffering disciplines: fine-grained and whole file. By default, Parrot

simply performs fine-grained partial file operations on remote services to access the minimal

amount of data needed to satisfy an application’s immediate reads and writes. I have taken

this route for several reasons. First, whole-file fetching introduces a large latency when a

file is first opened. This latency is often an unnecessary price when an application could

take advantage of overlapped CPU and I/O access by reading streamed files sequentially.
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Second, few remote I/O protocols have a reliable mechanism for ensuring synchronization

between shared and cached files; we do not wish to introduce a new synchronization problem.

Finally, a variety of systems have already been proposed for managing wide area replicated

data [28, 125, 23]. I prefer to make Parrot leverage such systems via fine-grained access

protocols rather than implement replica management anew.

Optionally, Parrot may perform whole-file staging and caching upon first open in a man-

ner similar to that of AFS [68] and UFO [10]. Once this long latency is paid, a file may be

accessed efficiently in local storage. Protocols that only provide sequential access, such as

FTP, require the use of the cache to implement random access. At each open, a cached file is

validated by performing a remote stat to determine if the cached copy is up to date. If the

file’s size or modification time has changed, then it is re-fetched. Further, whole-file fetching

is necessary in order to implement the exec call on a remotely stored program, regardless of

the protocol.

4.3 Protocols and Semantics

Parrot is equipped with a variety of drivers for communicating with external storage systems;

each has particular features and limitations. The simplest is a local driver, which simply

passes operations on to the underlying operating system. The Chirp protocol was designed

specifically for use with Parrot: it corresponds very closely to the Unix interface. A stan-

dalone Chirp server is distributed with Parrot and allows an unprivileged user to establish

a secure file server. The venerable File Transfer Protocol (FTP) [112] has been in heavy use

since the early days of the Internet. Its simplicity allows for a wide variety of implementa-

tions, which, for our purposes, results in an unfortunate degree of imprecision which I will

expand upon below. Parrot supports the secure GSI [11] variant of FTP. The NeST protocol

is the native language of the NeST storage appliance [26], which provides an array of au-
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name binding discipline dirs metadata symlinks connections
unix open/close random yes direct yes -
chirp open/close random yes direct yes per client

ftp get/put sequential varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op

dcap open/close random no direct no per client

Figure 4.3: Protocol Compatibility with Unix

thentication, allocation, and accounting mechanisms for storage that may be shared among

multiple transient users. The RFIO and DCAP protocols were designed in the high-energy

physics community to provide access to hierarchical mass storage devices such as Castor [22]

and DCache [48]. This selection of protocols does not include every known storage device,

but does provide an interesting cross-section of semantics for discussion purposes.

Because Parrot must preserve Unix semantics for the sake of the application, the fore-

most concern is the ability of each of these protocols to provide the necessary semantics.

Performance is a secondary concern and we will see below that it is affected by semantic

issues. A summary of the semantics of each of these protocols is given in Figure 4.3.

In Unix, name binding is based on a separation between the namespace of a filesystem

and the file objects (i.e. inodes) that it contains. This is known as an open/close model.

The open system call performs an atomic binding of a file name to a file object, which allows

a program to lock a file object independently of the renaming, linking, or unlinking of names

that point to it. This model is reflected in the Chirp, RFIO, and DCAP protocols, which

all provide distinct open/close actions separately from data access. Unlike Unix, FTP and

NeST have a get/put model which performs a name lookup at every data access. In the

get/put model, an application may lose files or become confused if the file namespace is

manipulated by another process while files are in use.

With the exception of FTP, all of the protocols provide inexpensive random (non-

sequential) access to a file without closing and re-opening it. Random access permits the
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efficient manipulation of a small portion of a large remote file without retrieving the whole

thing. The sequential nature of FTP requires that Parrot make local copies of such files

in order to make changes and then replace the whole file. Some variants of FTP allow for

bulk reads and writes to start at an arbitrary file offset, however these operations are not

universally supported.

Directories are supported completely by Chirp, NeST, and RFIO; one may create, delete

and list their contents. DCAP does not currently support directory access, because it is

typically used alongside a kernel-level NFS client for metadata access. Support for directories

in FTP varies greatly. Although the FTP standard mandates two distinct commands for

directory lists, LIST and NLST, there is little agreement on their proper behavior. LIST

provides a completely free-form text dump that is readable to humans, but has no standard

machine-readable structure. NLST is meant to provide a simple machine-readable list of

directory entries, but we have encountered servers that omit subdirectory names, some that

omit names beginning with dot (.), some that insert messages into the directory list, and

even some that do not distinguish between empty and non-existent directories.

Most metadata is communicated in the Unix interface through the stat structure re-

turned by the stat, fstat, and lstat system calls. Chirp, RFIO, and DCAP all provide

direct single RPCs that fill this structure with the necessary details. FTP and NeST do

not have single calls that provide all this information, however, the necessary details may be

obtained indirectly through multiple RPCs that determine the type, size, and other details

one by one.

Only Chirp and NeST provide support for managing symbolic links. This feature might be

done without, except that remote I/O protocols are often used to expose existing filesystems

that already contain symbolic links. A lack of symbolic links at the protocol level can result

in confusing interactions for programs as well as the end user. For example, a symbolic link

may appear as in an FTP directory listing, but, without explicit operations for examining
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links, it will appear to be an inaccessible file with unusual access permissions.

Finally, the connection structure of a remote I/O protocol has implications for semantics

as well as performance. Chirp, NeST, and DCAP require one TCP connection between

each client and server. FTP and RFIO require a new connection made for each file opened.

In addition, RFIO requires a new connection for each operation performed on a non-open

file. Because most file system operations are metadata queries, ordinary activity can result

in an extraordinary number of connections in a short amount of time. Even ignoring the

latency penalties of this activity, a large number of TCP connections can consume resources

at clients, servers, and network devices such as address translators.

4.4 Chirp Protocol

The Chirp protocol will be used extensively in the following pages, so it will be useful to ex-

plore it in some detail here. Chirp was designed specifically for use with Parrot and Condor,

and corresponds fairly closely to the Unix I/O interface. There are currently two implemen-

tations of the protocol. The first consists of a C client and server that are distributed with

Parrot. The second consists of a Java client and C++ server integrated into Condor. The

former is the more complete implementation and has all the features described here. The

latter will be discussed in Chapter 5.

To initiate a conversation, a Chirp client connects to a Chirp server via TCP. One con-

nection is maintained for all data between a client and server, regardless of the files opened

or accessed. Once connected, the client must authenticate itself to the server. The current

implementation has a negotiation feature that allows the client to authenticate itself by sev-

eral methods, including Kerberos [137], GSI [53], shared secrets, or network addresses. The

authentication protocol is not strictly part of Chirp, and will not be discussed further.

Chirp is a request-response protocol. The client initiates all activity by sending a com-
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Operations on Open Files
Name Arguments Results
open (path,flags,mode) → (fd,stat)
close (fd)
fchmod (fd,mode)
fchown (fd,uid,gid)
fstat (fd) → (stat)
fstatfs (fd) → (statfs)
fsync (fd)
ftruncate (fd,length)
pread (fd,length,offset) → (data)
pwrite (fd,data,length,offset)

Special Operations
Name Arguments Results
canonicalize (path) → (newpath)
getdir (path) → (dirlist)
getfile (path) → (stat,data)
lookup (path) → (newpath,lifetime)
putfile (path,data,mode,length)

Operations on File Names
Name Arguments Results
access (path,mode)
chmod (path,mode)
chown (path,uid,gid)
lchown (path,uid,gid)
link (path,newpath)
lstat (path) → (stat)
mkdir (path,mode)
readlink (path) → (linkpath)
rename (path,newpath)
rmdir (path)
stat (path) → (stat)
statfs (path) → (statfs)
symlink (path,newpath)
truncate (path,length)
unlink (path)
utime (path,atime,mtime)

Figure 4.4: Chirp Protocol Summary
This figure summarizes all of the operations in the Chirp protocol using an abstract syntax.
The name, arguments, and results (if any) of each operation are shown. Each operation also
returns a code indicating success or failure, which is not shown. Most operations on open
files and filenames correspond very closely to operations in Unix. Several special operations
that do not correspond to Unix operations are described in the text.

mand code, the arguments to the command, and then waiting for a response from the server.

A good implementation of the protocol (as found in Parrot) allows for the client to give up

if a response is delayed for a configurable amount of time. Most commands in the protocol

involve a small amount of data and can be implemented as ordinary remote procedure calls.

Figure 4.4 summarizes all of the commands in the Chirp protocol. Each command has a

unique name, a list of arguments, and a list of results. Each command also has an integer

result (not shown) that indicates success or the reason for a failure. Most commands cor-

respond closely to similarly named counterparts in Unix. For example, the open command

requests access to a file by name and yields an integer file descriptor. (Unlike Unix, open

also returns the file’s metadata in the form of a stat structure.) The file descriptor may

then be used to read, write and perform other Unix-like commands on the open file. When
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the file is no longer needed, the close command releases the file descriptor. Just as in Unix,

a variety of commands such as access and chmod operate on files by name.

All filenames in the Chirp protocol are relative to the root of the filesystem at the Chirp

server. The server does not track the current working directory of the client, because the

client may be representing multiple processes or may have its current working directory on

another server altogether.

Several commands do not have exact Unix counterparts. The canonicalize command

queries for the existence of a file or directory at the server, and returns its full pathname with

all intermediate symbolic links evaluated and removed. This is an optimization that allows

a client to easily obtain the full name of a directory in order to satisfy system calls such

as getcwd. The getdir command atomically obtains a complete directory listing, while

getfile and putfile stream whole files to and from the server. The lookup command

performs a filename mapping in a remote mountlist, as described in Section 4.5.

The Chirp protocol may be thought of as semi-stateful. A Chirp server is stateful: It

tracks the set of files that a client has opened. If the connection between the client and server

should be lost, the server is responsible for closing those files. However, a client can render

the connection effectively stateless: If a client also tracks the set of files that it has opened,

it may recover open files after a discussion. This possibility is discussed in Section 4.6.3.

The close-on-failure property makes the Chirp protocol naturally suited to a multi-process

implementation. In the current C implementation, each incoming Chirp connection causes a

new handling process to be forked. The handling process changes privilege level (if necessary)

and then serves incoming Chirp commands by executing their Unix equivalents. If the

connection is lost, the handling process may simply exit, and the client’s files will be closed

automatically by the local operating system.
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4.5 Name Resolution

Parrot’s name resolver allows the user to construct a custom namespace appropriate for

each application. In the simplest case, the name resolver takes no action, and an ap-

plication may explicitly operate on the global file space. Applications may specify or-

dinary local file names such as /etc/passwd or fully-qualified remote filenames such as

/ftp/ftp.cs.wisc.edu/RoadMap.

Alternatively, a user may provide a mountlist, a file that maps logical file names and

directories to specific physical devices, much like the Unix file /etc/fstab. Here is a sample

mountlist that directs an application to use input data from a well-known FTP archive, write

outputs to a local Nest server, and make use of dynamic libraries exported by a Chirp server

on a reference machine:

/data /ftp/ftp.experiment.org/expt1/archive

/output /nest/archive.cs.wisc.edu/outputs

/lib /chirp/rh7.cs.wisc.edu/lib

The name resolver is a natural place for attaching an application to shared naming

systems. A naming system is useful when a given document may be replicated across a

system and an application simply needs to access the closest available one. A variety of

systems such as the the Replica Location Service [149] and the Handle System [140] are

examples of shared location services. A Chirp server can also serve as remote name resolver,

as shown in Figure 4.5. Each reference by the job to a filename results in a lookup call

to the Chirp server, which consults a mountlist and returns a result. This shared service

allows definition to control the resources consumed by a large set of running jobs. As

available storage resources change, a single mountlist can be updated to reconfigure the

entire system. Of course, this agility comes at a cost: every reference to a file name results in
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Figure 4.5: Name Resolution via a Chirp Server
This figure shows a running job making use of the remote name resolution feature in Chirp.
Whenever a job accesses a file by name, Parrot issues a lookup Chirp call to the server
resolver.cs.wisc.edu in order to consult the remote mountlist.

a network operation. To allow the user to strike a balance between agility and performance,

the response from the Chirp server includes the lifetime of the result, allowing Parrot to

cache lookups on behalf of a job.

Because Parrot manages access to the entire file namespace through one control point, it

can also serve as a sandbox in order to prevent a buggy or malicious job from accessing or

modifying portions of the namespace. A complete language for specifying the parameters of

a sandbox for interactive applications may be found in tools such as Janus [61].

For our purposes, it is sufficient to allow cutting off portions of the namespace with a

simple syntax. For example, the following addition to a mountlist would prevent any access

to the local temporary filesystem on a remote machine:

/tmp DENY
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4.6 Error Handling

Error propagation has not been a serious obstacle in the design of traditional operating

systems. As new models of file interaction have developed, attending error modes have been

added to existing systems by expanding the software interface at every level. For example,

the addition of distributed file systems to the Unix kernel created the new possibility of a

stale file handle, represented by the ESTALE error. As this error mode was discovered at the

very lowest layers of the kernel, the value was added to the device driver interface, the file

system interface, the standard library, and expected to be handled directly by applications.

There is no such luxury in an interposition agent. Applications use the existing interface,

and we have neither the desire nor the ability to change it. Yet, the underlying device

drivers generate errors ranging from the vague “file system error” to the microscopically

precise “server’s certification authority is not trusted.” How should the unlimited space

of errors in the lower layers be transformed into the fixed space of errors available to the

application?

In answering this question, we must keep in mind that the agent is not the last line

of defense. Together, the agent and the job live in a larger context, supervised by the

surrounding batch system. In this context, the agent may appeal to the batch system to

take some higher-level scheduling action. This is not to say that we should always pass the

buck to the batch system. Rather, we must perform triage:

Transformable errors may easily be converted into a form that is both honest and recog-

nizable by the application. Such errors are converted into an appropriate errno and passed

up to the application in the normal way. Transforming an error may require additional effort

or communication on behalf of the agent.

Permanent errors indicate that the process has a fatal flaw and cannot possibly run to

completion. With this type of error, Parrot must halt the process in a way that makes it
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clear the batch system must not reschedule it.

Escaping errors are neither transformable nor permanent. An escaping error indicates

that the process cannot run here and now, but has no inherent flaw. An agent’s proper

response to an escaping error is to indicate to the CPU management system that the job is

to release the CPU, but would like to execute later and retry the I/O operation. Chapter 5

will address escaping errors in detail.

Each of the three types of errors – transformable, permanent, and escaping – come from

two distinct sources of errors – a mismatch of requests, or a mismatch of results. A mismatch

of requests occurs when the target system does not have the needed capability. A mismatch

of results occurs when the target system is capable, but the result has no obvious meaning

to the application. Let us consider each in turn.

4.6.1 Mismatched Requests

The first difficulty comes when a device driver provides no support whatsoever for an op-

eration requested by the application. There are three different solutions to this problem,

depending on the expectation of the application’s ability to handle an error. Representative

examples are getdents, which retrieves a directory listing, lseek, which changes a file’s seek

pointer, and stat, which obtains a file’s metadata.

Some I/O services, such as DCAP, do not permit directory listings. A call to getdents

cannot possibly succeed. Such a failure may be trivially represented to the calling applica-

tion as “permission denied” or “not implemented” without undue confusion. Applications

understand that getdents may fail for any number of other reasons on a normal filesystem,

and are thus prepared to understand and deal with such errors.

In contrast, almost no applications are prepared for lseek to fail. It is generally under-

stood that any non-terminal file may be accessed randomly, so few (if any) applications even



64

bother to consider the return value of lseek. If we use lseek on an FTP server without

local caching enabled, we risk any number of dangers by allowing a never-checked command

to fail. Therefore, an attempt to seek on a non-seekable file results in a permanent error

with a message on the standard error stream.

The stat command offers the most puzzling difficulty of all. stat simply provides a set

of meta-data about a file, such as the owner, access permissions, size, and last modification

time. The problem is that few remote storage systems provide all, or even most, of this data.

For example, FTP provides a file’s size, but no other meta-data in a standard way.

An agent might cause stat to report “permission denied” on such systems, under the

assumption that brutal honesty is best. Unfortunately, this causes all but the most trivial of

programs to fail. All manner of code, including command-line tools, large applications, and

the standard C library, invoke stat on a regular basis. At first glance, it appears that the

necessary information simply cannot be extracted from most remote I/O systems. However,

we may construct a workaround by surveying the actual uses of stat:

• Cataloging. Commands such as ls and program elements such as file dialogs use stat

to annotate lists of files with all possible detail for the interactive user’s edification.

• Optimization. The standard C library, along with many other tools, uses stat to

retrieve the optimal block size to be used with an I/O device.

• Short-circuiting. Many programs and libraries, including the command-line shell

and the Fortran standard library, use stat or access to quickly check for the presence

of a file before performing an expensive open or exec.

• Unique identity. Command line tools use the unique device and file numbers re-

turned by stat to determine if two file names refer to the same physical file. Unique

identifiers used to prevent accidental overwriting and recursive operations.
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In each of these cases, there is very little harm in concocting information. No program

can rely on the values returned by stat because it cannot be done atomically with any

other operation. If a program uses stat to measure the existence or size of a file, it still

must be prepared for open or read to return conflicting information. Therefore, we may fill

the response to stat with benevolent lies that encourage the program to continue for both

reading and writing. Each device driver fills in whatever values in the structure it is able to

determine, perhaps using multiple remote operations, and then fills the rest with defaults.

For example, Parrot simulates inode numbers by computing a hash of the file’s full path.

The last modification time may be set to the current time. The file system block size is

simply set to a tunable value, as described in Chapter 3.

4.6.2 Mismatched Results

Several device drivers have the necessary machinery to carry out all of a user’s possible

requests, but provide vague errors when a supported operation fails. For example, the FTP

driver allows an application to read a file via the GET command. However, if the GET

command fails, the only available information is the error code 550, which encompasses

almost any sort of file system error including “no such file,” “access denied,” and “is a

directory.” The Unix interface does not permit a catch-all error value; it requires a specific

reason. Which error code should be returned to the application?

One technique for dealing with this problem is to interview the service in order to narrow

down the cause of the error in a manner similar to that of an expert system. Figure 4.6

shows the interview tree for a GET operation. If the GET should fail, Parrot assumes the

named file is actually a directory and attempts to move to it. If that succeeds, the error

is “not a file.” Otherwise, it attempts to SIZE the named file. If that succeeds, the file is

present but inaccessible, so the error is “access denied.” If it fails, the error is finally “no
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Figure 4.6: An Error Interview
An error interview for retrieving a file via FTP. If the initial GET operation should fail, the
interview continues with CWD and SIZE operations. At each attempt, a successful answer
yields a specific error, while the non-specific error 550 continues the interview. Any other
response results in an escaping error.

such file.”

The error interview technique also has some drawbacks. It significantly increases the

latency of failed operations, which are quite common in shells and scripting languages that

may search for a file in many places. In addition, the technique is not atomic, so it may

determine an incorrect value if the remote filesystem is simultaneously modified by another

process.

4.6.3 Disconnection

Any I/O system must be prepared for the possibility of a network interruption between a

client and server. Parrot can deal with such disconnections, but as with everything else, the

details of the protocol have semantic consequences for the application.

When Parrot discovers that it has been disconnected from a server, it attempts to retry

the connection at exponentially increasing intervals until it reaches a configurable time limit.

(An infinite time limit is equivalent to the NFS concept of “hard-mounting.”) If the time



67

limit is reached without reconnection, then Parrot emits an escaping error. However, the

more interesting case is what happens if the reconnection is successful.

Reconnection to a get/put service is easy. Because such servers maintain no state about

clients, Parrot can simply rebuild the TCP connection, and resume exactly where it left off.

Of course, it is possible that another program has moved or deleted the files Parrot was

using, but this was already possible regardless of the disconnection. Such services do not

provide Unix semantics in any case.

Reconnection to an open/close service is more complicated, precisely because servers

track what files a client has open in order to provide Unix semantics. In this case, Parrot

makes the best effort it can to reconstruct the client’s state. Upon reconnection, Parrot

simply re-opens all of the files that were open before the disconnection and examines their

inode numbers. (This is why the Chirp open call returns a stat structure in addition to the

file descriptor.) If the files cannot be opened or the inodes have changed, then the client’s

state is irretrievable and Parrot must emit an escaping error.

It is worth noting a failure mode that was unexpected in design but is common in prac-

tice. At the time of writing, many hosts are connected to the Internet by way of a Network

Address Translation (NAT) device that multiplexes a single public IP address between multi-

ple machines, giving each a private address and a transparent TCP proxy. Because the NAT

device has limited memory and limited knowledge of the hosts that communicate through

it, it must periodically discard TCP connections that it believes to be idle.

This seemingly innocuous design was initially fatal to many batch jobs that used Parrot

to access data on a remote host on the other side of the NAT. Typically, batch jobs would

access data for a short time and then compute in silence for minutes or hours. The NAT

would discard the idle connection while the job was computing. When the job later decided

to perform I/O via Parrot, it would attempt to use the discarded TCP connection, but the

NAT would silently reject all IP packets on that connection, not even responding with a
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TCP reset packet. The result was that both the client and server would sit idle for hours

waiting for the last-ditch TCP timeouts.

The solution to this problem is to ignore the TCP connection itself as a signal of con-

nection liveness. Instead, the I/O protocol itself must serve as a keepalive message. If no

response to an I/O request is received within a moderate amount of time, then the TCP

connection is discarded with prejudice and the recovery protocol is initiated right away. In

short, Parrot must be aggressive in detecting failure in order to operate across the NAT

devices that are now common on the Internet.

4.6.4 Everything Else

There remains a very large space of infrequent errors that simply have no expression at

all in the application’s interface. A NeST might declare that a disk allocation has expired

and been deleted. An FTP server may respond that a backing store is temporarily offline.

User credentials, such as Kerberos or GSI certificates, may expire, and no longer be valid.

In response, we may reallocate space, rebuild connections, or attempt to renew certificates.

Like all the other error cases, these tactics take time, resources, and have no guarantee

of eventual success. After some (configurable) effort, Parrot simply gives up and emits an

escaping error.

4.7 Performance

I have deferred a discussion of performance until this point in order to demonstrate the

performance effects of semantic constraints. Although it is possible to write applications

explicitly to use remote I/O protocols in the most efficient manner, Parrot must provide

conservative and complete implementations of Unix operations. For example, an application

may only need to know if a file exists. If it requests this information via stat, Parrot is
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Figure 4.7: Write Throughput by Protocol
This figure shows the maximum throughput achieved over a local area network by each I/O
protocol via Parrot. Note that all protocols are sensitive to block size. The hiccup in DCAP
at 64K is described in the text.

obliged to fill the structure with everything it can, possibly at great cost.

The I/O services discussed here, with the exception of Chirp, are designed primarily for

efficient high-volume data movement. Figure 4.7 compares the throughput of the protocols

at various block sizes. The throughput was measured by copying a local 128 MB file into the

remote storage device with the standard cp command equipped with Parrot and a varying

default block size, as controlled through the stat emulation described above. As with

previous throughput measurements, each was repeated 10 times, and the maximum value is

shown.

Of course, the absolute values are an artifact of this system. However, it can be seen

that any of the protocols can be tuned to optimize performance for mass data movement.

The exception is Chirp, which only reaches about one half of the available bandwidth. This

bandwidth limit is due to the strict RPC nature required for Unix semantics; the Chirp server

does not extract from the underlying filesystem any more data than necessary to supply the

immediate read operation. Although it is technically feasible for the server to read ahead in



70

 0.1

 1

 10

 100

 1000

write-8kbwrite-1bread-8kbread-1bopen/closestat

 0.1

 1

 10

 100

 1000

T
im

e 
in

 M
ill

is
ec

on
ds

CF NRD CF NRD C NRD C NRD C NRD C NRD

C - chirp
F  - ftp
N - nest
R - rfio
D - dcap

Figure 4.8: Latency by Protocol
The latency of Unix-equivalent operations by protocol. Note that this figure is log scale. The
latency of each protocol differs by several orders of magnitude.

anticipation of the next operation, such data pulled into the server’s address space might be

invalidated by other actors on the file in the meantime and, strictly speaking, is semantically

incorrect.

The hiccup in throughput of DCAP at a block size of 64KB is an unintended interaction

with the default TCP buffer size of 64 KB. The developers of DCAP are aware of the artifact

and recommend changing either the block size or the buffer size to avoid it. This is reasonable

advice, given that all of the protocols require tuning of some kind.

Figure 4.8 shows the latency of Unix-equivalent operations in each I/O protocol. Each

bar shows the mean and variance of 1000 cycles of 1000 measurements over a local area

network with both the client and server on identical machines as described in Chapter 3.

Take note that the graph is log scale: performance varies by several orders of magnitude.

I hasten to note that this comparison, in a certain sense, is not “fair.” These data servers

provide vastly different services, so the performance differences demonstrate the cost of the

service, not necessarily the cleverness of the implementation. For example, Chirp and FTP

achieve low latencies because they are lightweight translation layers over an ordinary file
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system. NeST has somewhat higher latency because it provides the abstraction of a virtual

file system, user namespace, access control lists, and a storage allocation system, all built on

an existing filesystem. The cost is due to the necessary metadata log that records all such

activity that cannot be stored directly in the underlying file system. Both RFIO and DCAP

are designed to interact with mass storage systems; single operations may result in gigabytes

of activity within a disk cache, possibly moving files to or from tape. In that context, low

latency is not a concern.

That said, several things may be observed from Figure 4.8. Although FTP has benefitted

from years of optimizations, the cost of a stat is greater than that of Chirp because of

the need for multiple round trips to fill in the necessary details. Likewise, the additional

latency of open/close in FTP is due to the multiple round trips to establish a new TCP

connection. FTP does not support fine-grained reads and writes, so no such measurements

are shown. Both RFIO and DCAP have higher latencies for single byte reads and writes than

for 8KB reads and writes. This latency is due to buffering which delays small operations

in anticipation of further data. Most importantly, all of these remote operations exceed the

latency of the debugger trap itself by several orders of magnitude, which validates the earlier

decision to make use of the expensive reliability of the debugger trap.

Figure 4.9 shows the cumulative effects of these microbenchmarks on real applications.

Each bar shows the mean and variance of ten runs of each application accessing all of its

data over a local area network, using each of the various protocols. Note that this graph is

not log scale.

Unfortunately, the RFIO and DCAP protocols were not able to successfully run any of

these applications to completion. The RFIO protocol, because of its profligate use of TCP

connections, quickly consumed kernel-level networking resources and caused both client and

server to hang. The DCAP protocol does not include operations for manipulating directories,

which each of these applications required to a limited extent. The figures for the protocols are
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The runtime of real applications accessing data over a wide area network by each protocol.
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estimates computed from traces of each application’s I/O activity and the microbenchmarks

measured above.

As can be seen, the micro-design of an I/O protocol can have a significant effect on the

overall performance of real applications. Because of the large number of metadata operations,

the low latency provided by Chirp trumps any benefits in bandwidth available in the other

protocols. This effect is extreme in the metadata-intensive make but also significant in the

scientific applications. For example, amanda via FTP is is 1.2x slower than amanda via Chirp.

4.8 Conclusion

Several conclusions may be drawn from this chapter.

First, I have shown that any semantic transformation in data manifests itself as a perfor-

mance penalty in the larger system. The Chirp protocol offers the best performance for these

applications against standard I/O servers simply because it bears the closest resemblance to

the needs of the job: that is, a single open in the job results in a single open in the Chirp

server. In the other protocols, the need to perform multiple network operations for each I/O

operation in the job – and multiple I/O operations in the server for each network operation
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received – adds up for real applications.

Second, a more positive interpretation of these results is to observe that protocol trans-

formation can be done. It is quite feasible to dispatch an application into a distributed

system, using an agent to attach to a variety of storage devices, each chosen by their owners

for varying social and technical reasons. A diverse ecology of storage systems is no obstacle

to the use of real applications.

Finally, protocol transformation is never leakproof. For each of the protocols used –

including the most Unix-like, Chirp – there are error cases that do not translate into the

interface expected by the job. These escaping errors will be the focus of the following

chapter.
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Chapter 5

Computation Coupling

5.1 Introduction

So far, I have exampined the details of coupling an agent to a variety of storage systems.

Now, I will consider the relationship between an agent and the CPU management system

that oversees it.

Traditionally, batch computing systems have provided jobs with a very simple interface.

Once placed on a remote machine, a job is started via fork and exec. Small amounts of

information may be passed to the job by way of environment variables. Once the job is

complete, it calls exit to pass a single integer back to the CPU management system. No

other information flows from the job back to the batch system.

This simple interface appears to be natural: after all, it matches the interaction between

a parent and child process in a standalone operating system. However, it is not sufficiently

rich to communicate the information needed for a data-intensive job, particularly one that

is represented by an agent. There are two reasons for this. First, a job and its agent may

require the help of the batch system in order to take advantage of the resources available to it.

I will refer to any resource provided by a batch system to a running job as a runtime service.

Second, the use of agents and runtime services increases the complexity of the system such

that a more subtle interface to indicate the success or failure of a job is needed.
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For example, one runtime service might provide a high-level execution environment for

a particular language or system such as Java [17], MPI [153] or PVM [115]. The runtime

service would be responsible for creating the execution environment and then placing the

job in it. However, if this service should fail to work correctly, there must be some way of

distinguishing between a service failure and a job failure: it is not the job’s fault if Java was

incorrectly installed!

A job may have arrived an an execution site via a variety of security mechanisms such

as GSI [53] or Kerberos [137]. In order for the agent to operate correctly, a runtime service

must direct it to local copies of its delegated credentials. However, these credentials can

have unexpected properties: they may be time limited and expire while in use. This is also

not the fault of the job itself; although, it might be the fault of the controlling user!

A runtime service might be located behind a firewall or some sort of network translation

device. In order to allow an agent to communicate with the outside world, a runtime service

must provide it with a network proxy such as SOCKS [85] or GCB [134]. These systems,

too, can be the source of failures that should not reflect negatively upon the job itself.

Thus, runtime services are a two-edged sword. They can provide a job and agent with

powerful capabilities to connect with external resources, but an extraordinary set of new

failure modes that an agent and the surrounding system must come to grips with. How can

we provide runtime services without making the system overly sensitive to new failures?

5.2 Case Study: The Java Universe

To make this discussion concrete, I will explain how I have added runtime services to the

Condor distributed batch system in order to support Java applications. In order to describe

these services in detail, I must make a slight detour to explain Condor itself.
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5.2.1 Condor

The Condor distributed batch system creates a high-throughput computing system on a

community of computers. A high-throughput system seeks to maximize the amount of

computation done over a long period of time measured in months or years. (In contrast,

a high-performance system seeks to maximize the computation performed in seconds of

minutes.) A community of computers may be any configuration of machines that agree

to work together, ranging from a single large SMP to a managed PC cluster to a set of

workstations spread around the world. Condor was originally designed to manage jobs on idle

cycles culled from a collection of personal workstations [90], and so is uniquely prepared to

deal with an unfriendly execution environment by using tools such as process migration [133]

and transparent remote I/O [92].

The core components of Condor are shown in Figure 5.1. Each participant of the system

is represented by a daemon process that represents its interests. A user submits jobs to a

schedd, which keeps the job state in persistent storage, and works to find places where the

job may be executed. Each execution site is managed by a startd that enforces the machine

owner’s policy regarding when and how visiting jobs may be executed. The requests and re-

quirements of both parties are expressed in a declarative language known as ClassAds [118],

and forwarded to a central matchmaker. This process collects information about all par-

ticipants, and notifies schedds and startds of compatible partners. Matched processes are

individually responsible for communicating with each other and verifying that their needs

are met. In this case, schedds and startds communicate directly to claim one another and

verify that their requirements are met. Once matched, each creates a process to oversee the

execution of one job. The schedd starts a shadow, which is responsible for providing the

details of the job to be run, such as the executable, the input files, and the arguments. The

startd creates a starter, which is responsible for the execution environment, such as creating
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Figure 5.1: Overview of Condor
How Condor runs a single job. 1: The schedd and startd advertise themselves to the match-
maker. 2: The matchmaker informs the two processes that they are compatible. 3: The
schedd claims the startd. 4: The schedd and startd fork a shadow and starter. 5: The
shadow activates the starter. 6: The starter forks the agent and job.
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a scratch directory, loading the executable, and moving input and output files.

Condor provides several universes for executing jobs. A universe is a carefully-selected

set of features that create environments suitable for different kinds of jobs. The starter and

shadow are responsible for working together to create a suitable universe. The Standard

Universe provides transparent checkpointing and remote I/O capabilities for binary executa-

bles. It requires the program to be re-linked with a Condor-provided library. The Vanilla

Universe can execute normal scripts and binaries that are not re-linked, but such jobs cannot

checkpoint or migrate. Specialized universes are provided for the Globus [57], PVM [115],

and MPI [153] environments.

5.2.2 The Java Universe

A growing number of number of users are turning to Java as a suitable language for dis-

tributed computing [56, 60]. Although Java code may not always execute as quickly as native

machine code, it is believed that this loss is more than offset by faster development times

and a larger pool of available CPUs.

To support this community, I have added a Java Universe to Condor. The added compo-

nents are shown in Figure 5.2. In this universe, the starter does not execute the job directly,

but instead invokes the JVM which in turn invokes the user’s Java program. The JVM

binary, libraries, and configuration files are all specified by the machine owner, as they are

certain to differ from location to location. The user simply specifies the Java Universe, and

does not need to know the local details.

The starter can transfer the job’s input and output files at the beginning and end of

execution. However, many jobs require more extensive I/O, perhaps from a selection of

files that are impractical to transfer all together for every execution. For such programs, a

simple I/O library is provided. This library presents files using standard Java abstractions,
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Figure 5.2: The Java Universe
This figure shows the components of the Java Universe within the Condor system. The
starter invokes the JVM, which contains the wrapper (described in Section 5.4), the job itself
and the agent library. The agent library performs I/O by communicating with a proxy in
the starter. The proxy accesses the user’s home storage by communicating with the shadow
process.
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such as the InputStream and OutputStream interfaces. This library is an agent based on

polymorphic extension, as discussed in Chapter 3. The user must make small changes to the

program in order to construct objects of type ChirpInputStream and ChirpOutputStream,

but otherwise may perform I/O normally.

This library does not communicate directly with any storage resource, but instead in-

teracts with a proxy in the starter via the Chirp protocol introduced in Chapter 4. The

connection is established from one process to another on the loopback network interface.

The library authenticates itself to the starter by presenting a shared secret revealed to it

through the local file system. Thus, the connection is secure to the same degree as the local

system.

The proxy allows the starter to transparently add additional functionality to the job

without placing any burden on the user. The proxy allows the job to be transparently

connected to runtime services that may vary from site to site or require special permissions.

For example, a firewall could be crossed using configuration and authentication information

that was only known by the proxy at the execution site. In this chapter, I will discuss a

typical application of the proxy by making use of the standard Condor remote I/O channel

to the shadow. This facility provides UNIX-like file access in the form of remote procedure

calls secured by GSI [53] or Kerberos [137].

5.2.3 Initial Experience

Brave early users of the Java Universe were disappointed. Under ideal conditions, jobs would

execute as expected. However, nearly any failure in a component of the system would cause

the job to be returned to the user with an error message. If the Java installation was somehow

faulty – the machine owner might give an incorrect path to the standard libraries – the job

would exit and return to the user for consideration. If the job consumed more memory than
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was available on the machine, the job would exit, indicating an OutOfMemoryError. If the

shadow’s shared file system became temporarily unavailable, the job would exit indicating a

ConnectionTimedOutException.

This behavior was correct in the sense that users received true information about how

their jobs executed. However, it was undesirable because it required frequent postmortem

analysis to determine whether the job had exited of its own account or simply because of

accidental properties of the execution site.

I also found this frustrating, as I had gone to great trouble to assure that no error value

was left unconsidered. For example, I ensured that file system errors discovered by the

shadow were transmitted to the starter, and then converted into corresponding exceptions

by the Java I/O library. At process completion, the exit code of the JVM was transmitted

carefully back to the shadow, then the schedd and the user.

Fault-tolerance techniques such as replication and retry were not germane to this problem.

Users wanted to see program generated errors such as an ArrayIndexOutOfBoundsException,

but wanted to be shielded against incidental errors such as a VirtualMachineError. Knowl-

edge of such details might be useful to users or administrators as a measure of system health,

but were not useful as a program result.

5.3 Theory of Error Scope

To better understand this problem, we require a theory of error propagation. I will first

describe key concepts relating to errors and then embark on a discussion yielding several

succinct design principles. My goal is not to design new algorithms for fault-tolerant systems.

Rather, I wish to bring some structure to the analysis of errors. Once an error is understood,

then we may rewrite, retry, replicate, reset, or reboot as the condition warrants.
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5.3.1 Terms

The generally accepted definitions of fault, error, and failure in computer science are those

given by Avizienis and Laprie [18]. To paraphrase, a fault is a violation of a system’s

underlying assumptions. An error is an internal data state that reflects a fault. A failure is

an externally-visible deviation from specifications.

For example, consider a machine designed to tally votes in an election and display the

name of the candidate with the most votes. A fault might be a random cosmic ray that

passes through the machine and corrupts some storage. If the corrupted storage contained

program data in use, then the changed data would constitute an error. If the error was

significant enough to alter the victor, then the machine would have experienced a failure.

A fault need not result in an error, nor an error in a failure. This may be through

accident: The cosmic ray might corrupt storage not in use. Or, it may be through design:

There may be multiple redundant machines that themselves must vote on the final output.

These three terms seem to work well when we consider a complex piece of machinery as

a whole. However, they are not so useful when we begin to consider software as a collection

of components. In a given piece of software, an error may or may not be a failure, depending

on whether the software is the highest layer perceived by the user. Furthermore, the term

error is often used to indicate a condition that is not desirable or not useful – i.e. “out of

memory” – even though it may constitute a valid or expected state of the software.

In this context, it is more useful to use the generic term error to mean merely an un-

desirable result and then divide it into three categories that distinguish how an error makes

itself known to the caller, whether it be a user or another piece of software.

An implicit error is a result that a routine presents as valid, but is otherwise determined

to be false. For example, it would be an implicit error for
√

3 to evaluate to 2. It can

be expensive to detect an implicit error, typically requiring duplication of all or part of a
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computation.

An explicit error is a result that describes an inability to carry out the requested action.

For example, a routine to allocate memory may return a null pointer indicating “out of

memory.” Explicit errors require no further work to determine that they are errors, but may

require additional work on the part of the caller to determine the next course of action.

An escaping error is a result accompanied by a change in control flow. This sort of

error is not given directly to the caller of a routine, but to a higher level of software. An

escaping error is necessary when a routine is unable to perform its action and is also unable

to represent the error in the range of its results.

It is important to re-emphasize here that the terms error and result are semantically

indistinguishable. A result that carries the message “out of memory” is simply a true state-

ment. Whether it is desirable or not is a matter of opinion to the receiver of the message.

(One could image a program that is trying to exhaust memory.) We simply have the con-

vention of calling some results errors because they are undesirable to most programs. The

distinction between the three kinds of errors lies in their method of propagation, not in the

information that they carry.

Both explicit and escaping errors have been represented in recent languages by the ex-

ception [62]. The exception is a language feature that combines an object for carrying rich

error information along with a change of control flow that allows the error to be propagated

beyond the immediate caller. The exception is a useful programming tool, and I am generally

in favor of its use to improve the readability and verifiability of programs. However, the use

of exceptions is neither necessary nor sufficient for building a disciplined system. I will give

examples that make use of exceptions, but offer discussion in terms that can be applied to

any error representation, whether it be signals, strings, integers, or exceptions.
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5.3.2 Error Relationships

To illustrate the relationship between the three error types, consider a standard virtual

memory system that provides the illusion of a large memory space by making judicious use

of limited physical memory and a larger backing store. Suppose that it discovers an explicit

error: the backing store is damaged or unavailable. If it cannot satisfy an application’s load

operation, what should it do? A load operation has no result that can signify an error.

The system might return a random or default value, thus creating an implicit error in

the calling layer. This would clearly be an unacceptable design. Implicit errors are difficult

enough to detect when they are introduced through accident or physical faults. We must

not add to the problem by making them a deliberate presence.

Principle 1 A program must not generate an implicit error as a result of receiving an explicit

error.

The system may attempt to apply any number of standard techniques in fault tolerance.

It may consult mirrored copies or simply retry the operation. But what if these fail or

timeout? The system must cause an escaping error rather than corrupt the results with an

implicit error.

The escaping error is not simply the crutch of a novice programmer that lazily calls

abort rather than handle an uncomfortable boundary condition. It is a vital component of

a system programmer’s toolbox that must be used when a routine is in danger of violating an

interface specification. The escaping error is a disciplined exit resulting in an explicit error

at a higher level of abstraction. It can be communicated in a variety of ways, depending

on the form of the communication interface. On a network connection, an escaping error is

communicated by breaking the connection. Within a running program, an escaping error

is communicated by stopping the program with a unique exit code. In this case, a virtual
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memory system communicates an escaping error by forcibly killing the client process, which

then exits with a signal indicating a memory error.

Principle 2 An escaping error must be used to convert a potential implicit error into an

explicit error at a higher level.

The need for the escaping error is obvious in an interface that cannot express errors, such

as the virtual memory system mentioned above. Yet, it is still necessary in interfaces that

express explicit errors. Consider this interface used to access a file:

int open( String filename ) throws FileNotFound, AccessDenied;

The exceptions FileNotFound and AccessDenied are explicit errors that describe an

inability to carry out the caller’s intentions. However, these explicit errors are ordinary

results in the sense that they conform to the function’s interface. A well-formed caller of

open must be prepared to deal with these eventualities in some way. Indeed, one purpose

of the exception mechanism is to ensure that the caller deals with all expected results. The

appearance of these errors does not violate the contract of the function in any way.

However, no interface can capture all of the possible implementation errors of a routine.

Every routine rests on many unstated assumptions such as the coherency of memory and

the infallibility of a function call. Such violations, even if detected, are generally considered

beyond the concern of the designer.

Thus, the escaping error represents the mismatch between an interface and an implemen-

tation. A new file system may be built in terms of disk operations, network communications,

carrier pigeons, or other mechanisms not yet imagined. In order to attach such systems to

existing interfaces, we must deal with error values that do not fit into an existing interface.

Regardless of the interface, a function such as open may be susceptible to a PigeonLost if

it is given an avian implementation [151]. An escaping error is a symptom of a fundamental

incompatibility between two systems.
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5.3.3 Error Scope

To be accepted by end users, a system must be sensitive to the distinction between the explicit

and the escaping error. If the system can successfully create the computation environment

expected by the user, then a program’s result, error or otherwise, must be returned to the

caller. If the system is unable to create the expected environment, then an escaping error

distinguishable from a program result must be delivered to the surrounding system.

However, the use of the escaping error raises a conundrum. In order to accept and

react to an escaping error, a system must be able to understand its meaning to a certain

degree. But, the very nature of an escaping error is to describe an implementation dependent

problem that may vary from system to system. To solve this problem, we need an abstraction

that balances the diagnostic need for information with the principle of separation between

implementation and interface.

I introduce the abstraction of error scope to solve this problem. The scope of an error is

simply the portion of a system which it invalidates.

For example, FileNotFound has file scope. It simply states that the named file cannot

be found. A failure in remote procedure call (RPC) [29] has process scope. It indicates

that the mechanism of function call is no longer valid within the process. A node failure in

PVM [115] has cluster scope. If one node crashes, then the whole cluster of nodes is obliged

to fail.

In each case, an error must be interpreted by the program (or process, routine, function,

etc.) that is responsible for managing that error’s scope. For example, the calling function is

capable of handling an error of function scope. The creator of a process is capable of handling

an RPC error of process scope. The creator of a PVM cluster is capable of handling an error

of cluster scope.
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Principle 3 An error must be propagated to the program that manages its scope.

An error’s scope may be re-considered at many layers. It may gain significance, or

expand its scope, as it travels up through layers of software. For example, at the level of

network communications, an error indicating a lost connection is simply that. However,

when interpreted in the context of RPC or PVM, it becomes an error of process or cluster

scope, respectively.

In many cases, there may be a specialized mechanism for delivering an error to the

manager of its scope. For example, a POSIX signal can deliver an error directly to a parent

process. In other cases, we may use an indirect channel, such as a file, to carry the necessary

information to its destination. We will see an example of this below.

5.3.4 Generic Errors

A frequent source of confusion in error propagation is the generic error. A generic error is

an indication that a routine may return any member of an expandable set of related errors.

Such an interface makes a very weak statement about the behavior of a routine, creating

confusion for both the implementor and the caller.

An example of a generic error may be found in the Java I/O system. Consider this

interface fragment:

class FileWriter {

FileWriter( File f ) throws IOException;

void write( int ) throws IOException;

}

The generic error IOException, thrown by both both methods, is defined by the standard

Java package and is extended to include a variety of exception types such as FileNotFound
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and EndOfFile. Users of these interfaces are encouraged to create new error types that

extend the basic type. This appears attractive: flexibility and generality are usually seen as

programming virtues. However, this generic interface creates problems with both the errors

it includes and those it omits.

The use of IOException suggests that both methods are subject to the same set of explicit

errors. This is certainly not the case in most I/O systems. Traditionally, the act of opening a

file is subject to errors of permission and existence that occur while navigating a namespace.

Once opened, the file is locked in such a way that reads and writes are sure to succeed, subject

to the bounds of the file size. Would it be reasonable for an implementation of write to

throw a FileNotFound? Of course not! That would violate the ordinary expectations we

have of an I/O system. Even if we could manage to build a bizarre distributed file system

subject to losing a file in the middle of a write, we would expect to receive an escaping error,

not an explicit error. We know this only because we are familiar with the conventions of

I/O systems. If we were to encounter a generic error in a less familiar interface, the behavior

would not be so obvious.

Despite the invitation to extension, there is little practical way to make use of an error

type not mentioned in the originally documented instances of IOException. Suppose that we

wish to know when the file system runs out of space. (This possibility is not mentioned in the

Java documentation.) From the caller’s perspective, we have no idea how an implementation

will behave. Guessing at exception names is futile: the names DiskFull and FullDisk, as

well as many others, are plausible names. From the implementor’s perspective, we have no

idea if the caller is prepared to deal with this error. Can it handle an DiskFull or would it

be better to retry and hide the error? At least one Java implementation avoids this problem

entirely by blocking indefinitely when the disk is full. The generic error offers us no help in

deciding whether other implementations will behave this way.

If we wish to make a caller and an implementor agree on a convention for a DiskFull
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error, we must establish some way for them to know that the other is aware of the convention.

To know this would violate the principle of separation between interface and implementation,

unless we simply create a new interface that describes DiskFull.

I conclude that the generic error leads to more questions than answers. Rather than

bringing structure to an interface, it forces the participants to make guesses. I advocate that

an error interface is only useful when it makes a strong, limited statement. It is better to

exclude a DiskFull error entirely then to leave the participants guessing at its existence.

Principle 4 Error interfaces must be concise and finite.

If it was possible to revise these I/O interfaces to conform to Principle 4, I would write

something like this:

class FileWriter {

FileWriter( File f ) throws FileNotFound, AccessDenied;

void write( int ) throws DiskFull;

}

If this revised interface were to be used in a context with the possibility of a new type

of fault, such as ConnectionLost, then it must be communicated with an escaping error

according to Principle 2. If the caller wishes to deal with such an error explicitly, then a

new interface must be constructed to inform both parties of their mutual interest.

5.4 Java Revisited

To apply these ideas to the Java Universe, we must first identify the system’s various error

scopes and their handling programs, shown in Figure 5.3. Dotted lines indicate scopes, circles

indicate handling programs, squares indicate resources, and arrows indicate return values.
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Figure 5.3: Error Scopes in the Java Universe
This figure shows the error scopes and handling programs in the Java Universe. Each dotted
rectangle indicates a scope. Attached circles indicate the handling program for each scope.
Squares indicate resources that are members of each scope. Labeled arrows indicate return
values from one handler to another.
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Execution Detail Error Scope JVM Result
The program exited by completing main. Program 0
The program exited by calling System.exit(x) Program x
Exception: The program de-referenced a null pointer. Program 1
Exception: There was not enough memory for the program. Virtual Machine 1
Exception: The Java installation is misconfigured. Remote Resource 1
Exception: The home file system was offline. Local Resource 1
Exception: The program image was corrupt. Job 1

Figure 5.4: JVM Result Codes
This figure shows the result code generated by the JVM for various possible program execu-
tions. The result code is not useful, because it does not distinguish error scopes. A result
of 1 could indicate a normal program exit, an exit with an exception, or an error in the
surrounding environment. This problem is solved by the wrapper described below.

Each process in the system is responsible for managing certain physical resources. Error

scopes correspond directly to management responsibility. For example, a corrupted program

or a missing input file has job scope. In such a case, the schedd is responsible for informing

the user that the job cannot run. An unavailable file system has local resource scope. The

shadow would be responsible for informing the schedd that the job cannot run right now. In

contrast, a misconfigured JVM has remote resource scope. The starter would be responsible

for informing the shadow that the job cannot run on the given host. A lack of memory for

the program has virtual machine scope. The JVM would be responsible for informing the

starter that the job cannot run in the current conditions.

In each scope, the managing program could apply fault-tolerance techniques to mask the

error, or it could propagate the error up the chain. If it chooses the latter, it must distinguish

between errors in its own scope and errors in containing scopes. The last line of defense is

the schedd. If it detects an error of program scope, it identifies the job as complete and

returns it to the user. If it detects an error of job scope, it identifies the job as unexecutable

and also returns it to the user. Anything in between causes it to log the error and then

attempt to execute the program at a new site.

With this understanding, the problem with the Java Universe becomes clear: I failed
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to apply Principle 3 and direct errors to the manager of each scope. Several small changes

throughout the system were necessary to fix this problem. Here are two examples.

While executing a Java program, the starter relied entirely on the exit code of the JVM as

an indicator of program success. This simple (but incorrect) assumption introduced implicit

errors, violating Principle 1. As Figure 5.4 shows, the JVM can cause an environmental error

to appear as a program result. To retrieve the necessary information, it was necessary to add

the wrapper shown in Figure 5.2. The starter causes the JVM to invoke the wrapper with the

actual program as an argument. The wrapper locates the program, attempts to execute it,

and catches any exceptions it may throw. It examines the exception type, and then produces

a result file describing the program result and the scope of any errors discovered. The starter

examines this result file and ignores the JVM result entirely.

While performing I/O, the agent blindly converted all possible explicit errors from the

proxy directly into corresponding Java exceptions. For failure modes not represented by

existing exception types, the agent simply extended the basic IOException to a new type.

Although this was easy, it was incorrect. I gave in to the temptation offered by the generic

error interface proscribed by Principle 4. Although errors such as “connection timed out” and

“credentials expired” could technically be represented by an IOException, they violated a

program’s reasonable expectations of the I/O interface and thus fell outside of the program’s

scope. To propagate such errors correctly, I applied Principle 2 and modified the agent library

to send an escaping error (a Java Error) to the program wrapper, which communicates the

error scope to the starter through the result file.

The reader may fairly object that the “reasonable expectations” test is extraordinarily

vague. I admit that there is room for disagreement in such a subjective term. It is precisely

this confusion which motivates the statement of Principle 4.

With the changes described above, the hailstorm of error messages abated, and the system

settled into a production mode.
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Figure 5.5: Parrot and Condor

Parrot interfaces with Condor in a manner similar to that of the Java Universe. Parrot traps
the job’s system calls and then may perform I/O via the Chirp protocol to the I/O proxy. It
may also perform I/O to other services, using the Chirp proxy only for name resolution.

5.5 Parrot Revisited

The use of runtime services and the concept of error scope maps well to other jobs and agents.

For example, Parrot can be used to couple ordinary Unix programs to the same Chirp proxy,

as shown in Figure 5.5. Just as in the Java Universe, files must be used to communicate

the authentication cookie as well as the result file between the starter and Parrot. The error

scopes shown in Figure 5.3 apply equally well, by simply substituting Parrot for the JVM.

Likewise, the problem of error codes shown in Figure 5.4 is Parrot’s problem as well: the

job’s result and the scope of any errors must be communicated in the result file.

The previous chapter described many ways in which Parrot can emit an escaping error. In

this context, the escaping error is simply recorded in the result file, describing the scope of the

error for the benefit of the system and the details of the error for the benefit of the debugging
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log. Parrot may then exit, allowing the starter to propagate the error appropriately.

An agent such as Parrot may also be used to create a cross-coupling between CPU and

I/O scheduling when data services may be the source of a delay. The storage services that are

available for use now are relatively passive devices. However, there are a number of services

in development that will be responsible for moving files over the wide area in response to user

requests. For example, systems such as SRB [23] and SRM [130] will present a filesystem

interface to demand-driven data movement. FTP [112] is a popular front-end interface to

hierarchical storage managers. Stork [80] serves as a reliable queue for data transfer requests.

With all of these services, a request for data may result in a response indicating that the

data are in delivery and will arrive in a given amount of time or even at a different location.

Using the Chirp interface, an agent can cause a running job to be rescheduled at a later

time or a different place. The Chirp interface provides a constrain call that specifies a clause

to be added to the job’s scheduling constraints expressed in the ClassAd [118] language. For

example, if the agent discovers that a needed file is not scheduled to be staged in from tape

until 9:15 AM, it can use constrain to add the requirement (DayTime() > ’9:15:00’)

and then exit, indicating an error of storage scope. Condor will not re-place the process until

the new requirements are satisfied.

For another example, suppose that the agent has already moved a dataset to a nearby

cache at considerable cost. Without releasing the CPU, it might call constrain to add the

requirement (Subnet=="128.105.175") and then continue processing. If the application

should fail or be evicted at a later time, it will be re-placed by Condor at any machine

satisfying the constraints: that is, on the same subnet as the needed data. Multiple calls to

constrain overwrite the previous constraint, so that previous decisions may be un-done.

The notion of job-directed resource management is introduced in J. Pruyne’s doctoral

thesis [114]. A resource management interface called CARMI permits a running job to

request and release external resources at run-time. A similar idea is found in the notion of
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execution domains [24], where the Condor shadow directs future allocations based on the

location of checkpoint images. The Chirp constrain facility combines both of these ideas

by permitting the agent to direct further allocation requests on the job’s behalf in response

to the developing state of the system.

5.6 Conclusion

An agent is charged with the deceptively simple problem of coupling a job to a batch system.

When a program stops execution, the agent must simply communicate whether the job

succeeded, returning a result, or failed to complete for some external reason. As I have

shown in this chapter, the usability of a system hinges upon making this subtle decision

correctly. The notion of error scope allows us to structure error propagation, even if the

evolution of a system creates new failure modes.

It is useful to think of the notion of error scope in conjunction with a virtual machine

model. Each error scope shown in Figure 5.3 can be thought of as corresponding a virtual

machine with specific resources to manage and a concrete instruction set or interface to

implement. With a clear definition of the expectations involved at each level, it is easy

to determine whether a particular error condition is compatible with or breaks the virtual

machine model at a particular level.

Now, it is possible to build a system without these distinct boundaries. But, if no

expectations are made or enforced at any level, then any exception is, in some sense, valid

in any context. The result is that exceptions of previously-unknown types percolate up to

the top level for consideration by the user. Unfortunately, distributed systems are very good

at creating new types of errors, thus making users very unhappy.

The discipline of error scope is key to building reliable systems. We will see how error

scope can be applied to a complete system in the next chapter.
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Chapter 6

Coordinating Computation and Data

6.1 Introduction

So far, I have presented the a job’s agent by detailing its coupling to three independent

entities: the job itself, the storage system, and the computation system. I will conclude by

describing the interaction of all of these components in a complete system for executing data

intensive workloads.

The execution of a job may be thought of as a transaction [63] involving each of these

resources. The inputs to the transaction are the executable code, the input parameters, and

the input data files. The outputs of the transaction are the exit status of the job and the

output files it has written. Within certain constraints given by the user, the data access

and computation must be performed as a coherent whole. Transactions are traditionally

described in the context of database systems that guard repositories of highly structured

data with stringent consistency requirements. The canonical properties of a transaction are

described as ACID: atomicity, consistency, isolation, and durability.

Atomicity requires that either all or none of a transaction’s outputs are committed to

the database. Consistency requires that an entire transaction must respect constraints pro-

mulgated by the administrator. Isolation requires that several concurrent transactions run

as if only one was running. Durability requires that the transaction only indicate success if
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the outputs are on persistent storage.

A transaction in a batch setting needs only two of these properties: consistency and

durability. I will refer to this type of limited transaction as a CD-transaction, which can

either be thought of as consistency-durability or computation-data.

It is acceptable, perhaps even desirable, for the output of a batch job to be non-atomic.

Because batch jobs may run for hours or days, the developing output can assure the user

that the system is making progress, reveal problems in the code or the input parameters,

and allow the cost of output to be amortized over the lifetime of a job. Batch systems do

not need to enforce isolation between transactions because batch workloads generally have

isolation encoded in their structures. For example, a large workload composed of simulations

would have a set of jobs each reading distinct input parameters and writing to clean output

files. Further, the assumption of isolation is critical to performance: if a batch system was

required to enforce isolation, a large amount of communication would be required between

otherwise independent execution nodes.

A CD-transaction must be consistent. That is, the results – the exit code and the output

files – must be the result of the same computation. If it is necessary to repeat the same

computation multiple times before success is achieved, the outputs must both be the results

of the final attempt. The transaction cannot be considered complete until both results are

received. A CD-transaction must also be durable. Throughout the lifetime of a transaction,

the various components may be stored in volatile memory on a variety of machines, and

perhaps even in durable storage on incidental devices such as remote disks. However, the

transaction cannot be considered complete until all results are committed to stable storage

in the location specified by the user.

Incidentally, the notion of a CD-transaction captures very nicely the semantic distinctions

between batch and interactive data access. Lu and Satyanarayanan have made the case that

interactive users on mobile computers require transactions that provide only isolation and
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Figure 6.1: Transaction Granularity

no other property [94]. The assumption is that interactive users must be protected from

meddling by other users, but otherwise will closely supervise and recover from failures. In

a batch environment, isolation is not needed, but consistency and durability are, precisely

because the user is not willing to supervise closely.

6.2 Transaction Granularity

A CD-transaction can only commit if both of its components – computation and data –

successfully complete. That is, if a job runs successfully but its output data is lost in transit,

then the transaction must not commit. Alternately, if a job successfully writes some output

data, but the computation crashes or is otherwise lost, then the transaction must not commit.

Of course, because a CD-transaction is not atomic, a non-committed transaction may leave

behind some evidence of its execution, but the job cannot be recorded as complete unless

the CD-transaction commits.

A CD-transaction is built up from many small components. A process writes its output by

issuing filesystem commands such as open, write, and close. The data may be committed

one operation at a time, in small groups, or all at the end of a job or workload. Each of

these steps might be considered a nested transaction [100] or a savepoint [63]. This choice

of transaction size is known as transaction granularity, and can be controlled by the agent

on behalf of the job.
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Figure 6.2: Commit per Operation
This figure shows a transaction granularity of commit-per-operation. Each write performed
by the job results in a chain of messages all the way to the storage device, and then a chain
of acknowledgements all the way back to the job.

Figure 6.1 shows a range of choices in transaction granularity along with the names of

systems employing that granularity. When a fine commit granularity is used, a computation

stays closely in sync with the outputs that it generates. A system with a fine commit

granularity is easy to build, but is typically very sensitive to the availability and reliability

of the communication and storage devices in use. As the commit granularity becomes coarser,

a computation may become more and more out of sync with its output. A large commit

granularity reduces the sensitivity of a system to the undesirable physical properties of a

system, but requires increasing complexity to reconcile the computation and data portions

of a transaction.

The simplest and finest granularity is commit per operation, shown in Figure 6.2. In this

model, a job stays in close contact with its target storage. When the job requires input

or output, the agent issues a remote procedure call to access some limited portion of the

data that it needs immediately. A write operation must be immediately forced to stable
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storage before an acknowledgment may be given. Commit-per-operation is used by Parrot

through Chapter 4 with partial file protocols such as Chirp. A small commit granularity is

found many other places such as in the Condor remote I/O system [133], and in the strict

interpretation of the NFS [126] distributed file system protocol. (However, most users of

NFS do not actually see this behavior, because the strict protocol is typically hidden behind

a buffer cache.)

Commit-per-operation is easily constructed and well-understood. However, it has two

major drawbacks. The first is that the job’s I/O performance is latency-bound: Every I/O

operation must suffer the round trip latency of the network and the storage device. We

saw this dramatic effect earlier on metadata-intensive programs such as make. The second

problem is that commit-per-operation holds the job hostage to the whims of the larger

system. If the storage device should crash, or the network fail, or a temporary load diminish

bandwidth, the job will pause as it waits for the remote procedure call to finish. This pause

will occur regardless of whether the I/O is performed over a reliable connection, as in Chirp,

or over connectionless datagrams, as in NFS.

We may address these problems to a certain extent by changing the transaction granu-

larity to commit-per-file. Whenever a file is opened, it is copied whole from remote storage

and placed in local storage where the job may access it at local speeds. When the file is

closed, if changed, it is written back to the target storage device. This is the approach used

by Parrot with whole-file protocols such as FTP. It is also found in the GASS [28] system as

well as the AFS [68] distributed file system.

This approach improves the latency of individual reads and writes at the expense of fetch-

ing the whole file at first open. Commit-per-file has been shown [68] to improve scalability

for traditional interactive workloads. However, it requires the attention of the job when a

file is closed. In Unix, a close operation cannot fail; it is simply a release of resources. When

using commit-per-file, the closing of a file can fail; few applications are prepared to deal with
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Figure 6.3: Commit per Process
This figure shows a transaction granularity of commit-per-process. While it runs, a job may
write data to a temporary disk. When it exits, the agent is responsible for pushing all data
to the target disk before indicating an exit to the batch system.

such a failure. In the batch context, we can rely on the agent to detect a close failure and

then emit an escaping error.

At even coarser granularity, we may perform commit-per-process, shown in Figure 6.3.

As the job runs, the agent attempts to write its outputs to the remote storage device. If

that is not possible, it simply buffers them in temporary storage. When the job exits, the

agent must be sure to flush all buffered data to the file server before permitting the job to

exit. If the outputs cannot be written, then the job exit fails, and the transaction remains

uncommitted.

This technique is used in a tool called the Grid Console [141]. The Grid Console allows

users to have an interactive-when-possible I/O service. When the network is available,

outputs are immediately visible. When the network is not available, outputs are delayed,

but jobs do not stop executing. Commit-per-process is valuable to users, because it preserves

much of the human satisfaction of commit-per-operation without the attendant fragility.
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However, it still remains that jobs will fail or be delayed by a network outage or slowdown.

A common (but dangerous) solution to this problem is to make use of external-commit,

shown in Figure 6.4. In this model, a job writes its outputs to a nearby buffer. The buffer

accepts data as quickly as possible while simultaneously moving data out to its eventual

destination. When the job wishes to exit, the agent sends a commit operation to the buffer

to ensure that all data are safe. If successful, the job may exit, but it is not complete yet,

because the output has not been delivered. An external entity is needed to remember and

commit the incomplete transaction. Once the job and the agent have left the execution site,

the CPU may be used by other jobs while the buffer trickles data back to persistent storage.

Finally, the external entity must issue a second operation called push or sync to ensure

that the buffer’s work is done.

This technique has been proposed in several settings. The Kangaroo [142] distributed

buffer cache is a peer-to-peer network of identical servers, each providing buffer space for

batch jobs. Kangaroo provides both the commit and push operations: the former makes

data more resilient to crashes, while the latter ensures that it is committed to the target

storage.

Anderson et al. [15] propose a similar concept whereby buffer-servers spread across a

distributed system accept pending data and forward it to their ultimate destination. As

proposed, buffer servers have a commit but not a push.

The ordinary semantics of a Unix system with a buffer cache may be seen as an example

of external commit. In ordinary operations, applications write data into the buffer cache,

and receive an acknowledgment that the cache has accepted the data. Independently of the

application, the user or the kernel must periodically issue a sync operation in order to force

all data to persistent storage.

The Coda [78] distributed file system has a similar concept, albeit with the opposite flow

of information. Designed for partially-connected computers such as laptops, Coda allows
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Figure 6.4: External Commit
This figure shows an externally committed transaction. While it runs, a job passes its data
to a nearby buffer server. When it exits, the agent obtains an acknowledgement from the
buffer server before indicating exit to the batch system. At a later time, the user externally
probes the buffer server and obtains an acknowledgement when data movement is complete.
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applications to write at will to a disconnected buffer cache. When the buffer cache is recon-

nected to the target storage, the two are reconciled, and any errors in the committal of data

– such as non-isolated writes – are reported to the user by email.

External commit is useful in interactive computing systems because the initial writer sees

a low latency. If an external commit should fail, then it is assumed the user is readily available

to examine and recover the system. This approach is acceptable because the interactive user

has intimate knowledge of the history and purpose of important files. Such an approach

is not suitable in a batch environment because a batch workload may involve thousands of

active files and processes. Without an automatic coupling between buffered data and the

process that created it, the system cannot recover from commit failures automatically.

A more appropriate method for batch computing is to expand the notion of a transaction

to the size of an entire batch workload. An entire workload may have several input files and

several output files that are of interest to the user. Between the inputs and outputs may

be a large number of jobs that use files merely as temporary storage. So long as the final

outputs of interest are committed to stable storage, it may not be necessary to store or even

transfer intermediate results.

A highly idealized implementation of commit-per-workload is found in the Time Warp [73]

simulation model. In this model, parallel programs are written in a specialized message

passing language. Each node maintains a virtual time counter in a manner similar to that

of the Lamport clock algorithm [82]. If a node discovers that its virtual clock has run ahead

of its peers, then a causality error has occurred. It may be the result of an over-optimistic

speculation, or it may simply be the result of a failed node that has restarted. A causality

error requires a node to retreat to a previously recorded checkpoint and send compensating

messages to its peers to cause them to retreat as well. (The ideal selection of checkpoint

times in a Time Warp system has been a matter of much debate [113, 104, 116].) In any

case, the entire workload does not commit until all nodes have run to completion and written
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Figure 6.5: Commit per Workload
This figure shows a complete workload that may be treated as a transaction. Circles indicate
processes to be run. Boxes indicate files read or written by each process.

their outputs to external storage.

We need not make the complete generalization of Time Warp in order to gain the benefits

of the commit-per-workload model. We may consider Unix processes to be exchanging

messages in the form of the files that they read and write. For example, Figure 6.5 shows

a simple workload that may be considered as a transaction. The circles represent processes

to be run, and the squares represent files. File f0 is an input file, and files f2 and f3 are

output files. The outputs are generated by running job A to produce f1, followed by jobs B

and C.

By considering the entire workload as a transaction with intermediate files as distributed

checkpoints, we are able to both improve performance as well as recover from a large number

of failures. By declining to commit f1, we may improve the execution time of A. If job B

fails to complete, it may be run again using f1 as input, if it can be found. If not, then we

know exactly how to regenerate it: by re-running A.

The commit-per-workload model allows us to take a holistic view of the computation and
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Figure 6.6: A Batch-Pipelined Workload

data needs of a large amount of work. I explore this approach next in a system called the

Batch Aware Distributed File System, or BAD-FS.

6.3 Case Study: BAD-FS

The Batch Aware Distributed File System (BAD-FS) is a distributed system designed to run

unmodified data-intensive batch applications on large-scale, unreliable computing systems.

It relies on a commit-per-workload model in order to make its operation both fault-tolerant

and performant.

BAD-FS is designed to run the type of scientific batch workloads introduced in Chapter 1.

As illustrated in Figure 6.6, these data-intensive workloads are composed of multiple inde-

pendent vertical sequences of processes that communicate with their ancestors and relatives

via private data files. A workload generally consists of a large number of these sequences that

are incidentally synchronized at the beginning, but are logically distinct and may correctly

execute at a different rate than their siblings. These are known as batch-pipelined workloads.
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One of the key differences between a single application and a batch-pipelined workload

is file sharing behavior. For example, when many instances of the same pipeline are run, the

same executable and potentially many of the same input files are used. One may characterize

the sharing that occurs in these batch-pipelined workloads by breaking I/O activity into three

types (as shown in Figure 6.6): endpoint, the unique input and final output; pipeline-shared,

shared write-then-read data within a single pipeline; and batch-shared, input data shared

across multiple pipelines.

The typical computing platform for batch-pipelined workloads is one or more clusters

of managed machines spread across the wide area. I assume that each cluster machine has

processing, memory, and local disk space available for remote users, and that each cluster

exports its resources via a CPU sharing system. The obvious bottleneck of such a system

is the wide-area connection, which must be managed carefully to ensure high performance.

For simplicity, I will focus on the case of a single cluster being accessed by a remote user,

but I’ll conclude with an example of BAD-FS used across multiple clusters.

This organized and well-managed collection of clusters is known as a cluster-to-cluster

(or c2c) system, in contrast to popular peer-to-peer (p2p) systems. Although the p2p envi-

ronment is appropriate for many uses, there is likely to be a more organized effort to share

computing resources within corporations or other organizations. Cluster-to-cluster environ-

ments are more stable, more powerful, and more trustworthy. That said, p2p technologies

and designs are likely to be directly applicable to the c2c domain.

6.3.1 Architecture

The architecture of BAD-FS is shown in Figure 6.7. Two types of server processes manage

local resources. A compute server exports the ability to transfer and execute an ordinary user

program on a remote CPU. A storage server exports access to disk and memory resources via
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Figure 6.7: Architecture of BAD-FS
Circles are compute servers, which execute batch jobs. Cylinders are storage servers, which
hold cached inputs and temporary outputs. Both types of servers report to a catalog server,
which records the state of the system. The scheduler uses information from the catalog to
direct the system by configuring storage devices and submitting batch jobs.

remote procedure calls that resemble standard file system operations. It also permits remote

users to allocate space via an abstraction called volumes. An agent binds a running process to

both compute and storage servers. Both types of servers periodically report themselves to a

catalog, which summarizes the current state of the system. A scheduler periodically examines

the state of the catalog, considers the work to be done, and assigns jobs to compute servers

and data to storage servers. The scheduler may obtain data, executables, and inputs from

any number of external storage sites. For simplicity, I assume the user has all the necessary

data stored at a single home storage server such as a standard FTP server.

From the perspective of the scheduler, compute and storage servers are logically inde-

pendent. A specialized device might run only one type of server process: for example, a

diskless workstation runs only a compute server, whereas a storage appliance runs only a

storage server. However, a typical workstation or cluster node has both computing and disk

resources and thus runs both.

BAD-FS may be run in an environment with multiple owners and a high failure rate.
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In addition to the usual network and system errors, BAD-FS must be prepared for eviction

failures in which shared resources may be revoked without warning. The rapid rate of

change in such systems creates possibly stale information in the catalog. BAD-FS must also

be prepared to discover that the servers it attempts to harness may no longer be available.

BAD-FS makes use of several existing components. The compute servers are Condor [90]

startd processes, the storage servers are modified NeST storage appliances [26], the interpo-

sition agents are Parrot [147] agents, and the catalog is the Condor matchmaker. The servers

advertise themselves to the catalog via the ClassAd [118] resource description language.

6.3.2 Storage Servers

Storage servers are responsible for exporting the raw storage of the remote sites in a manner

that allows efficient management by remote schedulers. A storage server does not have a

fixed policy for managing its space. Rather, it makes several policies accessible to external

users who may carve up the available space for caching, buffering, or other tasks as they see

fit. Using an abstraction called volumes, storage servers allow users to allocate space with

a name, a lifetime, and a type that specifies the policy by which to internally manage the

space. The BAD-FS storage server exports two distinct volume types: scratch volumes and

cache volumes.

A scratch volume is a self-contained read-write file system, typically used to localize

access to temporary data. The scheduler can use scratch volumes for pipeline data passed

between jobs and as a buffer for endpoint output. Using scratch volumes, the scheduler

minimizes home server traffic by localizing pipeline I/O and only writing endpoint data

when a pipeline successfully completes. To permit efficient backup, a storage server can be

directed to duplicate a scratch volume onto another server.

A cache volume is a read-only view of a home server, created by specifying the name of
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the home server and path, a caching policy (i.e., LRU or MRU), and a maximum storage

size. Multiple cache volumes can be bound into a cooperative cache volume by specifying

the name of a catalog server, which the storage servers query to discover their peers. Many

algorithms [41, 50] exist for managing a cooperative cache, but it is not my intent to explore

such algorithms here. Rather, I will give a reasonable algorithm for this system and explain

how it is used by the scheduler.

The cooperative cache is built using a distributed hash table [64, 89]. The keys in the

table are block addresses, and the values specify which server is primarily responsible for that

block. To avoid wide-area traffic, only the primary server will fetch a block from the home

server and the other servers will create secondary copies from the primary. When space is

needed, secondary data is evicted before primary. To approximate locality, each node only

considers hosts on the same IP subnet to be its peers. Thus, each subnet forms a distinct

cache.

Failures within the cooperative cache, including partitions, are easily managed but may

cause slowdown. Should a cooperative cache be internally partitioned, the primary blocks

that were assigned to the now missing peers will be reassigned. As long as the home server is

accessible, partitioned cooperative caches will be able to refetch any lost data and continue

without any noticeable disturbance to running jobs.

This approach to cooperative caching has two important differences from previous work.

First, because data dependencies are completely specified by the scheduler, BAD-FS does

not need to implement a cache consistency scheme. Once read, all data are considered

current until the scheduler invalidates the volume. This design decision greatly simplifies the

implementation; previous work has demonstrated the many difficulties of building a more

general cooperative caching scheme [16, 34]. Second, unlike previous cooperative caching

schemes that manage cluster memory [41, 50], this cache stores data on local disks. Although

managing memory caches cooperatively could also be advantageous, the most important
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optimization to make in our environment is to avoid data movement across the wide-area;

managing remote disk caches is the simplest and most effective way to do so.

6.3.3 Interposition Agent

BAD-FS uses Parrot as an agent to connect applications to storage servers. The mapping

from logical path names into physical storage is provided by the scheduler at runtime in the

form of a mountlist. The notion of error scope introduced in Chapter 5 is critical in this

setting because a large number of errors may occur outside of the job’s scope. For example,

if a volume no longer exists, whether due to accidental failure or deliberate preemption, a

storage server returns a unique volume lost error to Parrot. Upon discovering such an error,

Parrot terminates the job indicating an error of remote resource scope. Explicit error scope

allows the scheduler to take transparent recovery actions without returning the job to the

user.

6.3.4 The Scheduler

The BAD-FS scheduler directs the execution of a workload on compute and storage servers

by combining a static workload description with dynamic knowledge of the system state.

Specifically, the scheduler minimizes traffic across the wide-area by differentiating I/O types

and treating each appropriately, carefully managing remote storage to avoid thrashing and

replicating output data proactively if that data is expensive to regenerate.

Shown in Figure 6.8 is an example of the declarative workflow language that describes

a batch-pipelined workload and shows how the scheduler converts this description into an

execution plan. The keyword job names a job and binds it to a description file, which

specifies the information needed to execute that job. The keyword parent indicates an

ordering between two jobs. The keyword volume names the data sources required by the
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job a a.condor
job b b.condor
job c c.condor
job d d.condor
parent a child b
parent c child d
volume b1 ftp://home/data 1 GB
volume p1 scratch 50 MB
volume p2 scratch 50 MB
mount b1 a /mydata
mount b1 c /mydata
mount p1 a /tmp
mount p1 b /tmp
mount p2 c /tmp
mount p2 d /tmp
extract p1 x ftp://home/out.1
extract p2 x ftp://home/out.2
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Figure 6.8: Workflow and Scheduler Examples.
(A) A simple workflow script. A directed graph of jobs is constructed using job and parent, and the file
system namespace presented to jobs is configured with volume and mount. The extract keyword indicates
which files must be committed to the home storage server after pipeline completion. (B) A graphical repre-
sentation of this workflow. (C) The scheduler’s plan for job c. (1) The scheduler queries the catalog for the
current system state and decides where to place job c and its data. (2) The scheduler creates volumes b1
and p2 on a storage server. (3) Job c is dispatched to the compute server. (4) Job c executes, accessing its
volumes via the agent. (5) After jobs c and d complete, the scheduler extracts x from p2. (6) The scheduler
frees volumes b1 and p2.

workload. For example, volume b1 comes from an FTP server, while volumes p1 and p2 are

empty scratch volumes. Volume sizes are provided to allow the scheduler to allocate space

appropriately. The mount keyword binds a volume into a job’s namespace. For example,

jobs a and c access volume b1 as /mydata, while jobs a and b share volume p1 via the

path /tmp. The extract command indicates which files of interest must be committed to

the home server. In this case, each pipeline produces a file x that must be retrieved and

uniquely renamed.

Unlike most file systems, BAD-FS is aware of the flow of its data. From the workflow

language, the scheduler knows where data originates and where it will be needed. This

knowledge allows it to create a customized environment for each job and minimize traffic to
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the home server. This technique is known as I/O scoping.

I/O scoping minimizes traffic in two ways. First, cooperative cache volumes are used to

hold read-only batch data such as b1 in Figure 6.8. Such volumes may be reused without

modification by a large number of jobs. Second, scratch volumes, such as p2 in Figure 6.8,

are used to localize pipeline data. As a job executes, it accesses only those volumes that

were explicitly created for it; the home server is accessed only once for batch data and not

at all for pipeline.

With the workload information expressed in the workflow language, the scheduler neatly

addresses the issue of consistency management. All of the required dependencies between

jobs and data are specified directly. Since the scheduler only runs jobs so as to meet these

constraints, there is no need to implement a cache consistency protocol among the BAD-FS

storage servers.

The user may make mistakes in the workflow description that can affect both cache

consistency and correct failure recovery. However, through an understanding of the expected

workload behavior as specified by the user, the scheduler can easily detect these mistakes

and warn the user that the results of the workload may have been compromised. The current

implementation does not have these features, but the architecture readily admits them.

Finally, the scheduler makes BAD-FS robust to failures by handling failures of jobs, stor-

age servers, the catalog, and itself. The scheduler keeps a log of allocations in persistent

storage, and uses a transactional interface to the compute and storage servers. If the sched-

uler fails, then allocated volumes and running jobs will continue to operate unaided. If the

scheduler recovers, it simply re-reads the log to discover what resources have been allocated

and resumes normal operations. Recording allocations persistently allows them to be either

re-discovered or released in a timely manner. If the log is irretrievably lost, then the workflow

must be resumed from the beginning; previously acquired leases will eventually expire.

In contrast, the catalog server uses soft state. Since the catalog is only used to discover
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new resources, there is no need to recover old state from a crash. When the catalog is

unavailable, the scheduler will continue to operate on known resources, but will not discover

new ones. When the catalog server recovers, it rebuilds its knowledge as compute and storage

servers send periodic updates.

The scheduler waits for passive indications of failure in compute and storage servers and

then conducts active probes to verify. For example, if a job exits abnormally with an error

indicating a failure detected by the interposition agent, then the scheduler suspects that

the storage servers housing one or more of the volumes assigned to the job are faulty. The

scheduler then probes those servers. If all volumes are healthy, it assumes the job encountered

transient communication problems and simply reruns it. However, if the volumes have failed

or are unreachable for some period of time, they are assumed lost.

The failure of a volume affects the jobs that use it. Running jobs that rely on a failed

volume must be stopped. In addition, failures can cascade; completed processes that wrote

to a volume must be rolled back and re-run in a manner similar to the Time Warp algorithm.

Due to its robust failure semantics, the scheduler need not handle network partitions

any differently than other failures. When partitions are formed between the scheduler and

compute servers, the scheduler may choose to reschedule any jobs that were running on

the other side of the partition. In such a situation, it is possible that the partition could

be resolved, at which point the scheduler will find that multiple servers are executing the

same jobs. Such overlap will not introduce errors because each job writes to distinct scratch

volumes. The scheduler may choose one output to extract and then discard the other.

6.3.5 Practical Issues

One of the primary obstacles to deploying a new distributed system is the need for a com-

pliant administrator. Whether deploying an operating system, a file system, or a batch
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system, the vast majority of such software requires a privileged user to install and oversee

the software. Such requirements make many forms of distributed computing a practical im-

possibility; the larger and more powerful the facility, the more difficult it is for an ordinary

user to obtain administrative privileges. To this end, BAD-FS is packaged as a virtual batch

system that can be deployed over an existing batch system without special privileges. This

technique is similar in structure to the “glide-in job” described by Frey et al. [57] and is

similar in spirit to recursive virtual machines [52].

To run BAD-FS, an ordinary user need only to be able to submit jobs into an existing

batch system. BAD-FS bootstraps itself on these systems, relying on the basic ability to

queue and run a self-extracting executable program containing the storage and compute

servers and the interposition agent. Once deployed, the servers report to a catalog server,

and the scheduler may then harness their resources. Note that the scheduling of the virtual

batch jobs is at the discretion of the host system; these jobs may be interleaved in time and

space with jobs submitted by other users. To date, BAD-FS has been deployed over existing

Condor and PBS batch systems.

Another practical issue is security. BAD-FS currently uses the Grid Security Infrastruc-

ture (GSI) [55], a public key system that delegates authority to remote processes through the

use of time-limited proxy certificates. To bootstrap the system, the submitting user must

enter a password to unlock the private key at his/her home node and generate a proxy cer-

tificate with a user-settable timeout. The proxy certificate is delegated to the remote system

and used by the storage servers to authenticate back to the home storage server. Delegation

requires that users trust the host system not to steal their secrets, which is reasonable in a

cluster-to-cluster environment.
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6.4 Performance

Figure 6.9 shows the performance of BAD-FS on the five candidate applications running on

a controlled 16-node cluster. The left-hand graphs show an emulated remote cluster where

the bandwidth to the home server was constrained at 1 MB/s. The right hand graphs show

a local cluster with a home server on the same local area network as other nodes.

Each bar shows the performance of a workload composed of 64 pipelines of the indicated

application. Each workload was run in three different configurations:

• R - Remote I/O. Each pipeline was equipped by Parrot to access all of its data di-

rectly on the remote storage node, with no caching or other use of the storage available

on each cluster node.

• S - Standalone Caches. Each pipeline was equipped by Parrot to access its data via

the local storage node configured as a standard whole-file write-through cache similar

to AFS.

• B - BAD-FS. All of the BAD-FS machinery.

In the S and B cases, the workloads ran more efficiently once all of the necessary data

were paged in. Thus, the graphs are divided top and bottom to indicate whether caches were

cold or warm. The top graphs show the performance of the first 16 jobs running with cold

caches, while the bottom graphs show the performance of the remaining 48 jobs running

with warm caches. All bars show the parallel efficiency of running each workload in the

cluster, compared to running the entire workload sequentially on a single machine equipped

with Parrot accessing I/O locally. Thus, a parallel efficiency of 100 percent would indicate

a 16x speedup over a sequential run on local data.

From these graphs, several conclusions may be drawn.
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Figure 6.9: Parallel Efficiency of BAD-FS on Real Workloads

First, BAD-FS dramatically exceeds the performance of remote I/O and standalone

caching in many cases. In a small number of cases, BAD-FS is slightly slower than stan-

dalone caching. These workloads, which are discussed in great detail in the earlier profiling

work [143], all have large degrees of either batch or pipeline data sharing. Note that work-

loads whose I/O consists entirely of endpoint data would gain no benefit from BAD-FS.

Second, the benefit of caching, either cooperatively or in standalone mode, is greater for

batch-intensive workloads, such as BLAST, than it is for more pipe-intensive ones such as

HF. In these pipe-intensive workloads, the important optimization is I/O scoping, which is

performed by both BAD-FS and standalone caching.

Third, cooperative caching in BAD-FS can outperform standalone both during cold and
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warm phases of execution. If the entire batch data set fits on each storage server, then coop-

erative caching is only an improvement while the data is being initially paged in. However,

should the data exceed the capacity of any of the caches, then cooperative caching, unlike

standalone, is able to aggregate the cache space and fit the working set.

This benefit of cooperative caching with warm caches is illustrated in the BLAST mea-

surements in the graph on the left of Figure 6.9. Post-mortem analysis showed that two of

the storage servers had slightly less cache space (≈500 MB) than was needed for the total

BLAST batch data (≈600 MB). As subsequent jobs accessed these servers, they were forced

to refetch data. Refetching it from the wide-area home server in the standalone case was

much more expensive than refetching from the cooperative cache as in BAD-FS. With a

local-area home server this performance advantage disappears.

Fourth, the penalty for performing remote I/O to the home node is less severe but still

significant when the home node is in the same local-area network as the execute cluster.

This result illustrates that BAD-FS can improve performance even when the bandwidth to

the home server is not obviously a limiting resource.

Finally, comparing across graphs, it can be seen that BAD-FS performance is almost inde-

pendent of the connection to the home server when caches are cold and becomes independent

once they are warm. Using I/O scoping, BAD-FS is able to achieve local performance in

remote environments.

6.5 Experience

The real benefit of BAD-FS comes from its ability to operate reliably in the highly dy-

namic, failure prone environment of the real world. I will illustrate this by detailing a real

deployment of BAD-FS.

Two existing batch systems were available for the construction of a combined BAD-FS
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system. At the University of Wisconsin (UW), a large Condor system of over one thousand

CPUs, including workstations, clusters, and classroom machines, is shared among a large

number of users. At the University of New Mexico (UNM), a PBS system manages a cluster

of over 200 dedicated machines. A personal scheduler, catalog, and home storage server

were established at Wisconsin, and then a large number of BAD-FS bootstrap jobs were

submitted to both systems without installing any special software at either of the locations.

The scheduler was then directed to execute a large workload consisting of 2500 CMS jobs

using whatever resources became available. (These CMS jobs were somewhat larger than

the benchmark jobs used before. Each job required approximately 30 minutes of CPU time

and performed 3.9 GB of batch I/O.)

Figure 6.10 is a timeline of the execution of this workload. As expected, the number of

CPUs available to us varied widely, due to competition with other users, the availability of

idle workstations (at UW), and the vagaries of each batch scheduler. UNM initially provided

twenty CPUs, later jumping to forty after nine hours. Two spikes in the available CPUs

between 4 and 6 hours are due to the crash and recovery of the catalog server; monitoring

data was lost, but jobs continued to run.

The benefits of cooperative caching are underscored in such a dynamic environment. In

the bottom graph, the cumulative read traffic from the home node is shown to have several

hills and plateaus. The hills correspond to large spikes in the number of available CPUs.

Whenever CPUs from a new subnet begin executing, they fetch the batch data from the

home node. However, smaller hills in the number of available CPUs do not have an effect

on the amount of home read traffic because a new server entering an already established

cooperative cache is able to fetch most of the batch data from its peers.

Most importantly, this graph shows that harnessing a remote cluster with BAD-FS is

effective despite the increased latency and decreased bandwidth associated with the remote

cluster, BAD-FS took advantage of the New Mexico cluster for a full four hours before
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Figure 6.10: Timeline of CMS Workload

Wisconsin was able to provide a significant number of CPUs. In fact, New Mexico completed

a significant fraction of the overall workload, despite having fewer, slower CPUs separated

from the home storage by a slow network:

New Mexico Wisconsin
Jobs Completed 724 1776

Failures 162 828

As these numbers indicate, failures were a significant presence in both clusters. In this

context, a failure was counted anytime the scheduler was required to backtrack. Backtracking

occurred due to failures to allocate space at storage servers, failures to start or finish a job
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Figure 6.11: Failure Distribution in CMS Workload

at a compute server, and failures to retrieve the outputs of a job from a storage server.

Figure 6.11 details the distribution of failures across the system. Each machine that was

involved in the system at some point – 218 total – is enumerated along the horizontal axis.

The gray bars indicate the number of jobs successfully completed by that machine. The

black bars indicate the number of failures at that machine. For example, machine 218 ran

39 jobs successfully and experienced no failures. Machine 101 ran 6 jobs successfully and

experienced 10 failures. The list is sorted by number of successes.

As can be seen, failures are scattered across a wide variety of machines. The productive

machines on the right side of the graph generated failures as a side effect of preemption.

When the individual batch systems retracted resources from BAD-FS, the scheduler would

attempt to re-harness those resources until their information expired from the catalog server.

A majority of machines were preempted at some point.

The non-productive machines on the left side of the graph had chronic problems that

prevented the completion of any jobs at all. Three machines with a large number of failures

are worth mentioning. Machine 0 had an older version of the operating system with a

dynamically linked standard library that was slightly incompatible with the CMS application

and caused it to crash in the middle of execution. Machine 23 had a faulty memory, while
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machine 37 had a bad disk block. Both of these caused the failure of a number of storage

servers, but also happened to allow a small number of jobs to complete, provided they did

not happen to touch the failing address or block in question. These operational problems

are good examples of the wide variety of issues that arise daily in operational systems.

One might propose that such failing (i.e. bad memory) and non-ideal (i.e. non-dedicated)

machines should be removed from the resource pool so as to “clean up” the system, or at

least make it more efficient. This would not be a wise decision, given that BAD-FS derived

the majority of its computational power from these failing resources. The machines that

behaved ideally completed 608 jobs out of the total workload, while the non-ideal machines

were responsible for the remaining 1892 jobs.

6.6 Conclusion

BAD-FS brings together all of the concepts and technologies described in this dissertation.

In operates on the heterogeneous, unreliable environment and the highly structured applica-

tions introduced in Chapter 1. It relies on a sophisticated agent that binds to ordinary Unix

programs as in Chapter 3 and mediates the connection to I/O services as in Chapter 4. A

crucial component is the ability to understand the scope of an error and communicate that

through the batch system as elaborated in Chapter 5. Finally, BAD-FS achieves good perfor-

mance through I/O scoping, which requires the view of an entire workload as a transaction,

described at the beginning of this chapter.

BAD-FS is the union of a batch system and a file system into a coherent whole. By

considering computation and data as first-class resources that must be managed together,

BAD-FS achieves provides transparent distribution, fault-tolerance, and good performance

for data-intensive workloads on complex systems.
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Chapter 7

Conclusion

7.1 Recapitulation

The computing world is becoming a complex ecosystem. Despite utopian visions, there is no

one system, no one language, no one protocol, no one model of computing that satisfies all

users or all system owners. It is simply the reality that computer systems have differentiated

themselves into varying roles and languages. Applications must find ways of surviving in

this ecosystem, harnessing resources of differing capabilities when and where they become

available.

I have advocated agency as the structural solution to this problem. An agent must

transform complex, obscure, or specialized interfaces into a form that is usable by a client.

An agent must insulate a client from the vagaries of the field by coalescing multiple messages

and hiding temporary setbacks. An agent must coordinate multiple external parties so that

they come to agreement on a transaction. An agent allows an unmodified program to survive

in the harsh world of distributed computing.

I have presented a variety of techniques for coupling a job to an agent. Internal tech-

niques reap a high-performance flexible bond between job and agent, but are ultimately

non-portable and undebuggable. External agents create a strict firewall between agent and

job, allowing for the clean detection of untrapped operations. Although the per-call overhead
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of external agency is high, the cumulative effect on real applications is acceptable.

Once the coupling between a job and its agent is established, the agent is then responsible

for connecting to the outside world. I have given a concrete discussion of the coupling be-

tween an agent and a variety of distributed I/O systems, emphasizing the semantic problems

of transforming one interface into another. I have shown that semantic differences create

impedance that is manifested in two forms: as a performance penalty and as escaping errors.

An agent must also interact with the services provided by a batch system. Although

this interface is much simpler than the I/O interface, the semantics are just as crucial. In

particular, the agent is obliged to draw careful distinctions between the classes of errors

that it reports. I have introduced the notion of error scope as a method for describing this

interface, and presented a discipline for representing and propagating errors.

Finally, the agent must bring computation and data resources together as a coherent

whole. The work to be accomplished in a batch system may be thought of as nested trans-

actions. These transactions may be committed at varying granularities, ranging from single

I/O operations, all the way up to entire batch workloads. I have presented BAD-FS as a

case study of a system that operates at this very large granularity. In particular, BAD-FS

permits for the detection and recovery from a wide variety of failures.

7.2 Future Work

7.2.1 Debugging

In this work, I have given the merest suggestion of the universe of failure modes that plague

real-world distributed systems. I have described the problem of untrapped operations, of

semantic mismatches, of error scopes, and given a quantitative example of the number of

failures in a system that ran for 12 hours.
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This only scratches the surface. The end users who actually make use of real distributed

systems suffer on a daily basis the complexity of using multiple software systems. Version

mismatches, installation problems, resource shortages, and software incompatibilities are

the normal mode of existence, while a smoothly running production system is a short-lived

exception achieved after long hours of what can only be described as fiddling around.

The error propagation discipline that I have described allows users of such systems to

detect and avoid resources and systems that are failing. Avoidance is sufficient when there

exist other resources to be harnessed. Avoidance is an important and valuable step, as the

BAD-FS case study shows. However, it does not help the user or administrator that needs

to understand why things fail and how they can be repaired.

A valuable debugging tool for such a complex system might operate as follows. System

resources could be made to log their state in a structured form. A data collection network

could be used to collate the reports of various components over a period of time and collect

them in a centralized location. A master debugger could then use this coherent, albeit

incomplete, view of the system to produce output like the following:

You can’t execute your job on host X because the credentials delegated from host
Y are malformed. This could be because of a time skew between hosts Y and Z
(that’s happened three times before), or it might be because hosts X and Y have
different versions of Kerberos.

Such an output is an ambitious goal. The completeness of such a message is contingent

upon the ability to harvest data and may be hampered by privacy concerns and automated

reasoning constraints. Regardless, debugging remains one of the single biggest obstacles to

the usability of distributed systems.
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7.2.2 Delegation

Agency may be viewed from a quasi-legal perspective as a form of delegation. A user or

program delegates to an agent the authority to allocate, consume, and dispose of resources

on its behalf in order to achieve some goal.

Delegation in computer systems is generally considered as an all-or-nothing affair. Con-

sider a client that performs a traditional remote procedure call to a server. Remote procedure

call is a form of delegation in which the client stops what it is doing completely in order to

transfer control to the server. Until the server responds with success or failure, the client

does nothing. Similarly, in this work, a process delegates all of its computation and data

activity to an agent. It trusts it completely.

This complete trust is simplistic. In the real world, we do not trust agents completely:

They may have hidden motives, they may execute our wishes incorrectly, or they may make

mistakes simply through an error in communication. Exactly the same problems occur in

distributed systems. If I delegate a batch job to be executed by a remote batch system,

I must consider whether the remote scheduler does not favor my job, whether the remote

machines can be trusted to compute the correct result, and whether the job will still exist if

a network partition interrupts my supervision.

For many of the reasons described above, a delegation of work to another system may

fail. In this sense, delegation is simply a matter of load distribution and not an expression of

absolute trust. How are we to build reliable systems and correct computation when we cannot

necessarily trust the results computed by participants? How are we to express reservations,

requirements, or suspicion regarding system components or sub-programs? These remain

open problems.
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7.2.3 Programming Models

It is still not quite clear what the most appropriate programming model for distributed

science really is. In this work, I have shown that traditional Unix applications can be

coupled to distributed systems, modulo some loss in performance and expressiveness due

to the impedance matching problems that I have described. But it is not clear that Unix

programs are the most appropriate model for distributed computing.

Functional programming has long been advocated [76] as the most natural programming

form for distributed computation. This opinion is usually defended by observing that even

the most complex collection of scientific applications can be expressed as one monolithic

functional program. Any subexpression, so the argument goes, can be split off from the

main program and evaluated on a remote node trivially because such a language has no side

effects. Failed subexpressions are easily re-computed for the same reasons.

However attractive this model may seem, it has never been seriously applied to large

science. This is almost certainly due to the fact that the large majority of programmers,

and scientific programmers in particular, are trained in and comfortable with procedural

languages. A more fundamental reason is that selecting the appropriate granularity for

distribution is a long-standing problem [74, 132, 72] with no fully-general solution. To date,

most large-scale computation has relied on manual decomposition of procedural programs.

Explicit message passing environments, such as MPI [153] and PVM [115] have been

quite popular in high performance computing environments with reliable resources and fixed

parallelism. However, these models break down when resources may be faulty and parallelism

is variable. A more fault-tolerant approach to message passing is called master-worker or

the bag-of-tasks approach, where a central work manager doles out parts of a problem to

a dynamic set of workers. This master-work approach has been used successfully to hand-

code large applications in the SETI [138], Condor Master-Worker [87], and XtremWeb [49]
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systems. Although this is a natural match for distributed computing, it has also not (yet)

proven to be an attractive model for application programmers.

The search for the best language in which to express distributed programs continues.

Languages must strike a balance between the comfort of programmers in procedural models

and the flexibility of allocation in declarative models. The declarative language of BAD-

FS is one example of this balance: programs written in procedural languages are joined

together by a declarative language with a fixed distribution granularity. Other combinations

are possible, and BAD-FS will certainly not be the last word.

7.3 Postscript

I would therefore like to posit that computing’s central challenge,
how not to make a mess of it, has not yet been met.
- Edsger Dijkstra

The challenge of computing is the management of complexity. Users wish to run pure ap-

plications concerned only with external matters such as atmospheric neutrinos or population

growth. Yet, distributed computing threatens this idealism: Software changes, programs

crash, and networks fail. An agent sits between these worlds. As an advocate for a user and

an application, it carves a safe environment out of the mess of the real world.
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