A Fully Automated Fault-tolerant System for Distributed
Video Processing and Off-site Replication

George Kola, Tevfik Kosar and Miron Livny
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison WI 53706
{kola,kosart,miron}@cs.wisc.edu

ABSTRACT

Different fields including biomedical-engineering, educational re-
search and geology have an increasing need to process large amounts
of video and make them electronically available at different loca-
tions. So far, this has been a failure-prone tedious operation with
an operator needed to babysit the processing and off-site replica-
tion of processed video. In this work, we developed a fault-tolerant
system that handles large scale processing and replication of digital
video in a fully automated manner. The system is highly resilient
and handles a variety of hardware, software and network failures
making it possible to process videos using commodity clusters or
grid resources. Finally, we discuss how the system is being used in
educational research to process several hundred terabytes of video.

Categories and Subject Descriptors: D.1.3 [Software]: Pro-
gramming Techniques - Concurrent Programming

General Terms: Performance, Design, Reliability, Experimen-
tation

Key Words: Video processing, data pipelines, distributed sys-
tems, clusters, off-site replication, fault-tolerance, grid, educational
research.

1. INTRODUCTION

In different fields including bio-medical engineering, educational
research [9] and geology, there is a need to process large amounts
of video and make them available at different locations for collabo-
rative analysis. While the computation intensive nature of the tasks
and the inherent parallelism make them good candidates for dis-
tributed processing, the data intensive nature creates a set of new
challenges. These applications do not perform well under exist-
ing distributed scheduling systems and may end up not making
forward progress depending on the failure characteristics. In this
work, we have designed and implemented a fully automated sys-
tem that processes these videos and handles off-site replication in a
fault-tolerant manner.

Our system takes care of transferring the original videos to the
compute nodes, processing them and transferring the encoded videos
to a set of destinations and handle all the failures that can occur
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during the process. A unique feature of our system is the separa-
tion of the data movement from the computation. We treat the data
movement as a full-fledged job and schedule it. This separates the
data-movement failures from processing failures and allows us to
optimize the data movement by intelligent scheduling.

The system allows all non-interactive video processing to be per-
formed in this distributed manner. The system is flexible enough
that the destination can be determined by performing arbitrary com-
putation on the video and permits complex data placement opera-
tions.

2. METHODOLOGY

We wanted to build a fault-tolerant system for fully automated
distributed video processing. This system must take care of staging
the source video to the compute cluster, execute the video process-
ing in the dependency order and finally stage the processed video
to a set of destinations.

Certain independent set of processing can be done concurrently.
An example is encoding the video to different formats at differ-
ent resolutions. Each video can also be processed in parallel by
splitting it into chunks on frame boundaries, processing the chunks
concurrently and finally merging the processed chunks. Certain
types of processing consists of refining searches, where a first-pass
coarse-grain search is done on all the videos to mark interesting
ones and later several of the different searches are done on the in-
teresting videos. This could be more complex with the results of de-
tailed searches used to refine future coarse-grain searches. Further,
the set of destinations to transfer the processed video and the orig-
inal may be determined by performing certain computation. The
system should be flexible enough to handle such processing and
data movement.

Existing distributed scheduling systems do not work well for
such data intensive video processing applications. The amount of
data coupled with access over wide-area network make existing dis-
tributed filesystems unsuitable. Distributed scheduling systems in
the absence of a distributed filesystem allocate the processor, stage-
in the input data, perform the computation and stage-out the result
of the computation. If the data transfer in the stage-out fails, the
computation is re-done because the stage-out is part of the compu-
tational job and the whole job is re-tried. This hurts performance in
case of intermittent network outages and motivates the separation
of computation and data movement.

When several compute nodes simultaneously try to read/write
data to/from the storage server, they have the potential to cause de-
nial of service and/or crash the server. Even if that does not happen,
the performance will be suboptimal. To handle this problem, data
movement should be scheduled appropriately taking into account
the network, server and client characteristics.
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Figure 1: Designs 1 & 2 use Stage Area nodes of the cluster

Due to the above reasons, in our model we separate computa-
tion and data placement into separate full-fledged jobs and schedule
them appropriately. To handle the dependencies we use a Directed
Acyclic Graph (DAG) model where we represent jobs as nodes and
dependencies between jobs as directed arcs. For instance, if a job
A should be executed before job B, we draw an arc from A to B.
A node in the DAG is executed only after all its parent nodes are
executed.

In this model provided enough processors are available, compu-
tation is performed immediately after data becomes available. In
this sense, the model is similar to data flow computing.

We use a computation scheduler to schedule the jobs on the com-
pute cluster. It is not necessary to replace the existing computation
scheduler on a cluster as our computational scheduler has the abil-
ity to use existing scheduling systems while giving users an uni-
form interface. This is very useful if we want to use heterogeneous
grid resources.

We schedule the data transfer using a specialized data placement
scheduler. We have added features to make the scheduler take into
account network and host characteristics to optimize the transfer.
We also tune the concurrency level to maximize the throughput of
the system.

We have come up with 3 designs for our system and present them
in the next section.

3. SYSTEM DESIGNS

The most suitable method for staging-in and staging-out the video
depends on the cluster configuration and the characteristics of the
computation such as the number of independent computation to be
performed on the source video. In this section we present three
designs and show the cases where each would be the most suitable.

Our system is not limited to a single cluster configuration and can
make use of multiple heterogeneous clusters and any of the design
can be used in each. In each of the design, we schedule the data
movement taking into account network and end-host characteris-
tics. By using network bandwidth and latency measurements, we
tune the TCP buffer size to be equal to the bandwidth-delay prod-
uct. Empirically, we found that as the number of concurrent trans-
fers to/from a storage server increased, the throughput increased to
a point and then started decreasing. Further, the number of con-
current transfers needed depended on the data-rate of the individ-
ual transfers. Using these empirical values observed during the
course of the transfers, we tune the concurrency level to maximize
throughput.

3.1 Design 1: Using Cluster Stage in/out Area

We allocate space on the stage area of the compute cluster, sched-
ule the data transfer and after the completion of data transfer, we
schedule the computation. This stage-in area is on the same local

area network as the compute nodes. This configuration is shown in
figure 1

Certain clusters may have a network filesystem and depending
on the data, users may want to use the network filesystem. If there
is no network filesystem or user prefers to access data from local
disk (this case is preferred if the application does multiple passes
through the video), then the data is moved from the stage-in area to
the compute node using the mechanism provided by the computing
system.

There may be multiple independent processing to be performed
on the video, so the source video is deleted from the stage area and
the space de-allocated only after all processing on this video have
completed successfully. This also ensures that the data is staged
only once from the remote storage thereby increasing performance
by reducing wide-area data traversals.

Moving the data to the local area ensures that it takes determin-
istic time to move the data to the compute node. This bounds the
amount of idle time the processor has to wait before performing the
computation. Further, if the compute cluster has a network filesys-
tem, we would be able to use it.

The stage-out process takes place in a similar fashion. If a net-
work filesystem is not being used, space is allocated on the stage-
area and the processed video is moved there and then it is sched-
uled to be transferred to the set of destinations. Once the processed
video has been successfully transferred to all the destinations, it is
deleted from the stage-area and the space is de-allocated.

3.2 Design2: Optimizing the Stage in/out Pro-
cess Using Hierarchical Buffering

Staging-in the data creates an unnecessary data-copy. We try to
address this in the second design by using the hierarchical buffer-
ing. The hierarchical buffer server executes at the stage area nodes
and tries to use memory and then disk to buffer incoming data. It
creates logical blocks out of the data stream and performs manage-
ment at that level. When sufficient blocks have been buffered to
sustain transfer at local area network rates to the cluster node, a
compute node is acquired and the hierarchical buffer server starts
streaming incoming blocks and buffered blocks to the compute
node.

If multiple independent computations are to be performed on
the source video, the hierarchical buffer server sends a copy of the
video to each of the compute node requiring that video thereby per-
forming a multicast.

The hierarchical buffer client running on the compute node takes
care of re-assembling the data into the file that the application wants.

This design is suitable for the case where we need to explic-
itly move the data to the compute node before execution. If the
objective is to minimize the compute node idle time, the hierarchi-
cal buffer server can be made to call-back when enough data has
been accumulated so that from now on it can transfer continuously
at local area speeds to the compute node. If there are intermit-
tent failures, the amount of data to be buffered before acquiring
the compute node can be increased. Further, this amount can be
dynamically tuned depending on the failure characteristics.

3.3 Design 3: Direct Staging to the Compute
Node

In the third design as shown in figure 2, we directly stage-in the
data to the compute node. This requires that the compute nodes
have wide-area access.

While acquiring the processor and starting the stage-in may waste
processing cycles, this is more suitable if the scheduling system has
compute on demand support. Here, the data transfer can take place
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Figure 2: Design3: Direct transfer to compute nodes

at certain rate while the executing computation continues and when
the data transfer is completed, the executing computation is sus-
pended and the processor is acquired for the duration of our com-
putation.

To acquire an processor, we need to have higher priority than the
currently executing job. We need to do this carefully so that we pick
idle nodes first and then randomly choose nodes that are executing
lower priority jobs. The objective is to try to reduce starvation of
certain job classes.

If there are multiple computation to be performed on the source
video, we need to send the video to the other nodes as well. For
this, we run the hierarchical buffer server on one computation node
and make it write out a copy of the data to disk and stream the video
to other compute nodes needing that video. This reduces the wide-
area traversal of the source video to the minimum, but introduces
more complexity.

3.4 Comparison of the Designs

The different designs are suitable for different conditions.

The first design is simple and universal. The only requirement
is the presence of a stage area. Most cluster systems provide that.
It is suitable if a network filesystem is being used by the compute
nodes. It also works if the compute nodes are in a private network
and the stage-in area is the head-node with outside accessibility. It
is the most robust and handles intermittent network failures well.

The second design gives a performance advantage over the first
one if the data has to be explicitly staged to the compute node.
We can use this design only if we have the ability to execute our
hierarchical buffer server on the stage area nodes. Minimizing the
disk traversal improves performance significantly.

If there a high failure rate or intermittent network disconnections,
it may be better to use the first design instead of the second. Note,
in this data is being streamed to the compute node after a certain
threshold amount of data has been received. This does not do well,
if failure occurs after start of streaming data to the compute node.
This goes to the problem of finding a suitable threshold. Increasing
the threshold improves the failure-case performance but decreases
the normal case performance because it increases the amount of
data that traverses the disk. At this point we dynamically set the
threshold to be equal to the amount of data that has to be buffered
to sustain transfer to the compute node at local-area transfer rates.
This works well because more data is buffered for slow wide-area
connection than for faster wide-area connections. This takes into
account the failure characteristics as well because failures and re-
tries reduce the transfer rate requiring more data to be buffered be-
fore starting streaming.

The third design gives the best performance if the compute nodes

have wide-area connectivity, computational scheduling system has
a feature like compute-on-demand and the processor while exe-
cuting has some extra cycles to spare for data transfer. The last
condition happens when the processor has multi-threading support.
Here, we need to be careful not to suspend other data-intensive jobs
and we need to careful in acquiring processors so as not to starve
certain job classes. Further, if other computation nodes need the
data, we need to be run hierarchical buffer server to stream data to
them. Failure handling is more complex in this case.

4. IMPLEMENTATION

In this section we discuss the tools we used to build our system.

Stork

We carefully schedule the data transfers using Stork [6], a special-
ized data placement scheduler. Data placement encompasses all
data movement related activities such as transfer, staging, replica-
tion, data positioning, space allocation and deallocation. Stork pro-
vides a uniform job interface for data placement jobs irrespective
of the data transfer protocol used. Further, it has the ability to tune
data placement jobs at run-time. We use this feature to optimize the
system taking into account network, server and client characteris-
tics.

Condor

We use Condor [7] as the computation scheduler. Condor has a
functionality called Condor-G which allows us to schedule and
run jobs on heterogeneous grid resources. Using this ensures that
users have the same computation job interface irrespective of the
scheduling system used. Essentially, users submit condor jobs but
the cluster system may employ any scheduling system. Further, if
the computing system uses Condor, we can use the compute-on-
demand feature for design 3.

DAGMan

We have a DAG Model to represent jobs. There may be dependen-
cies between computation jobs and between data placement and
computation. We use DAGMan [3] to handle the dependencies.
We have enhanced it to submit the data placement jobs to Stork
and computation jobs to Condor. This DAG model is flexible and
any arbitrary computation can be performed to determine the set of
destinations.

DiskRouter

We use the DiskRouter [5] to provide the hierarchical buffer man-
agement feature used in design 2. It is capable of performing ap-
plication level multicast used for streaming the video to multiple
computation nodes. We enhanced DiskRouter to support call-backs
and to allow dynamic tuning of the buffering before call-back.

Tuning Infrastructure

We have designed a tuning infrastructure to tune the wide-area data
transfers. We estimate the bottleneck bandwidth of the wide-area
link using pathrate and use it to tune TCP buffer size of data transfer
protocols.

We also try to determine the characteristics of the storage server
to determine the optimal concurrency level. This information can
be generated by running our profilers on the storage server and
we do it automatically if we are allowed to execute on the stor-
age server. The profilers look at CPU load and I/O characteristics
of the server at different concurrency levels and determines reason-
ably close to optimal values for our configuration. In the absence



of the ability to run profilers, we determine the storage server char-
acteristics by observing the throughput of our transfers. Since this
profiling occurs by performing actual transfers, it takes the end-host
characteristics into account.

We have an initial profile phase where we determine the charac-
teristics of the network and the storage server. This phase involves
running pathrate followed by actual transfers. After this phase, we
periodically estimate the network bandwidth by running pathrate
and tune buffers appropriately. In case of failures, we use an expo-
nential back off strategy.

Visualization

Our interaction with users showed the need to visually represent
what is happening in the system. While this information can be
found from log files, users preferred a visualization. We have a
primitive visualization setup where we generate visualizations of
the data transfers and job completion using DEVise [8] and publish
it on a web-page.

Fault-tolerance

We have a hierarchical fault-tolerance mechanism. Both Condor
and Stork have persistent job-queues. So, crash and restart of the
Stork server or condor server is not a problem. Stork has a sophis-
ticated retry mechanism to add fault-tolerance to data transfers. In
case a data-transfer fails, stork tries to see if it can use an alter-
nate protocol to try the transfer. It is possible to make the alternate
protocol such as to resume the previous failed transfer. In case
of transient failures, Stork uses retries to ensure that data transfers
complete.

Finally, another level of fault-tolerance is provided by DAGMan.
DAGMan logs the progress of jobs to persistent storage and can
continue from last state. In case the machine running Stork server
breaks down and is replaced by another, DAGMan can still resume
from the previous state. In DAGMan, the number of retries is spec-
ified. After that, it writes out a rescue DAG which specifies the jobs
which have not executed successfully and this can be passed back
to DAGMan to retry again. We also distinguish permanent failures
which cannot be fixed by retries, for instance certain processing
may fail because the source video is corrupted. In such cases, the
error is reported to the user through log files.

S. ACASESTUDY: EDUCATIONAL VIDEO
PROCESSING PIPELINE

Wisconsin Center for Educational Research(WCER) has nearly
500 terabytes of video on miniDV tapes and they want to make the
original and MPEG1, MPEG2 and MPEG4 formats of the origi-
nal electronically available at their storage server and SRB mass
storage at San Diego supercomputing center(SDSC).

We helped them use our system to encode the videos to different
formats and transfer them to SDSC. Since they provide researchers
access to these videos via their transana [9] software, its meta-data
showing the video locations has to be updated after a successful
video transfer.

After a straight-forward install of our system on their side, we
created job templates for the different operations and a DAG tem-
plate to specify the dependencies. We wrote a DAG generator
which takes as input a list of videos and generates a DAG for the
whole operation using the templates.

When they have a set of videos to be encoded and replicated,
they generate a DAG for the process using our DAG generator and
submit it to our system.

At present, our system uses design 1 and transfers the video to
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Figure 3: WCER Configuration

the stage area of UW Madison computer science(UW-CS) cluster
system using DiskRouter tools and then schedules the computation
on that cluster. The whole process is shown in figure 3. We have
also shown other UW clusters. We are waiting on getting access to
them and would soon start using them.

Because the condor file transfer mechanism used to move data
from the stage-area to the individual nodes does not support files
larger than 2 GB and most of the videos are around 13 GB, we split
the video in the stage area and modify the processing job to merge
the input files before processing.

DiskRouter tools was used for direct transfer to the stage-area
because of its ability to handle these large files. The system by use
of multi-protocol support in Stork supports GridFTP. Since the in-
stalled version of GridFTP does not support these large files, we are
presently unable to use it. The latest version of GridFTP supports
large files and we would be trying it soon.

We also tried using Design 2 and Design 3. Design 2 improved
performance by about 20%, but design 3 slightly worsened the per-
formance because we need to stream the data to two other nodes
and in this cluster configuration, the stage-area node has gigabit
connectivity while the compute nodes have only 100 Mbit connec-
tivity.

During the course of processing, we had several failures. There
were several intermittent network failures, most lasting around 5
minutes and some longer. In addition, there were planned mainte-
nance when patches were applied to the routers. Also, SRB system
at SDSC has a weekly planned maintenance window when it is not
accessible. Our system was robust to all these failures and contin-
ued the processing without any human intervention.

6. RESULTS

Figure 4 shows the DEVise visualization of the data flow tak-
ing place. The y-axis is in MBPS. We are performing tuning and
get close to the maximum data transfer rate on the links. The link
from UW-CS to WCER is limited by the 100 Mbit interface on the
WCER machine while other traffic limits the data transfer rate from
WCER to UW-CS.

The break in the middle is an artificial network outage we cre-
ated. As it can be seen, the system recovers from the outage auto-
matically without any human intervention.

We also determined that we need two concurrent transfers for
GridFTP and one transfer for DiskRouter to maximize the through-
put of the storage system.

7. RELATED WORK
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Considerable work has been done on parallelizing MPEG encod-
ing [1] [4]. Our work would be able use these existing work and
add full automation and fault tolerance to the process. We take
into account the fact that the source and destinations may not be
in the same local area network as the compute nodes and handle
wide-area data movement.

Another differentiating factor of our work is that normal(non-
parallelized) video processing tools can be employed. Here, we get
speedup from concurrently processing multiple videos and concur-
rently performing various processing. We believe that this is very
useful in a real-world setting where parallelizing certain processing
requires significant work. Further, a user may be concerned about
the turn-around time of an entire set of processing and may not care
about the individual processing time.

BAD-FS [2] builds a batch aware distributed filesystem for data
intensive workloads. This is general purpose and serves workloads
more data intensive than conventional ones. But, we are not sure
if it would be able to handle video processing workloads which
are highly data-intensive and for performance reasons prefer to ac-
cess source data from local disk rather than over a network filesys-
tem. Further, BAD-FS at present does not schedule wide-area data
movement which we feel is necessary given the size of the videos.
Our system is specialized towards video processing and would per-
form better for this class of applications compared to the more gen-
eral purpose BAD-FS.

8. FUTURE WORK

We would like to improve the visualization showing the entire
processing. We are trying to design an automated way of determin-
ing the most suitable of the 3 designs and using it.

9. CONCLUSIONS

We have successfully designed and built a fault-tolerant system
capable of fully automated distributed video processing. The sys-
tem is resilient to a wide-variety of network, hardware and software
failures and recovers automatically without any human interven-
tion. It schedules wide-area data transfer taking into account net-
work and end-host characteristics and maximizes the throughput of
the system.
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